
JUAS14_03- P.J. Bryant  - Lecture 3
Transverse motion & Electrostatic elements - Slide1

TRANSVERSE MOTION

&

ELECTROSTATIC 

ELEMENTS

Lecture 3

January 2014

P.J. Bryant



JUAS14_03- P.J. Bryant  - Lecture 3
Transverse motion & Electrostatic elements - Slide2

Introduction

� There is a fundamental difference between 
electric and magnetic elements.  When traversing 
a magnetic field the ion’s energy is rigorously 
constant, whereas in an electric field the ion can 
exchange energy with the field.  

� This means that both the mass and velocity of the 
ion can vary as the ion traverses an electrostatic 
element.  Since the velocity affects the transit time 
the kick is affected.

� In most of the literature, this is elegantly handled 
by using Lagrangian mechanics, but for 
consistency we will follow an analysis exactly 
parallel to the analysis for magnetic elements.  
This shows more clearly where and when the 
differences occur and what approximations are 
being made.

� The following will treat the transverse motion and 
does not apply to elements that are designed to 
accelerate longitudinally (Einzel lenses).
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‘Small-angle’ approximation

� It will be assumed that the angular deviations and 

transverse excursions in straight elements, i.e. 

quadrupoles are always small, so that, 

� the transverse electric field is always perpendicular 

to the particle motion and does not affect the 

longitudinal velocity and hence the transit time and 

kick remain unchanged, 

� the transverse excursions are small so that the 

transverse energy change is negligible.  

� Thus, electrostatic quadrupoles behave in 

essentially the same way as magnetic quadrupoles.

� This leaves the bends, which can have large angles 

and exhibit new effects.

� It is further assumed that the elements are housed 

in earthed enclosures, so that there can be no net 

energy difference between the incoming and 

outgoing ions.
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A complicated electrostatic bend

� Three-way electrostatic bend:  left, right and 

straight through.  Electrodes are spherical 

(concentric) giving focusing in both planes.

� In general electrodes are:

� Concentric cylinders (cylindrical bend), or

� Concentric spheres (spherical bend), or 

� Concentric toroids (toroidal bend).
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Equivalent of cyclotron motion

� The force, F, acting on a charged particle in an electric 

field is,

� The three components of this force in a cylindrical 

system (ρρρρ, ΘΘΘΘ, y) are well known and are written as,

� The equivalent of cyclotron motion is obtained by 

launching an ion perpendicular to a radial field, so 

that Eρρρρ = E0 (constant), EΘΘΘΘ = Ey = 0, ρρρρ = ρρρρ0 (constant) 

and y = y0 (constant), to give,

where q =ne is the ion’s charge and m its relativistic 

mass.
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Electric rigidity

� Alternatively, the equivalent of cyclotron motion 
is found simply by equating the expressions for 
the centripetal force,

� This gives the electric rigidity, the equivalent of 
the magnetic rigidity.  Re-writing (3) as an 
'engineering' formula gives,

� where n is the charge number of the ion so that   
q = ne, A is the atomic mass number and T is the 
average kinetic energy per nucleon.  This relation 
defines the central orbit in an electrostatic bend 
just as the magnetic rigidity defines the central 
orbit in a dipole.

0

2

0
0 ρ

mv
qE −=

[ ] ( ) [ ] (4)      keV
1

kV00 T
n

A
E

γ

γ
ρ

+
=



JUAS14_03- P.J. Bryant  - Lecture 3
Transverse motion & Electrostatic elements - Slide7

Note on derivation of (4)

Substitute (B) into (A)
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Electric rigidity continued

� The electric rigidity leads to a second 

‘engineering’ formula for the bending angle,

Note, as with the magnetic rigidity, these formulæ

avoid applying sign conventions.

� Compare the magnetic and electrostatic 

derivations. There is an additional factor v in the 

electrostatic case.  This occurs because the 

magnetic force contains the velocity whereas the 

electrostatic force does not.  This difference is the 

root of the complications in this lecture. 

� As in the magnetic case the bending angle is found 

by,
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Transverse motion in an

electrostatic bend

� Consider ions that enter with a momentum deviation, 

∆∆∆∆p that contains the mass and velocity deviations ∆∆∆∆m

and ∆∆∆∆v.  Since the bend is in a screened enclosure, the 

ion must leave with the same momentum deviation.

� Inside the device, the ion can exchange energy with the 

electric field and suffer variable mass and velocity 

deviations denoted by δδδδm and δδδδv.

� Re-writing the radial equation from (2) with the 

deviations in evidence, 

� This only differs from the magnetic case in that the 

force term is changed and the mass and velocity 

deviations are separated into constant and variable 

parts.  

� As always, we look for approximations and first we 

neglect the effect of the variable mass deviation δδδδm

inside the differential, so that,
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Transverse motion in an

electrostatic bend continued

� As usual we transform the independent variable from 

time, t, to distance, s, and introduce the local 

coordinate x for the excursion,

which gives,

� Expanding the RHS and truncating to 1st order gives,
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Transverse motion in an

electrostatic bend continued

� It is now necessary to evaluate the field between two 

cylindrical plates biased at ±±±±V/2 with respect to the 

screening enclosure. Neglecting any fringe fields, the 

equi-potential surfaces will be concentric with the 

electrode surfaces, so that,

� Substituting for the field from (6) and q/m from (3) 

gives, 
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Treating the constant increments

� The constant increments are defined by the incoming 

(and outgoing) beam with respect to the ideal central 

orbit and can be re-expressed using the beam 

parameters outside the apparatus.  It follows that,

� so that,

� The mass variation ∆∆∆∆m/m is the same as the total 

energy variation ∆∆∆∆E/E, which in turn can be expressed 

in terms of ∆∆∆∆p/p so,
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Treating the variable increments

� The variable increments are zero unless a betatron

oscillation or energy mismatch takes the ion away from 

the central orbit.  When this happens, the ion absorbs 

or releases energy to the electrostatic field.  The energy 

change alters the ion's velocity, which alters its transit 

time and hence the deflection.  Since there are no 

azimuthal forces (central force approximation), the 

conservation of angular momentum can be used to 

relate the ideal central orbit particle to the off-axis 

particle,

� When expanded and truncated to first order, this gives 

a relation between the excursion and the incremental 

changes,

� Further manipulation gives,
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Transverse motion equation

� The combination of (7), (8) and (9) finally gives the 
radial motion equation,

� This only differs from the equivalent magnetic equation 
for a pure dipole by the factor (2-β β β β 2). So apart from this 
additional term, the same general solutions can be used 
to construct the transfer matrices.

� At relativistic energies (as ββββ→→→→1), the difference 
between the magnetic and electric motion equations 
disappears.

� Comparing magnetic and electric bends shows that: 

At low energies, the (1+γγγγ) term in the numerator of the 
rigidity improves the efficiency of electrostatic bends. The 
convenience of being able to shape the field with simple 
mechanical surfaces, calculate the field from simple 
mechanical dimensions, the low power consumption, the 
absence of hysteresis and the absence of heating leads to 
these devices being widely used.  
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Matrices for on-momentum ions

� The transfer matrix of a focusing element (K>0) 
is:

� The transfer matrix of a defocusing element (K<0) 
is:

where,

� The transfer matrix of a drift space (K=0) is: 
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Solutions of the motion equation 

including momentum

� As for the magnetic case z can be x or y,

� The terms m11, m12, m21 and m22 have the forms from the 
earlier slide.  The new terms have the forms,

For K>0 :

For K<0:

[Upper sign for horizontal and lower sign for vertical bending. K values 
for cylindrical, spherical and toroidal electrodes are in the Formula 
Book.]
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Transverse motion in an 

electrostatic quadrupole

� Invoking the ‘small-angle’ approximation gives,

[Basically we are following the derivation in Lecture 2]

� The field components Ex and Ey are derived from the 
potential,
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Electrostatic quadrupole continued

� The field components are:

� After some substitutions:

where,

and the matrices (11) and (12) also apply.
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Electrostatic quadrupole continued

� The main difference between magnetic and 

electrostatic quadrupoles is the way in which 

the K-factor is expressed:

� For electrostatic lenses, we use the voltage 

across the electrodes because the potential is 

well defined and a simple calculation can lead 

to an accurate knowledge of the field. 

� Whereas for magnets, the corresponding pole 

tip field is difficult to measure and the current 

in the coil is related in a non-linear manner to 

this field.  For these reasons, the gradient on 

the axis is preferred.
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Energy, Parameter space

� The electrostatic devices in this lecture are 

mathematically valid for all energies.  

However, the lecture is more appropriate for 

energies above a few MeV.

� At lower non-relativistic energies (keV), you 

may come across cylindrically symmetric 

lenses such as the Einzel electrostatic lens and 

the Glaser magnetic solenoid lens, e.g. in 

electron microscopes and electron guns.  

� For the Einzel lens, it is usual to use a 

cylindrical co-ordinate system and to include 

the energy changes (which will be 

proportionally larger) into the equation of 

motion in a more basic way.  
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Summary

� We have seen how the transverse motion in an 
electrostatic bend is affected by energy being 
exchanged with the bending field.

� The resultant equations for the bend are basically the 
same as those of the magnetic case with an additional 
multiplier (2-ββββ2).

� The case of the quadrupole was treated according to 
the ‘small angle’ approximation.  This neglects the 
energy exchanges with the field and the basic physics is 
then identical.

� We have also seen that to define the strength of an 
electrostatic lens, it is customary to refer to the voltage 
on the electrodes and the radius of the inscribed circle.

� The equations presented are entirely consistent with 
the matrix approach used in accelerator theory.

� A large part of electrostatic lens theory that applies to 
low energies (keV) and uses cylindrically symmetric 
Einzel and Glaser lenses has been omitted.


