Measurement of longitudinal Parameters

Measurement of longitudinal parameter:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy
- > Determination of longitudinal emittance
- > Bunch length measurement for non-relativistic beams
- > Bunch length measurement for relativistic beams
- > Summary

Longitudinal ↔ **transverse correspondences:**

- ➤ position relative to rf
 ⇔ transverse center-of-mass
- ➤ momentum or energy spread ↔ transverse divergence

Measurement of longitudinal Parameters

The longitudinal dynamics is described by the longitudinal emittance as given by:

- Spread of the bunches *l* in time, length *or* rf-phase.
- Momentum spread $\delta = \Delta p/p$, or energy spread $\Delta W/W$

$$\Rightarrow \varepsilon_{long} = \frac{1}{\pi} \int_{A} dl \cdot d\delta$$

The normalized value is preserved:

$$\varepsilon_{long}^{norm} = \beta \gamma \cdot \varepsilon_{long}$$

Discussed devices:

- ➤ Pick-ups for bunch length and emittance.
- \triangleright Special detectors (low E_{kin} protons), streak cameras & ele.-optical modulation (e⁻)

The Bunch Position measured by a Pick-Up

The **bunch position** is given relative to the accelerating rf.

e.g. φ_{ref} =-30° inside a rf cavity must be well aligned for optimal acceleration Transverse correspondence: Beam position

Example: Pick-up signal and 36 MHz rf at GSI-LINAC:

Outline:

- > Definition of longitudinal phase space
- ➤ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- > Determination of longitudinal emittance
- > Bunch length measurement for non-relativistic beams
- > Bunch length measurement for relativistic beams
- > Summary

Determination of non-relativistic mean Energy using Pick-Ups

The energy delivered by a LINAC is sensitive to the mechanics, rf-phase and amplitude.

For non-relativistic energies at proton LINACs time-of-flight (TOF) with two pick-ups is used:

$$\beta c = \frac{L}{NT + t_{\text{scope}}}$$

 \rightarrow the velocity β is measured.

Example: Time-of-flight signal from two pick-ups at 1.4 MeV/u:

The reading is $t_{scope} = 15.82(5)$ ns with

$$f_{rf} = 36.136 \text{MHz} \Leftrightarrow T = 27.673 \text{ns}$$

$$L = 1.629 \text{ m and } N = 3$$

$$\Rightarrow \beta = 0.05497(7)$$

$$\Rightarrow$$
 W=1.407(3) MeV/u

The accuracy is typically 0.1 % i.e. comparable to $\Delta W/W$

Precision of TOF Measurement for non-relativistic Energy

The precision of TOF is given by the accuracy in time and distance reading:

$$\frac{\Delta \beta}{\beta} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta t}{NT + t_{\text{scope}}}\right)^2}$$

Accuracy of scope reading $\Delta t \approx 100$ ps, uncertainty in distance $\Delta L \approx 1$ mm.

Example: GSI-LINAC: L = 3.25 m and $f_{rf} = 36$ MHz:

location (GSI-slang)		RFQ	IH1	IH2	AL4
energy W	[MeV/u]	0.12	0.75	1.4	11.4
velocity β	%	1.6	4.0	5.5	15.5
total TOF	[ns]	677	271	197	70
bunch spacing $\beta c/f_{rf}$	[cm]	13	33	45	129
Number of bunches N		25	9	7	2
resolution $\Delta W/W$	%	0.07	0.10	0.12	0.22

- \triangleright The accuracy is typically 0.1 % (same order of magnitude as $\Delta W/W$)
- > The length has to be matched to the velocity
- \triangleright Due to the distance of \approx 3 m, different solutions for the # of bunches N are possible
- → A third pick-up has to be installed closed by, to get an unique solution.

Cavity Alignment using a TOF Measurement

The mean energy is important for the matching between LINAC module. It depends on phase and amplitude of the rf wave inside the cavities.

Example: Energy at GSI LINAC (nominal energy 1.400 MeV/u):

(distance between pick-ups: $L = 1.97 \text{ m} \Rightarrow N = 4 \text{ bunches}$)

>Proton LINACs: Amplitude and phase should be carefully aligned by precise TOF

Electron LINACs: Due to relativistic velocity, TOF is not applicable.

Outline:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- > Determination of longitudinal emittance
 - LINAC: variation of bunch length
 - **Synchrotron: Topographic reconstruction**
- **Bunch length measurement for non-relativistic beams**
- > Bunch length measurement for relativistic beams
- > Summary

Longitudinal Emittance by linear Transformation using a Buncher

Longitudinal focusing:

Variation of the bunch shape by a rf-buncher

→ components 5 and 6 from 6-dim phase-space

Transversal corres.: Quadrupole variation —

$$R_{buncher} = \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix}, R_{drift} = \begin{pmatrix} 1 & L/\gamma^2 \\ 0 & 1 \end{pmatrix}$$
with focal length: $1/f = \frac{2\pi f_{rf}}{Anv^2} \cdot U$

- > Variation of buncher amplitude *U* \Rightarrow different bunch width at s_1 : beam matrix $\Delta t^2_{max} = \sigma_{55}(1, f)$
- \triangleright System of redundant linear equations for $\sigma_{ii}(0)$:

pick-up

position s1

phase space

pick-up signal

time or phase

Result of a longitudinal Emittance Measurement

Example GSI LINAC:

The voltage at the single gap -resonator is varied for 11.4 MeV/u Ni¹⁴⁺ beam, 31 m drift:

- > The structure of short bunches can be determined with special monitor
- ➤ This example: The resolution is better than 50 ps or 2° for 108 MHz
- > Typical bunch length at proton LINACs: 30 to 200 ps

Longitudinal Emittance within a Transfer-Line

As for the 'three grid' method, the emittance can be determined in a transfer line.

The system of redundant linear equations with the transfer matrix $\mathbf{R}(\mathbf{i})$ to location s_i :

$$\begin{array}{lll} \sigma_{55}(1) & = & R_{55}^2(1) \cdot \sigma_{55}(0) + 2R_{55}(1)R_{56}(1) \cdot \sigma_{56}(0) + R_{56}^2(1) \cdot \sigma_{66}(0) & \mathbf{R}(1) : s_0 \to s_1 \\ & : \\ \sigma_{55}(n) & = & R_{55}^2(n) \cdot \sigma_{55}(0) + 2R_{55}(n)R_{56}(n) \cdot \sigma_{56}(0) + R_{56}^2(n) \cdot \sigma_{66}(0) & \mathbf{R}(n) : s_0 \to s_n \end{array}$$

Assumptions: \triangleright Bunches much longer than pick-up or relativistic E -field: $E_{\perp} >> E_{\parallel}$ \triangleright Gaussian distribution without space-charge effects.

Longitudinal Emittance using tomographic Reconstruction

Tomography is medical image method Tomography:

2-dim reconstruction of sufficient 1-dim projections

Algebraic back projection:

Iterative process by redistributing the 2-dim image and considering the differences to the previous iteration step.

Longitudinal Emittance using tomographic Reconstruction

Tomography is medical image method Tomography:

2-dim reconstruction of sufficient 1-dim projections

Application at accelerators:

Longitudinal emittance evolution in synchrotrons.

Bunch observation:

Each revolution, the bunch shape changes a bit due to synchrotron oscillations. Fulfilled condition: $f_{synch} << f_{ref}$.

Algebraic back projection:

Iterative process by redistributing the 2-dim image and considering the differences to the previous iteration step.

Results of tomographic Reconstruction at a Synchrotron I

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

Typical bucket filling. Important knowledge for bunch 'gymnastics'.

Results of tomographic Reconstruction at a Synchrotron II

Bunches from 500 turns at the CERN PS and the phase space for the first time slice, measured with a wall current monitor:

Mismatched bunch shown oscillations and filamentation due to 'bunch-rotation'.

Resistive Wall Current Monitor

Broadband observation of bunches can be performed with a resistive Wall Current Monitor

- **Principle:** \triangleright Ceramic gap bridged with n = 10...100 resistors of $R = 10...100 \Omega$
 - \triangleright Measurement of voltage drop for $R_{tot} = R/n = 1...10 \Omega$
 - \triangleright Ferrite rings with high $L \rightarrow$ forces low frequency components through resistors

to ground

to signal

Resistive Wall Current Monitor

Example: Realization at Fermi-Laboratory

Outline:

- > Definition of longitudinal phase space
- ➤ Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- ➤ Determination of longitudinal emittance LINAC: variation of bunch length Synchrotron: Topographic reconstruction
- ➤ Bunch length measurement for non-relativistic beams

 Determination of particle arrival
- > Bunch length measurement for relativistic beams
- > Summary

Bunch Structure at low E_{kin} : Not possible with Pick-Ups

Pick-ups are used for:

- > precise for bunch-center relative to rf
- > course image of bunch shape

Example: Comparison pick-up – particle counter: Ar^{1+} with 1.4 MeV/u ($\beta = 5.5\%$)

But:

For $\beta \ll 1 \rightarrow \text{long. } E\text{-field significantly modified:}$

⇒ the pick-up signal is insensitive to bunch 'fine-structure'

Low Velocity Effect: General Consideration

Lorentz transformation of single point-like charge:

Lorentz boost and transformation of time: $E_{\perp}(t) = \gamma \cdot E'_{\perp}(t')$ and $t \rightarrow t'$

Trans. E_{\perp} lab.-frame of a point charge:

$$E_{\perp}(t) = \frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma R}{\left[R^2 + (\gamma \beta ct)^2\right]^{3/2}}$$

time [ns]

Long. $E_{//}$ lab.-frame of a point charge:

$$E_{||}(t) = -\frac{e}{4\pi\varepsilon_0} \cdot \frac{\gamma\beta ct}{\left[R^2 + (\gamma\beta ct)^2\right]^{3/2}}$$

0.4

0.2

Broadband coaxial Faraday Cups for Bunch Structure

The bunch structure can be observed with cups, having a bandwidth up to several GHz.

Bandwidth and rise time: BW [GHz] = $0.3/t_{rise}$ [ns]

Impedance of a coaxial transmission line:

$$Z_0 = \frac{Z_c}{2\pi} \cdot \ln \frac{r_{\text{outer}}}{r_{\text{inner}}}$$

with
$$Z_c = \sqrt{\frac{\mu_0 \mu_r}{\varepsilon_0 \varepsilon_r}}$$

→ impedance matching to prevent for reflections

Voltage reflection: $\rho_V = \frac{Z - Z_0}{Z + Z_0}$ Voltage Standing Wave Ratio: VSWR $= \frac{Z}{Z_0} = \frac{1 + \rho_V}{1 - \rho_V}$

$$=\frac{Z}{Z_0} = \frac{1+\rho_V}{1-\rho_V}$$

 $Z = Z_0$: no reflection. $Z = 0 \Rightarrow \rho_V = -1$: short circuit. $Z = \infty \Rightarrow \rho_V = 1$: open circuit.

Realization of a Broadband coaxial Faraday Cup

Bunch Structure using secondary Electrons for low Ekin Protons

Secondary e⁻ liberated from a wire carrying the time information.

→ Bunch Shape Monitor (BSM)

Working principle:

- \triangleright insertion of a 0.1 mm wire at \approx 10 kV
- > emission of secondary e within less 0.1 ps
- ➤ secondary e⁻ are accelerated
- > toward an rf-deflector
- > rf-deflector as 'time-to-space' converter
- > detector with a thin slit
- > slow shift of the phase
- \triangleright resolution $\approx 1^{\circ} < 10 \text{ ps}$
- ➤ Measurements are comparable to that obtained with particle detectors.

SEM: secondary electron multiplier

Realization of Bunch Shape Monitor at CERN LINAC2

Example: The bunch shape at 120 keV/u for 120 keV/u:

Outline:

- > Definition of longitudinal phase space
- > Proton LINAC: Determination of mean energy used for alignment of cavities phase and amplitude
- ➤ Determination of longitudinal emittance LINAC: variation of bunch length Synchrotron: Topographic reconstruction
- ➤ Bunch length measurement for non-relativistic beams Determination of particle arrival
- ➤ Bunch length measurement for relativistic beams

 Synchrotron light monitor and electro-optical modulation of a laser beam
- > Summary

Bunch Length Measurement for relativistic e⁻

Electron bunches are too short (σ_t < 300 ps) to be covered by the bandwidth of pick-ups (f < 1 GHz $\Leftrightarrow t_{rise}$ >300 ps) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution ≈ 1 ps.

Bunch Length Measurement for relativistic e⁻

Electron bunches are too short (σ_t < 300 ps) to be covered by the bandwidth of pick-ups (f < 1 GHz $\Leftrightarrow t_{rise}$ >300 ps) for structure determination.

 \rightarrow Time resolved observation of synchr. light with a streak camera: Resolution ≈ 1 ps.

Technical Realization of Streak Camera

Hardware of a streak camera

Time resolution down to 0.5 ps:

Technical Realization of Streak Camera

CCD

Hardware of a streak camera

Time resolution down to 0.5 ps:

The Streak Camera setup at ELETTRA, Trieste, Italy

Results of Bunch Length Measurement by a Streak Camera

The streak camera delivers a fast scan in vertical direction (here 360 ps full scale) and a slower scan in horizontal direction (24 μ s).

Example: Bunch length at the synch. Light source SOLEIL for $U_{rf} = 2$ MV for slow direction 24 μ s and scaling for fast scan 360 ps: measure $\sigma_t = 35$ ps.

The Artist View of a Streak Camera

The Importance of Bunch Length by Streak Camera

Short bunches are desired by the synchrotron light users for time resolved spectroscopy. The bunch focusing is changed by the rf-amplitude.

Example: Bunch length σ_t as a function of stored current (space-charge de-focusing, impedance broadening) for different rf-amplitudes at SOLEIL:

Bunch length measurement by electro-optical methods

For Free Electron Lasers → bunch length below 1 ps is achieved

- → below resolution of streak camera
- \rightarrow short laser pulses with $t \approx 10$ fs and electro-optical modulator

Electro optical modulator: birefringent, rotation angle depends on external electric field Relativistic electron bunches: transverse field $E_{\perp, lab} = \gamma E_{\perp, rest}$ carries the time information Scanning of delay between bunch and laser \rightarrow time profile after several pulses.

From S.P.Jamison et al., EPAC 2006

Pockels Effect

Crystal with different index of refractivity on orthogonal planes

- \Rightarrow Bire-fringent
- ⇒ external electric field changes the phase between orthogonal wave:

'Pockels effect' with polarization $P = \varepsilon_0 \chi E$

Diagnostics method:

Probing bunch's electric field by polarized laser beam

Polarized Input

Polarized Input

Notitage

Crystal Ring Electrodes

Unpolarized Light

Optical Aperture in Electrode

Realization of EOS Scanning

Setup of a scanning EOS method

Using 12fs Ti:Al2O3 laser at 800nm and ZnTe crystal 0.5mm thick and a beam of 46MeV, 200pC, 2ps.

X. Yan et al, PRL 85, 3404 (2000)

Hardware of a compact EOS Scanning Setup

Measurement of Bunch Shape at FEL-Facility

Example: Bunch length at FEL test facility FLASH

Scanning of the short laser pulse relative to bunch:

Results at FLASH, Hamburg, see B. Steffen et al., FEL Conf. Stanford, p. 549, 2005.

Bunch Length by rf-Deflection: Principle

Transversal deflection of the bunch i.e. time-to-space conversion

Size of the streak given by

$$\sigma_{y} = \sqrt{\sigma_{y0}^{2} + R_{35} \cdot k \cdot \sigma_{z}^{2}}$$

k is determined by the rf-power
$$k = \frac{2\pi e \cdot U_{rf}}{\lambda_{rf} E}$$

From D. Xiang, IPAC'12

Bunch Length by rf-Deflection: Hardware

Transversal deflection of the bunch

i.e. time-to-space conversion

Example: Cavity at FERMI, Trieste, Italy

Typical beam size
Length
Frequency
Max. rf power
Total trans. volt.
Time resolution

Beam energy

320 MeV 0.2 mm 0.5 m 2.998 GHz 5 MW 4.9 MV

70 fs

Bunch Length from Injector (6 ps fwhm)

Bunch I

Bunch length compression (1ps fwhm)

From M. Veronese, BIW'12

Bunch Length by rf-Deflection: Results

0.3 0.2 (%) 0.1 -0.1 -0.2 -0.3 -10 -5 0 5 10 t (fs) Example: Short bunch generation at Free Electron Laser Facility LCLS, Stanford, USA

Time resolution down to (true) fs range!

Vertical deflection with cavity → time spectum **Horizontal bending**

- →energy (momentum) distribution via dispersion
- ⇒ Longitudinal phase space determined!

From D. Xiang, PRST-AB, 13, 094001 (2010)

Summary of longitudinal Measurements

Longitudinal ↔ **transverse correspondences**:

- \triangleright position relative to rf \leftrightarrow transverse center-of-mass
- ➤ bunch structure in time ↔ transverse profile in space
- \triangleright momentum or energy spread \leftrightarrow transverse divergence.

Determination uses:

- *Broadband pick-ups:* ➤ position relative to rf, mean energy
 - right emittance at transfer lines or synchrotron via tomography assumption: bunches longer than pick-up.
- Particle detectors:
- ➤ TOF or secondary e⁻ from wire
 - → for non-relativistic proton beams reason: *E*-field does not reflect bunch shape.

- Streak cameras:
- time resolved monitoring of synchrotron radiation
 - \rightarrow for relativistic e⁻-beams, $t_{bunch} < 1$ ns reason: too short bunches for rf electronics.

- Laser scanning:
- > Electro-optical modulation of short laser pulse
 - \rightarrow highest time resolution.