

PSI and its Accelerators

February 27th, 2014

Terry Garvey

Paul Scherrer Institut

Paul Scherrer (1890 – 1969)

- Studied physics and mathematics at the Swiss Federal Institute of Technology (ETH) Zurich, in Königsberg and Göttingen in Germany
- 1920: Director of The Institute of Physics at the FTH Zurich.
- Researched X-ray scattering from crystals, liquids and gases. Later work was in nuclear physics
- 1946: President of the Swiss Study Commission on Atomic Energy
- Involved in the founding of CERN

Political embedding

Our Mission

- To play a leading role on an international level in
 - physics of condensed matter and materials sciences
 - structural biology
 - radiochemistry, radio-pharmacy and proton radiation therapy
 - particle & accelerator physics

@ PSI large-scale facilities (SLS, SINQ, SμS, particle beams)

- To be a User Lab for the external scientific community
- Energy research, primarily using complex facilities, towards an efficient, environmentally friendly and reliable energy supply

PSI in figures

PSI funds (global budget) External funding			MCHF MCHF
Staff	~	1500	PY
Of which externally financed	~	400	PY
Doctoral students	~	300	
Apprentices	~	85	
External users	~	2100	
Number of scientific publications	~	1000	
PSI employees with teaching duties at ETH and universities	~	100	
Visits of patients	~	6000	

Budget

Particle beams at PSI: protons, electrons, photons, neutrons and muons

> 590 MeV Proton cyclotron (40 years old):

CW proton beam of 2.2 mA Beam power: **1.3 MW**

- neutron spallation source SINQ, thermal and cold neutrons
- very high flux and brightness muon beams
- > 2.4 GeV electron storage ring: Swiss Light Source (SLS, 12 years old)
- 250 MeV protons cancer therapy (PROSCAN)
- 6 GeV electron linac based X-Ray Free Electron Laser (SwissFEL)

Accelerators at PSI

Synchrotron Light Source

SwissFEL

The 590 MeV Ring Cyclotron

The proton facility.

Still going strong after 40 years

Humans and health

Radiation facility (Gantry) for proton therapy

Efficient spot-scanning technique: irradiaton plan for a tumour at the lower spine (spearing of healthy tissue)

MEDICAL THERAPY

ESTABLISHED TECHNIQUE: CANCER TREATMENT WITH PROTONS → CYCLOTRON WITH MAXIMUM ENERGY OF 250 MeV

PROSCAN SC CYCLOTRON ACCEL/PSI

Swiss Light Source SLS

Linac

Energie [N

Ladung [n

Norm. Em

Energiebre

Energiesta

Booster

E = 2.4 GeV

C = 270 m

ε = 9 nm

SLS Operation Statistics

Use of facilities 2010

Geographic distribution SLS users 2010, all beamlines

Geographic distribution of **SINQ** users

Geographic distribution of SuS users 2010

Steep rise in brightness

the second wave

Bertha Roentgen's hand (exposure: 20 min)

X-Ray Laser

10 ORDERS OF MAGNITUDE JUMP!

X-FEL facilities

"National"

SwissFEL 2016

USA LCLS-SLAC 2009

Japan SCSS-SPring8 2010

Europe X-FEL-DESY 2014/2015

Short Pulses at PSI: SwissFEL

2012	2013	2014	2015	20	2016 2017		17		
component procurement accelerator and ARAMIS FEL						preparation ATHOS FEL			
prepatory work	building co	onstruction	Accelerator and ARAMIS F installation interleaved wi injector commissioning			nac and ARAMIS commissioning			

SwissFEL Development: Injector Test Facility (SITF)

- Facility to test:
 - Electron Source: laser gun development
 - RF: low-level regulations, RF modulator development, X-band
 - Bunch compression studies
 - Diagnostics development: EO, CSR, Beam arrival
 - Controls development: beam synchronous data acquisition

SwissFEL, the next large facility at PSI

I wish you all an enjoyable and interesting visit