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Scope 

• Beam transport in long, ~periodic machines (linacs, 
storage rings…)  general beam dynamics, beta 
functions etc  not here 

• Beam transport in a short line 
• Beta functions not relevant (they suppose a quasi-harmonic 

motion) or unuseful 

• Geometrical optics is needed (ex: spectrometers) 

• Programme 
• General matricial optics for accelerators 

• Description/matrix for standard focusing elements 

• Beam description (emittance) and transport 

• Basic properties (achromatic systems, spectrometers) 

• Exercises 
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Lorentz force 

• General case 

 

 

• Non relativistic case only 

 

 
• Remark: If no acceleration, you can 

often do as for non-relativistic case 
with (see later) 

 

• Electric field: focusing, bending and 
energy change (“ acceleration” ) 

• Magnetic field: focusing and bending 
only 

 BvEq
dt

vdm 


 BvEqF




𝑚 = 𝛾 ∙ 𝑚0 

𝛾 =
1

1 − 𝛽2
 

𝛽 = 𝑣
𝑐  
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Magnetic rigidity 

• T=neV is the kinetic energy 

 

• n is the charge number and V the 

acceleration voltage 

 

• We consider the energy at rest V0 

and compute the Lorentz factors 

 

• We get the radius of curvature in a 

magnetic field B 
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General frame – Gauss conditions 
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• Coordinates relative to a 
reference particle 

 
 

 

• Gauss conditions x,x’,y,y’ 
small   

• First order calculations 

• Linéarities 

• Non linearities = high order 
terms 

 

• Phase space (x,x’,y,y’,L, 
p/p0) 

• Set of canonical conjugate 
coordinates 

  

L 

x 

y 

Horizontal axis (x) 

Vertical axis (y) 

Reference trajectory (s) 
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Please:  
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𝑝
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∆𝑝

𝑝
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1

2
∙
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𝐸
 

We will work mainly with transverse coordinates 



Equation of motion (illustration: one plane, non relativistic motion) 
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• Timespace transform 

 

 

 

 

 

 

 

• « acceleration » 
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We suppose vs~v  



With a magnetic force (illustration, again) 
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• More generally: 

 

 

 

• The « force term »         is 
linearized 

 

 

 

• The equation of motion is 
always the same 
• Damping term related to 

acceleration  

• The force term 

 Calculation rather easy 

Relativistic equation 
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General 2D solution  

𝑥 𝑠 = 𝑥0 ∙ 𝐶 𝑠 + 𝑥′0 ∙ 𝑆(𝑠) 
𝑥′ 𝑠 = 𝑥0 ∙ 𝐶′ 𝑠 + 𝑥′0 ∙ 𝑆′(𝑠) 

With C(0)=1, C’(0)=0, S(0)=0. S’(0)=1 

 

𝑋 𝑠 =
𝑥(𝑠)

𝑥′(𝑠)
=

𝐶(𝑠) 𝑆(𝑠)

𝐶′(𝑠) 𝑆′(𝑠)
∙ 𝑋0 

 

𝑋 𝑠 = 𝑀𝑠←0 ∙ 𝑋0 

 

𝑥 𝑠 = 𝑥0 ∙ 𝐶 𝑠 + 𝑥′0 ∙ 𝑆 𝑠 +
∆𝑝

𝑝0
∙ 𝐷(𝑠) 
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General conclusion 

• We suppose the equation of motion to be linearized with a good enough 
approximation 

• So, the general (first order) solution in 6D phase space is 

𝑋 𝑠 = 𝑀𝑠←0 ∙ 𝑋0 

M is the transfer (transport matrix) for abscissa 0 to abscissa s 

• Transport to higher orders is much more complicated 

• Composition: 𝑀3←1 = 𝑀3←2 ∙ 𝑀2←1 

• We will often work in lower dimensions (2 or 4) 

• Particular case: horizontal motion with magnetic dispersion  

𝑥 𝑠 = 𝑥0 ∙ 𝐶 𝑠 + 𝑥′0 ∙ 𝑆 𝑠 +
∆𝑝

𝑝0
∙ 𝐷(𝑠) 

• D is the dispersion function 

• Beam transport is a LEGO play: assembly on transfer matrixes 
• Calculation of elementary matrixes (lenses, drift space, bending magnet, edge focusing) 

• General properties of systems versus the properties of matrixes (point to point imaging…) 

• It can be shown from hamiltonian mechanics that this is equivalent to geometrical 
optics (non only an analogy) 

9 



Magnetic force versus electric force 

• 𝑥"𝑀 =
𝑞𝑣𝐵

𝑚𝑣2
 

• 𝑥"𝐸 =
𝑞𝐸

𝑚𝑣2
 

•
𝑥𝑀

𝑥𝐸
=

𝐵

𝐸
∙ 𝑣 

• For B=1T and E=1MV/m 
𝑥𝑀

𝑥𝐸
= 10−6 ∙ 𝑣 

• Limit for 𝑣 = 106 → 𝛽 = 0.0033 → ~10 𝑘𝑒𝑉 𝑝𝑟𝑜𝑡𝑜𝑛𝑠 
• Electrostatic focusing is used for low energy beams (~100 keV 

protons –order of magnitude, please do the appropriate design-) 

• 𝑥"𝐸 =
𝑞𝐸

𝑚𝑣2
=

𝑞𝐸

𝑞𝑉
=

𝐸

𝑉
 : no charge separation (ex: solenoids at 

source exit) 
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GENERAL OPTICAL 

PROPERTIES OF MATRIXES 

Goal:  

• Express a transport (optical property) in terms of matrix 
properties (coefficients) 

• Choose and tune the optical elements to get these matrix 
properties (coefficients) 

• Provide you the useful formulas 
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Basic elements 

Convention 

• Distances are positive from left 

to right 

 

• Focusing lengths are positive 

(with the appropriate sign for 

focussing/defocussing 

Drift space 

• 𝑥 𝐿 = 𝑥0 + 𝐿 ∙ 𝑥′0 

• 𝑥′ 𝐿 = 𝑥′0 

 

• 𝑀 =
1 𝐿
0 1
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0 L 

x0 

Fundamental property (2D case) 

det 𝑀𝑠←0 =
𝑝0
𝑝𝑠

= ∆ 



Thin lenses 

Focusing thin lens 

• Superposition (linear) of two 
elementary beams 

• 𝑥𝑠 = 𝑥𝑒 

• 𝑥′𝑠 = 𝑥′𝑒 −
𝑥𝑒

𝑓
 

• 𝑀 =
1 0

−
1

𝑓
1  

Defocusing thin lens 

• 𝑥𝑠 = 𝑥𝑒 

• 𝑥′𝑠 = 𝑥′𝑒 −
𝑥𝑒

𝑓
 

• 𝑀 =
1 0
1

𝑓
1  
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Point to point imaging 

𝑀𝑠←𝑒 =
𝑀11 0
𝑀21 𝑀22

 

 

M11 is the magnification 

 

𝑀11 ∙ 𝑀22 =
𝑝𝑒
𝑝𝑠

= ∆ 
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Focal points 
Object 

𝑇 =
𝑀11 𝑀12

𝑀21 𝑀22
∙
1 𝐹0
0 1

 

 
𝑥𝑠
0

= T ∙
0
𝑥′𝑒

 

 

→ 𝑀21 ∙ 𝐹𝑂 +𝑀22 = 0 

 

→ 𝐹𝑂 = −
𝑀22

𝑀21
 

Image 

𝑇 =
1 𝐹𝑖
0 1

∙
𝑀11 𝑀12

𝑀21 𝑀22
 

 
0
𝑥′𝑠

= T ∙
𝑥𝑒
0

 

 

→ 𝑀21 ∙ 𝐹𝑂 +𝑀11 = 0 

 

→ 𝐹𝑂 = −
𝑀11

𝑀21
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A useful formula: drift/matrix/drift 

𝑇 =
1 𝑞
0 1

∙
𝑀11 𝑀12

𝑀21 𝑀22
∙
1 𝑝
0 1

 

 

 

𝑇11 = 𝑀11 + 𝑞𝑀21

𝑇12 = 𝑝𝑞𝑀21 + 𝑝𝑀11 + 𝑞𝑀22 +𝑀12

𝑇21 = 𝑀21

𝑇22 = 𝑝𝑀21 +𝑀22
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Principal planes 
• Position of the 2 planes H1 and H2 with 

• Point to point imaging from H1 to H2 

• Magnification equal to 1 

 any incoming beam exits with the same position (xs=xe) 
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M 

h1 h2 

H1 H2 

Fo Fi 

fi fo 



Position 

•  
𝑇11 = 𝑀11 + 2𝑀21 = 1

𝑇12 = 1 ∙ 2𝑀21 + 1 ∙ 𝑀11 + 2 ∙ 𝑀22 +𝑀12 = 0
 

 

• 2 =
1−𝑀11

𝑀21
 

• 1 =
∆−𝑀22

𝑀21
 

Warning: h1 is positive upstream, h2 is positive downstream 

 

Foci vs principal planes 

 

• We consider the T matrix instead of the M matrix 

• 𝑓𝑜 = −
𝑇22

𝑇21
= −

1∙𝑀21+𝑀22

𝑀21
= −

∆

𝑀21
 

• 𝑓𝑖 = −
𝑇11

𝑇21
= −

2∙𝑀21+𝑀11

𝑀21
= −

1

𝑀21
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𝑓𝑂
𝑓𝑖
= ∆ 



Use 

• This description is useful when 
using non sharp edge elements like 
electrostatic lenses and to construct 
easily  trajectories. 

 

• It tells you “where” and “how” the 
system is. Ex: h1=-h2  thin lens 

 

• A tracking code provides the 
transfer matrix M between given 
planes (far enough in a low field 
region). 

 

• The values of Fo and Fi depend on 
the choice of the plane: not 
constant not a real lens 
characteristic 

 

• The position of Ho and Hi, the 
values of fo and fi are constant 

• The focal lengths given by codes 
are fo and fi 
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𝑓𝑂
𝑓𝑖
= ∆ 



Symetric system 

• Backward motion is obtained 
by changing x’-x’ 

 

𝐽 =
1 0
0 −1

= 𝐽−1 

 
𝐽 ∙ 𝑋𝑚 = 𝑀1 ∙ 𝐽 ∙ 𝑋𝑠 = 𝑀1 ∙ 𝐽 ∙ 𝑀2 ∙ 𝑋𝑚 

 
𝑀2 = 𝐽 ∙ 𝑀1

−1 ∙ 𝐽 

 

𝑇 = 𝐽 ∙ 𝑀1
−1 ∙ 𝐽 ∙ 𝑀1 

 

 

 

 

 
 

• 𝑇 =
1

det (𝑀1)

𝑀11𝑀22 +𝑀12𝑀21 2𝑀22𝑀12

2𝑀11𝑀21 𝑀11𝑀22 +𝑀12𝑀21
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M1 M1 

M2 

Warning: structure is symetric, 

trajectory may be 

T 

Xs 

Xm 



Two last properties 

• General expression of the transfer matrix 

 

𝑀 =
1

𝑓𝑖
∙
𝐹𝑖 𝑓𝑖 ∙ 𝑓𝑂 − 𝐹𝑖 ∙ 𝐹𝑂
−1 𝐹𝑂

 

 

• Point to point imaging for any system: an objet is at a 

distance p from an optical system. Where is the image? 

𝑇12 = 𝑝𝑞𝑀21 + 𝑝𝑀11 + 𝑞𝑀22 +𝑀12 = 0 

 𝑝 − 𝐹𝑜 ∙ 𝑞 − 𝐹𝑖 = 𝑓𝑖 ∙ 𝑓𝑂 

Classical thin lens 
1

𝑝
+

1

𝑞
=

1

𝑓
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FOCUSING ELEMENTS 
Electrostatic lenses 

Electrostatic quadrupole 

Magnetic quadrupole 

Solenoid 
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Electrostatic lenses 

• Can be flat, round 

(cylindrical)… 

• Can be accelerating or 

decelerating 

• Always focusing 
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V1 V2 



Equation of motion (non relativistic) 

• Example on a cylindrical lens 

• Poisson 

• A0(s) = potential on axis 

• Paraxial equation of motion 

 

• Same equation for another 
lens 

 

• In practise:  

• No formula for transfer matrix 

• Tables with principal planes and 
associated focal lengths 

• Computer codes. Be careful 
with the numbers (meaning of 
the focal lengths, again) 
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∆𝑉 =
𝜕2𝑉

𝜕𝑠2
+
1

𝑟
∙
𝜕

𝜕𝑟
∙ 𝑟 ∙

𝜕𝑉

𝜕𝑟
= 0 

𝑉 𝑟, 𝑠 =  𝐴𝑛(𝑠) ∙ 𝑟
2𝑛

+∞

𝑛=0

 

 

𝑉 𝑟, 𝑠 = 𝐴0 𝑠 −
𝐴"0
22

𝑟2 + −1 𝑛
𝐴0
(2𝑛)

(2𝑛!)2
𝑟2𝑛

+∞

𝑛=2

 

 

𝒓" +
𝑨′𝟎
𝟐𝑨𝟎

𝒓′ +
𝑨"𝟎
𝟒𝑨𝟎

𝒓 = 𝟎 

V=0 MUST be for v=0 



Electrostatic quadrupole  

• 𝐹 =
𝑚𝑥 
𝑚𝑦 

= −2𝑞
∆𝑉

𝑅0
2 ∙

𝑥
−𝑦  

• 𝑥" = −
𝑔

𝑣∙ 𝐵𝜌
𝑥 ≡ −𝐾2 ∙ 𝑥 (case of x-

focusing) 

• 𝑦" =
𝑔

𝑣∙ 𝐵𝜌
𝑦 = 𝐾2 ∙ 𝑦 

• 𝑥 = 𝑥0 ∙ 𝑐𝑜𝑠 𝐾𝐿 + 𝑥′0 ∙
1

𝐾
∙

𝑠𝑖𝑛 𝐾𝐿  

• 𝑦 = 𝑦0 ∙ 𝑐 𝐾𝐿 + 𝑥′0 ∙
1

𝐾
∙ 𝑠 𝐾𝐿  

 

 

 

25 

𝑀 =

cos (𝐾𝐿) sin 𝐾𝐿 /𝐾 0 0
−𝐾𝑠𝑖𝑛(𝐾𝐿) cos (𝐾𝐿) 0 0

0
0

0
0

𝑐(𝐾𝐿) 𝑠(𝐾𝐿)/𝐾
𝐾𝑠(𝐾𝐿) 𝑐(𝐾𝐿)

 

𝑉 𝑥, 𝑦 =
∆𝑉

𝑅0
2 ∙ 𝑥2 − 𝑦2  

𝑔 = 
2∆𝑉

𝑅0
2  

 

𝐾2 =
𝑔

𝑣 ∙ 𝐵𝜌
 



• Inside the vacuum chamber 

• No power losses 

• Insulators must be protected (collimators) 
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Courtesy Bernard Launé 



Magnetic quadrupoles 
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x 

y 

 

SOLEIL quadrupoles 
Courtesy Bernard Launé 



Magnetic quadrupole 

• Scalar potential: 𝜙 = 𝑔𝑥𝑦 

• Field: 𝐵 = 𝑔𝑟𝑎𝑑𝜙 =
𝑔𝑥
𝑔𝑦  

• 𝑔 = 𝐵0
𝑅0  

• Velocity: longitudinal 

• 𝐹 = 𝑞𝑣 ∧ 𝐵 

• 𝑥" = −
𝑞𝑣𝑔𝑥

𝑚𝑣2
= −

𝑔

𝐵𝜌
𝑥 

• 𝑥" = −𝐾2𝑥 

• 𝑦" = 𝐾2𝑥 
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x 

y 

𝑀 =

cos (𝐾𝐿) sin 𝐾𝐿 /𝐾 0 0
−𝐾𝑠𝑖𝑛(𝐾𝐿) cos (𝐾𝐿) 0 0

0
0

0
0

𝑐(𝐾𝐿) 𝑠(𝐾𝐿)/𝐾
𝐾𝑠(𝐾𝐿) 𝑐(𝐾𝐿)

 𝐾2 =
𝑔

𝐵𝜌
 



Optical properties of quadrupoles 

• Principal planes (ex foc plane): 

• 1 = 2 =
1−𝑀11

𝑀21
=

1−cos (𝐾𝐿)

−𝐾𝑠𝑖𝑛(𝐾𝐿)
~ −

𝐾2𝐿2

2𝐾2𝐿
= −

𝐿

2
 

• A quadrupole is equivalent (up to the validity of the 

approximation before) to a thin lens surrounded by two 

drift spaces of half-length 

• The focal length of the lens is given by: 

•
1

𝑓
= 𝐾2𝐿 ie 

2∆𝑉∙𝐿

𝑣 𝐵𝜌 𝑅0
2~

∆𝑉∙𝐿

𝑇𝑅0
2  (electrostatic, then non relativistic) 

and 
𝑔𝐿

𝐵𝜌
=

𝐵0𝐿

𝑅0 𝐵𝜌
 (magnetic) 

• A quadrupole is not stigmatic: 𝑀21 ≠ 𝑀34  
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Doublet and triplet of identical quads 

• Doublet: FOD (focusing, drift, defocusing) 

𝑀 =
1 − 𝐿/𝑓 𝐿

−𝐿/𝑓2 1 + 𝐿/𝑓
 

1 = −𝑓   and   2 = 𝑓 

• A doublet is always convergent but never equivalent to a thin 

lens 

• Symmetric triplet: FODOF 

𝑀 =

1 − 2𝐿2/𝑓2 2𝐿(1 +
𝐿

𝑓
)

−2𝐿(1 −
𝐿

𝑓
)/𝑓2 1 − 2𝐿2/𝑓2

 

1 = 2 =
−𝐿

1−𝐿/𝑓
~ − 𝐿 if 𝑓 ≫ 𝐿 (thin lens) 
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FODO structure 

• A quadrupole focusing in one direction is defocusing in 

the other one 

• The only way to have a stable system is to have an 

alternate gradient structure with identical quadrupoles : 

the FODO cell 

• Exercise: show a FODO cell is always converging 

31 

fodo1.xls 

fodo1.xls


Solenoid – Glaser lenses 
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~equivalent to a thin lens 



Transfer matrix 

• Equation of radial motion 

 

• Radial focusing+rotation. 

 

• The transfer matrix is the product 
of a rotation 𝑅𝐾𝐿 and a focusing 
matrix N 

 

• Coupling H/V 
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𝑟" +
𝐵𝑠

2 𝐵𝜌

2

∙ 𝑟 = 0 

𝐾 =
𝐵𝑠

2 𝐵𝜌
 

 

𝐶 = cos 𝐾𝐿 𝑎𝑛𝑑 𝑆 = sin 𝐾𝐿  

 

𝑀 =

𝐶2 𝑆𝐶/𝐾 𝑆𝐶 𝑆2/𝐾

−𝐾𝑆𝐶 𝐶2 −𝐾𝑆2 𝑆𝐶
−𝑆𝐶
𝐾𝑆2

−𝑆2/𝐾
−𝑆𝐶

𝐶2 𝑆𝐶/𝐾

−𝐾𝑆𝐶 𝐶2

 

 

𝑀 = 𝑁 ∙ 𝑅𝐾𝐿 𝑁 =

𝐶 𝑆/𝐾
−𝐾𝑆 𝐶

0 0
0 0

0 0
0 0

𝐶 𝑆/𝐾
−𝐾𝑆 𝐶

 



MAGNETS 
Sector magnet 

Field index 

Edge focusing 

Achromatic systems 

34 



35 

35 

x 

y 

 
B

B
 

y

B

R

B

x

B

R

B
n xy









 00

Dipole magnet: beam bending and focusing 

• Here: focusing in the deviation plane 

• Field index : horizontal component out 
of the middle plane  vertical focusing 

• The choice of the index allows any kind 
of focusing 

• No index: focusing in the deviation 
plane, drift space in the other one 

0

11

2

0

2









y
R

n
y

p

p

R
x

R

n
x

𝐵𝑦~𝐵0 +
𝜕𝐵𝑦

𝜕𝑥
𝑥 = 𝐵0 ∙ 1 −

𝑛

𝑅
𝑥  

 

𝐵𝑥 = −𝐵0 ∙ 
𝑛

𝑅
𝑦 
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y
R

n
y

p

p

R
x

R

n
x 1 − 𝑛 > 0 𝑎𝑛𝑑 𝑛 > 0 

𝐾𝑥 =
1−𝑛

𝑅2
, 𝐾𝑦 =

𝑛

𝑅2
, 𝜃𝑥 = 𝐾𝑥𝐿, 𝜃𝑦 = 𝐾𝑦𝐿 

𝐶𝑥 = cos 𝜃𝑥 , 𝑆𝑥 = 𝑠𝑖𝑛 𝜃𝑥 , 𝐶𝑦 = cos 𝜃𝑦 , 𝑆𝑦 = 𝑠𝑖𝑛 𝜃𝑦 , 

 

𝐶𝑥 𝑆𝑥/𝐾𝑥
−𝐾𝑥𝑆𝑥 𝐶𝑥

0 0
0 0

0
(1 − 𝐶𝑥)

𝑅𝐾𝑥
2

0
𝑆𝑥
𝑅𝐾𝑥

0 0
0 0

𝐶𝑦 𝑆𝑦/𝐾𝑦
−𝐾𝑦𝑆𝑦 𝐶𝑦

0 0
0 0

𝑆𝑥/𝑅𝐾𝑥 −(1 − 𝐶𝑥)/𝐾𝑥
2

0 0

0 0
0 0

1 −
𝜃𝑥 − 𝑆𝑥

𝑅2𝐾𝑥
3

0 1
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1 − 𝑛 < 0 𝑎𝑛𝑑 𝑛 > 0 

𝐾𝑥 =
1−𝑛

𝑅2
, 𝐾𝑦 =

𝑛

𝑅2
, 𝜃𝑥 = 𝐾𝑥𝐿, 𝜃𝑦 = 𝐾𝑦𝐿 

𝐶𝑥 = 𝑐 𝜃𝑥 , 𝑆𝑥 = 𝑠 𝜃𝑥 , 𝐶𝑦 = cos 𝜃𝑦 , 𝑆𝑦 = 𝑠𝑖𝑛 𝜃𝑦 , 

 

𝐶𝑥 𝑆𝑥/𝐾𝑥
𝐾𝑥𝑆𝑥 𝐶𝑥

0 0
0 0

0 −
(1 − 𝐶𝑥)

𝑅𝐾𝑥
2

0
𝑆𝑥
𝑅𝐾𝑥

0 0
0 0

𝐶𝑦 𝑆𝑦/𝐾𝑦
−𝐾𝑦𝑆𝑦 𝐶𝑦

0 0
0 0

𝑆𝑥/𝑅𝐾𝑥 (1 − 𝐶𝑥)/𝐾𝑥
2

0 0

0 0
0 0

1
𝜃𝑥 − 𝑆𝑥

𝑅2𝐾𝑥
3

0 1
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1 − 𝑛 < 0 𝑎𝑛𝑑 𝑛 < 0 

𝐾𝑥 =
1−𝑛

𝑅2
, 𝐾𝑦 =

𝑛

𝑅2
, 𝜃𝑥 = 𝐾𝑥𝐿, 𝜃𝑦 = 𝐾𝑦𝐿 

𝐶𝑥 = 𝑐 𝜃𝑥 , 𝑆𝑥 = 𝑠 𝜃𝑥 , 𝐶𝑦 = 𝑐 𝜃𝑦 , 𝑆𝑦 = 𝑠 𝜃𝑦 , 

 

𝐶𝑥 𝑆𝑥/𝐾𝑥
𝐾𝑥𝑆𝑥 𝐶𝑥

0 0
0 0

0 −
(1 − 𝐶𝑥)

𝑅𝐾𝑥
2

0
𝑆𝑥
𝑅𝐾𝑥

0 0
0 0

𝐶𝑦 𝑆𝑦/𝐾𝑦
𝐾𝑦𝑆𝑦 𝐶𝑦

0 0
0 0

𝑆𝑥/𝑅𝐾𝑥 (1 − 𝐶𝑥)/𝐾𝑥
2

0 0

0 0
0 0

1
𝜃𝑥 − 𝑆𝑥

𝑅2𝐾𝑥
3

0 1
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Edge focusing 
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More 

deviated 

Less deviated 

Less horizontal focussing => vertical focussing 

Second order 

1

𝑓
≈
1

𝜌
𝑡𝑎𝑛𝛽  

Edge focusing provides more focusing 

in one plane and the opposite (less 

focusing) in the other plane 



remark 

40 

 If the edge angle is defocusing in the 
deviation plane and equal to ¼ rotation 
angle, the global focusing is ~identical 
in each plane 

 If the edge angle is defocusing in the 
deviation plane and equal to ½  rotation 
angle, there no longer focusing in the 
deviation plane (drift) : use of 
rectangular magnets 
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Dispersion, achromats 

• Let the system to be 

dispersive 

• D = Dispersion function 

• Separation versus 

momentum 

• Spot size is increased 

• Make D=D’=0 

 Achromatic system 
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Achromats 

42 

 

• Dispersive system 

 

 

 

 

 

• One example 

 
And for counterwise rotation? 



Example  
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• One lens is needed 

• In fact: one triplet  

• Achromat+foc 
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The achromatic chicane 

44 

? 



examples 
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Courtesy Bernard Launé 



Spectrometer (magnetic separation only) 
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eGx

D

p
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Résolution 

dp/p 

Slit 

Object 

Δx=R16dp/p 



Spectrometer design 

• Point to point imaging system 
size 

• Waist to Waist imaging 

• Beam size: 𝑅𝑆 = 𝑀11 ∙ 𝑅𝐸  

• Analysis if 𝐷
∆𝑃

𝑃
= 2𝑅𝑆 

 
𝑝

∆𝑝
=

𝐷

2 𝑀11 ∙ 𝑅𝐸  
 

 

• Resolution is directly depending 
on the magnetic area covered 
by the beam, not by optics 

• Optics has operational aspects 
(ex: achievable slit size) and 
low effect on resolution 
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SPEG spectrometer (GANIL) 

48 



BEAM TRANSPORT 
Beam description: emittance, RMS emittance 

Emittance transport, Liouville theorem 

Courant-Snyder invariant – Twiss matrix 

Emittance matching 

Emittance measurements(examples) 

Collimators 

49 



Global description of a beam (2D case) 

 

• Ex: trajectories of individual 

particles in a drift space 

 

• Need of a global description 

 

• Need to describe convergence, 

divergence, beam enveloppe 

 

• Need to describe extrema beam 

enveloppe (“waist”) 

 

• RMS description of the beam 
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•   

s 

x 

x 

x

’ 

s 

x 



Beam matrix 

• Beam matrix 

• Covariance matrix in phase space 

• Here (x, x’) only) 

• RMS beam extension in phase 
space (nD variance) 

 

 

• Linear transport easy 

 

• Transformation is a tensorial 
transform 

Not a matrix but a tensor 

Matrix: tranformation 

Tensor: property (here: RMS 
extent) 
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Emittance (Twiss) parameters 

• From the beam matrix 

 

• Defines the ellipses including 
n% of the beam in an RMS 
(intuitive) sense. 

 

• The ellipse corresponding to 
𝜀𝑅𝑀𝑆 is the concentration 
ellipse 

 

• Warning; RMS emittance 
definition changes upon 
authors, by a factor ½, 2 or 
4… 
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Not to be confused with Lorentz factors 



Ellipses 

• RMS ellipses 

• Include more or less (ex : 95%) 
particles. 

• 4 paramèters ,,,) – in fact 3. 

 

• Ex: if the beam is gaussian in two 

dimensions, the number of particles 

in the ellipse is 

𝑁0 ∙ 1 − 𝑒𝑥𝑝 −𝜀/2𝜀𝑅𝑀𝑆  

•  =2RMS  is the emittance standard 
deviation 
•  includes 63% 

• 2  includes 86% 

• 3  includes 95% 
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X’max 

Xmax 

A









max

max

x

x

       x xx x2 22

>0 (convergent)  =0 (waist)         <0 (divergent) 



Emittance transport 

• Explicit formula 

 

 

• Beam RMS enveloppe 

 

•  versus 

 

• Enveloppe extremum if 

=0 (waist ) 
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MMMM

MMMMMMMM

MMMM

𝑥 𝑠 + 𝑑𝑠 = 𝑥 𝑠 + 𝑥′ 𝑠 𝑑𝑠 → 𝑀𝑑𝑠 =
1 𝑑𝑠
⋯ ⋯

 

𝛽 𝑠 + 𝑑𝑠 = 𝛽 𝑠 − 2𝛼 ∙ 𝑑𝑠 

𝒂 = −
𝜷′

𝟐
 

< 𝑥2 >= 𝛽 ∙ 𝜀𝑟𝑚𝑠 



Courant/Snyder invariant – Emittance matching 

• Consider a periodic system made of identical cells (no 

acceleration). Let M be the matrix of each cell. M has 2 

eigenvalues  and 1/ (determinant is 1) 

• Suppose the motion to be stable, then n
 and 1/ n must 

be bounded for any value of n (integer) 

• The only way is 𝜆 = 1 = 1/𝜆 → 𝜆 = 𝑒𝑖𝜇 

• → 𝑇𝑟 𝑀 = 𝜆 +
1

𝜆
= 2 cos 𝜇  

• The motion is stable if and only if 0 ≤
1

2
𝑇𝑟 𝑀 < 1 
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Courant/Snyder invariant – Emittance matching 

• Suppose the motion to be stable 

• The following formulas are straighforward, with the transfer matrix 

TWISS parameters 
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Emittance matching: if the injected emittance Twiss 

parameters are equal to the system Twiss parameters, the 

oscillations of the beam enveloppe are minimized, and the 

beam occupies less space in phase space. 



Beam matching 
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Liouville Theorem (2D) 

• Let X1 and X2 be to vectors in phase space 

 

𝑌1 = 𝑀 ∙ 𝑋1 𝑎𝑛𝑑 𝑌2 = 𝑀 ∙ 𝑋2  

 

𝑑𝑒𝑡 𝑌1 𝑌2 = det 𝑀 ∙ 𝑑𝑒𝑡 𝑋1 𝑋2 =
𝑝𝑒
𝑝𝑠
∙ 𝑑𝑒𝑡 𝑋1 𝑋2  

 

• The area in phase space varies accordingly to momentum 

• the area is constant if there is no acceleration 

• 𝛽𝐿𝑜𝑟𝑒𝑛𝑡𝑧 ∙ 𝛾𝐿𝑜𝑟𝑒𝑛𝑡𝑧 ∙ 𝜀 is constant (normalized emittance) 

 

• Warning: if the motion is not linear, the “apparent” RMS emittance 
varies, even the surface in phase space is constant 
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A few words about emittance measurements 

 The RMS enveloppe varies with 
focusing 

 It is related to the initial emittance 
parameters 

 A known lens (system) is used with 
differents tunings 

 N profile (RMS) measurements are 
made 

 N equation with 4 unknown are 
obtained 

 Warning: numerically unstable with 
solenoids (even if a theoretical 
solution exists) 
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Moving slit (real phase picture) 
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Courtesy Bernard Launé 

Elliptic shape might be far 

from reality at low energy 



The reality (SILHI source, Saclay) 
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Saclay source SILHI Courtesy Bernard Launé 



Collimators on some examples 

• Collimator: 
𝐴
𝜆

 (A=aperture, 

𝜆 ∈ ℝ) 

 

• M: transfer matrix from 
collimator to target 

 

• Case 1:𝑀22 = 0. A horizontal 
line is transformed to an 
horizontal one. No effect on 
beam size 

 

• Case 2:𝑀12 = 0. A vertical line 
is transformed to an vertical 
one. Effect is maximum. In 
this case 𝑅𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑀11 ∙ 𝐴 
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