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Local curvilinear co-ordinate 
system that follows the central 

orbit of the beam

� The tangential co-ordinate, which is directed along 
the central orbit,  is designated as ‘s’ (distance 
along beam).

� Note that ‘z’ will be used as a general co-ordinate 
that can be either ‘x’ (horizontal) or ‘y’ (vertical).
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Terminology
� In general, an accelerator lattice comprises a series of 

magnetic and/or electrostatic and/or electromagnetic 
elements separated by field-free, drift spaces.

� In most cases, the lattice is dominated by magnetic 
dipoles and quadrupoles that constitute what is called the 
linear lattice.  Quadrupole and higher-order lenses are 
usually centred on the orbit and do not affect the 
geometry of the accelerator.

� The trajectory followed by the reference ion is known as 
the central orbit or equilibrium orbit.  

� In a ‘ring’ lattice, the enforced periodicity defines the 
equilibrium orbit unambiguously and obliges it to be 
closed.  For this reason, it is often called the closed orbit.  
In transfer lines, there is an extra degree of freedom and 
the designer is required to specify a point on the             6-
dimensional (x, x′, y, y′, s, dp/p) trajectory.

� Ions of the same momentum as the reference ion, but 
with small spatial deviations will oscillate about the 
equilibrium orbit with what are known as betatron
oscillations. 

� Ions with a different momentum will have a different 
equilibrium orbit that will be referred to as an off-
momentum or off-axis equilibrium orbit.  Off-momentum 
ions with small spatial errors will perform betatron
oscillations about their off-momentum equilibrium orbit.
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Modeling

� An exact determination of the equilibrium orbit 
and the focusing along that orbit are difficult, if 
not impossible.  

� Measuring the beam position in an existing lattice 
or tracking through a field map are both 
techniques of limited precision. 

� To make calculations more tractable, while still 
providing a reasonably accurate picture, the 
‘hard-edge’ magnet model has been developed.

� It is sometimes forgotten that virtually the whole 
of lattice optics rests on the very sweeping 
assumption that a useful representation of reality 
can be obtained from the ‘hard-edge’ model.
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‘Hard-edge’ model

The ‘hard-edge’ model:

� Replaces dipoles, quadrupoles and solenoids by 
'blocks' of field that are uniform in the axial 
direction within the block and zero outside the 
block.

� Replaces multipole lenses, above quadrupole, by 
point kicks.

� Makes the link to the real-world by equating the 
field integral in the model to the field integral in 
the real-world magnet.

Notes:

�First, this model must respect Maxwell’s Equations 
to ensure that phase space is conserved and the 
model violates no fundamental principles.  

�Second, the pseudo-harmonic oscillations of the 
beam, called betatron oscillations, should have a 
wavelength that is much longer than the fringe-field 
regions.  This factor determines the level of 
convergence between what the model predicts and 
what actually occurs. 

� In some instances, fringe-field corrections may be 
applied to improve this agreement.

�Cyclotron motion in the uniform blocks of dipole 
field underpins the geometry of the ‘hard-edge’
model.
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In general, the central orbit is 
very simple

� Example racetrack lattice with two 180 degree 
dipoles and various quadrupoles and sextupoles.

� Central orbit is straight through the centres of the 
lenses and semi-circular in each dipole.
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Cyclotron motion

� Lorentz force:

� The three components of this force in a cylindrical 
system (r, ΘΘΘΘ, y) are well known,

� The simplest solution (apart from v parallel to B)  
is a circular motion perpendicular to a uniform 
field in the y-direction, 

� This is known as Cyclotron Motion and ΩΩΩΩc is the 
Cyclotron Frequency.  
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More on cyclotron motion

� Or more simply, equate expressions for the 
centripetal force: 

� This leads to a universally-used ‘engineering’
formula, which relates the momentum of the ion 
to its magnetic rigidity, or reluctance to be 
deviated by the magnetic field. 

� where q = ne, A is the atomic mass number and  
p is the average momentum per nucleon so that 
Ap = mv0. 

� Since the formula is based on momentum, the 
non-linear effects of relativity are hidden.  Note 
that the application of a sign convention is 
avoided and that the units are specified in the 
equation.
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Cyclotron motion and bending

� Cyclotron motion leads to a second universally-
used ‘engineering’ formula, which relates the 
bending of the ion trajectory to its magnetic 
rigidity.

Note that the sign convention is again avoided and 
that the units are included.

� Summary:

�The ‘hard-edge’ model is used for almost all 
lattice calculations. 

�In this model, the central or equilibrium orbit 
is a stepwise progression of straight sections 
and circular arcs of cyclotron motion.

� For a singly-charged particle (5) simplifies to,

�To derive the angle formula,
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Dipoles

� ‘C-shaped’ dipole.  Useful for injection, extraction 
and junctions in transfer lines.  Often the poles are 
inclined to superimpose a gradient on the dipole 
field.

� Various dipole and combined-function cross-
sections.

Field, B

Current flow 

in coils

C-dipole                  H-dipole                Window frame       Combined-function

dipole                      dipole
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Transverse motion

� The transverse ion motion in the lattice will be 
described by small perturbations from the central 
orbit that comprises a stepwise progression of 
straight sections and segments of cyclotron 
motion.

� The transverse motion will be derived in a local 
curvilinear co-ordinate system (x, y, s) that follows 
the central orbit.

� The student will find the following derivations in 
various forms throughout the literature and, no 
doubt, elsewhere in this course.  The result is a 
classic one and the repetition is intended to help 
with understanding. 
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Transverse motion in the plane 
of bending

� Only magnetic elements are considered at this stage, so 
the momentum remains constant. 

� It is assumed that the deviation from the circular orbit 
will always be small and the angular velocity can be 
approximated by v0/ρ, ρ, ρ, ρ, so that,

� Thus, the magnetic deflection is considered as a 
‘central force’ and is equated to the radial 
acceleration.

� Two transformations will be used to introduce the 
local  (x, y, s,) co-ordinate system that follows the 
equilibrium orbit, 

to give,

� Next, the charge to mass ratio is re-expressed using (4) 
as,
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Transverse motion in the plane 
of bending continued

� Now expand the field in a Taylor series up to the 
quadrupole component,

where

k is the normalised gradient.  Note that the sign 
convention chosen introduces a ‘minus’.  In other 
lectures, you will surely see a ‘plus’ sign and a different 
right-handed co-ordinate system.  Welcome to two 
differences that you will find throughout the literature.

� Substituting for the field and remembering that x<<ρρρρ
gives,
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Comments on the derivation

� It is surprising how much of lattice theory is only 
first order.  You will constantly meet 
approximations similar to that needed to derive 
equation (8).

� Be very careful if you try to improve on the 
truncation of the above expansion, or on the 
‘central force’ and ‘constant velocity’
approximations in the derivation.  They are 
critically balanced so that the phase space is 
conserved.  A full derivation using Hamiltonian 
mechanics covering several pages comes to the 
same result !

� The conservation of phase space is vital for 
accelerators since they perform so many betatron
oscillations.  “Improvements” to the equations 
may gain in short term precision, but eventually 
the oscillation will grow or decay artificially.  
Planetary systems exhibit a similar sensitivity to 
phase-space conservation.

� Note that this theory is based on a hard-edge 
sector dipole.  An extension to rectangular dipoles 
and arbitrary edge angles is given in Lecture 7.
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Transverse motion with a 
momentum deviation

� Repeat the earlier derivation with small increments 
in mass and velocity in evidence, so that,

� Now transform time, t, to distance, s,

� To first order,

� So that,
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Transverse motion in the plane 
perpendicular to bending

� Basically the analysis is repeated, except that the 
magnetic field has a different form,

� Remember that to first order,

which gives,
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Transverse motion in plane 
perpendicular to bending

� Now expand the field and replace Bρρρρ by Bx,

� Substitution in the motion equation gives,

� But we consider the ‘y ∆∆∆∆p/p’ as second order and 

discard it to finish with,

� Note that ∆∆∆∆p/p has disappeared so this equation 
works (to first order) for on- and off-momentum 
ions.  The k applies to the gradient in combined-
function dipoles.  For a pure dipole, k = 0 and the 
dipole acts like a drift space.
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Summary of transverse results

� Write the equation of motion in a general form,

where z can be either x or y, and Kz(s) is the 
‘focusing constant’ for the motion.  In the plane 
perpendicular to the bending,                 and the 
RHS term is removed.

� Then define what forms Ky can take:

� In fact, this covers 90% of all lattices. Note that K
and ρ ρ ρ ρ are functions of s.  This is meant to indicate 
that these parameters change from one element to 
the next, but it is understood that they are 
constant within an element.
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Comments on the analysis

� Returning to (9),

� Intuitively we would say that the Complementary 
Function corresponds to the betatron oscillations 
and the Particular Integral corresponds to the off-
momentum orbit.

� In rings, this ‘sharing’ is unambiguously defined 
by the periodicity.

� In transfer lines, the sharing between the betatron
oscillation and the dispersion oscillation is 
arbitrary and must be defined by the user.  We 

will see this again in later lectures.
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Quadrupoles

 � No field on the axis.

� Field strongest here. 

� Linear fields i.e.    

By ∝∝∝∝ x,     Bx ∝∝∝∝ y

� Focuses in 

horizontal plane.

� Defocuses  in 

vertical plane.

� To have overall 

focusing the solution 

is to alternate the 

gradients.
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Solutions of the general motion 
equation

� The full mathematical expressions can be found in 
the Formula Book.  Here we note that:

� When K > 0 the motion is stable and sinusoidal.

� When K < 0 the motion is unstable and hyperbolic.

� When K = 0 the motion is linear in s.

� All these results can be written in the general form 

where z can be x or y.

� Note that the moduli of all these matrices will be 
(and must be) unity.  This condition conserves 
phase space and provides a useful check.
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Matrices for on-momentum ions 

� The transfer matrix of a focusing element (K>0) is:

� The transfer matrix of a defocusing element (K<0) 
is:

� The transfer matrix of a drift space (K=0) is: 

� The various forms of K are given on an earlier 
slide.
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Solutions of the motion equation 
including momentum

� The parameter ∆∆∆∆p/p is taken as a pseudo variable.  
In this way, all the results obtained so far can be 
written in form,

Note that ∆∆∆∆p/p is transferred unchanged.

� The terms m11, m12, m21 and m22 have the form 
from the earlier slide.  New terms have the form,

For K>0 :

For K<0:

[Upper sign for horizontal bending lower sign for vertical]
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Calculating trajectories

�Once the transfer matrices of all the 
elements in a lattice are known, then 
transfer though the lattice and to all 
boundaries between elements can be 
found by matrix multiplication.

where z can be x or y.

Note that drawings normally have the 
beam traveling from left to right and the 
matrix multiplication goes from right to 
left.

�This method is universally used for 
tracking in lattices.

�We now have 90% of the basic concepts 
for modeling and tracking.
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Summary

� We have replaced all real-world dipoles and 
quadrupoles by uniform blocks of field.

� Surprisingly, in almost all cases we are allowed to 
ignore fringe fields, stray flux that is shunted in 
nearby yokes affecting their permeability, 3D 
rather than 2D field distributions and so on.

� We have truncated all series to linear terms only.

� We have applied a ‘central force’ approach in 
bending regions.

� We have fixed a constant axial velocity.

� Finally, everything is expressed in 2 ×××× 2 matrices 
or 3 ×××× 3 matrices.

� The approach is clear, simple and effective, but is 
also full of approximations.

� It is now trivial mathematics for example to invert 
the matrices and back-track in a lattice.

� And the way is now open to making some 
analytical studies of simple layouts.
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Note 2.  Force on a +ve current

Magnetic field (B) direction around a 

positive current (I)

A ‘null point’ forms where fields oppose.  Force pulls 

current towards null point.

Note 1.  Right-hand rule
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Note 3.  Derivation of

� The base formula is

� Introduce units and drop sign

� We know

� So we have

� We now want to express Volts in Gigavolts, 
incorporate ‘e’ and one ‘c’ into the units and 
combine the other ‘c’ into the expression 
numerically.
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Note 4.  Thin quadrupoles

� Consider equations (13) and (14) in the limit of the 
argument going to zero:

BUT this matrix does not have a modulus of unity!  
This is an example of the care we have to take with 
approximations.

� To solve this problem put m12 = 0 but keep the 
integral of the gradient in term m21 to give,

which is the universally-used approximation for a
thin quadrupole lens of zero length.

� This extremely simple matrix with the equally 
simple drift-space matrix opens the way to 
analytical studies of quadrupole focusing schemes.  

It may also be a source of examination questions.
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Note 5.  Weak and strong focusing

� Historically focusing was split into ‘weak’ focusing
and ‘strong’ focusing. The conditions for weak 
focusing are:

so that

� In other words, the transverse motion is stable 
(sinusoidal) in both planes.

� The early designers of weak focusing machines did 
not use the normalised gradient k. They used a 
parameter called the field index denoted by n.

� The minus sign in n was introduced so that the 
weak focusing criterion could be expressed as, 

Originally, the sign convention used for n was 
applied to k (as used in these lectures), but later it 
became popular to remove the minus sign from k.
Hence, it is always necessary to check which sign 
convention is in force.
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