Introduction to Transverse Beam Dynamics
Lecture 1: Magnetic fields and particle trajectories
Andrea Latina (CERN)

JUAS 2014

13th January 2014



Luminosity run of a typical storage ring
In a storage ring: the protons are accelerated and stored for ~ 12 hours

The distance traveled by particles running at nearly the speed of light, v =~ ¢, for
12 hours is

d ~ 12 x 10km

— it's several times the distance from Sun to Pluto and back !
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Introduction and basic ideas

It's a circular machine: we need a transverse deflecting force—the Lorentz force
F—gq. (E LUA B)

where, in high energy machines, |V| ~ ¢ ~ 3-10% m/s. Usually there is no
electric field, and the transverse deflection is given by a magnetic field only.

Example
F—=g-3-108 2.1 T | Notice that there is a technical limit
S Y for an electric field:
B=1T— =g-3-1000 2.1 2
s m Mv
MV Esl—
m

m
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Therefore | in an accelerator, use magnetic fields wherever it's possible

Lorentz force F; = evB p_ By
Centrifugal force  Feentr = % q
ﬂp‘/# =eyB Bp = "beam ridigity"

Accelerating cavity
It accelerates particles with high
Beam is sent to synchrotron frequency by applying an electric
accelerator from the pre-accelerator  field at the right timing of the
(Tandem or Linac, etc.). particles passing through.

Beam is sent to the
beam utilizing course
after acceleration.

Charged particles travel
around the track in a fixed
orbit by electromagnet.
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Dipole magnets: the magnetic guide

» Dipole magnets:

» define the ideal orbit N ;Z

> in a homogeneous field created B

by two flat pole shoes, B = ’“’T"’ s

» Normalise magnetic field to momentum:

PP

» Example: the LHC

% 1V-1
P_pg, = L1_Bl s_n p={Gi ] 1T=""2>%
e

1 83 % 8.3s -3-108

B =837 p~ ©7000-10° & ~ 7000-10° m"2

— 7000 SV
p =7000 C 1

1
"7000 m 253 km



Dipole magnets: the magnetic guide

Very important rule of thumb:

1

Pl

B [T)
e/

In the LHC, p = 2.53 km. The circumference 27rp = 17.6 km =~ 66% of the entire

LHC.
The field Bis~1...8T

which is a sort of “normalised bending strength”, normalised to the momentum of

the particles.
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The focusing force

F—g (E FVA B)
Linear Accelerator Circular Accelerator

Remember the 1d harmonic oscillator: F = —k x

7/31



Quadrupole magnets: the focusing force

Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:

«

B« = —gy Fx = —evgx
=
B, = —gx Fy = evgy N .
Gradient of a quadrupole magnet:
\. 4
o 2#0”/ |:I:| o Bpoles |:I:|
r2 |m Faperture | M s N

» LHC main quadrupole magnets:
g~25...220 T/m

the arrows show the force exerted

on a particle
Focusing strength:

fet = e[l e[ [

~0381T/ml

A simple rule: k [m~?] p[GeV/c]
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Fringe fields
» Hard edge model:

x”+<12—k>x—0
P

this equation is not really correct

» Bending and focusing forces -even inside a magnet- depend on the position s

/’(5)+{p21(5)—k(5)}x(5)—0

i
ymmmmﬂ
T

Dipole fringe field. Quadrupole and sex-
tupole field components can be seen by look-
ing at the transverse slope and curvature, re-
spectively.

But still: inside the magnet the focusing
properties hold:
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Effective length

True field shape
A
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lmag
B- Leff: / Bds
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Multipolar moments
Taylor expansion of the B field:
0B 16°B, 1 9B,

_ y 2
By (x) = Byo + 8XX+§ ax2X +§ ox3

x4 divide by By

o Oipoles Multipole coefficients:

» divide by the main field to get the
relative error contribution

© German

® ltalian

| N S Y N N
0 2 & 6 B 10 12 % 1%
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Towards the equation of motion

Linear approximation:
> the ideal particle = stays on the design
orbit
» any other particle = has coordinates x, y

» which are small quantities x,y < p

» only linear terms in x and y of B are taken
into account

Let's recall some useful relativistic formulae:

Po =myv reference momentum

1) relative momentum offset
Pc = Poc(1+9) total kinetic energy

E =+P2c2 + m2c* | total energy

B =r relativistic beta

We assume to be ultra-relativistic...
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Towards the equation of motion
We use a Curved Reference System: the Frenet—Serret rotating frame

Curvilinear — Cartesian Cartesian — Curvilinear
(x,y,2) > (X, Y, Z) (X, Y, 2) = (xy, 2)
X
z =5+ [ct s:parctanxiw

s
X:(p+X)Cos;7p x=1/(X+p2+22—p x/‘

Y=y y=Y

s z=s5— PBct
Z = (p+ x)sin — g
P
s . s s .S
Py = Px cos — + Pz sin — Px = Px cos — — P, sin —
p p p p
Py, = Py Py =P,

The y and Y axes are parallel and ortogonal to this page.
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Summary of momenta and angles definitions

P =Po(1+9)

P
= —=1 )
p Po +
_PX
px—PO
Py
Py—Po
P, P2 —p2_p2
PP~ Po
1 2+ 2
~ (1+96) 1—7""7%
2(1+9)
2 2
2 1456

total w.r.t. reference momentum

P=,/P?+ P2+ P2

e General convention: lower case momenta: normalised to Py

=\a+62—p2 -~

)

~ 1+ 9 for small px and p,

dx
ds
dy
ds

Px
Pz

Pz

Px

Py

pz

X

Px

Py
1446

14 /31



Representation of the transverse coordinates

With

o _P P ,/:Q:ﬂz Py
ds P Po (1+5), ds P, Py (1+5)

The state of a particle (the phase space) is represented with a 6-dimensional
vector:

(X7 le Y, yla Z:S_/BCt7 5)
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Towards the equation of motion
Taylor expansion of the B field:

0B, 16°B 1 0°B
By, (x) = Byo + == T —|—§6 Y x? 30 6X3yx3+...

if we normalise to the momentum p/e = Bp

B B 1 1
(X):io ix eg 2—&—*%34—
p/e ~ Bop ' p/e ' 2p/e 3lp/e

1—|—kx—|— 1mx —l—lnx +.
p 2 3!
In the linear approximation, only the terms linear in x and y are taken into
account:
» dipole fields

» quadrupole fields

It is more practical to use “separate function” machines:
> split the magnets and optimise them regarding their function

» bending
» focusing, etc.
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The equation of motion in radial coordinates
Let's consider a local segment of one particle’s trajectory:

, o d’p do? d%p )
the radial acceleration is a, = a2 P\a) Tae In our case, for the

; e — dp _
ideal orbit: p = const = £ =0

o\
F=mp|—) = mpw?
=the force is P (dt) P
F=mv?/p
For a general trajectory:
d? v2
p—p+x: F=ma, = m E(p—i—x)—

p+x
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F = md—2(p—|—x)— mv” =eB,v
dt? p+x Y
term 1 term 2
» Term 1. As p =const...
d d
md?(p—i—x) = gax

> Term 2. Remember: x &~ mm whereas p ~ m — we develop for small x
remember Taylor expansion:
(100 | feo=fa
~ — — — X) = Xo
ptx " p P

+(x — x0) F/ (x0) + EF2L 7 () 4 - -

d? 2
e - T (1-%) = ety
dt p p
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The guide field in linear approximation B, = By + x

oB,

Ox
2 2
mj%—% <1—;> —ev{Bo+xac,)i)/} let's divide by m
Ex v x\_evB e
dtz2  p p m m
Independent variable: t — s
de _deds
dt  dsdt
d>x ddx d [ dx ds d  ,
—=——=—| = = | ==('v)=
dt>  dtdt dt | ds dt dt
——
o d ds _ d ., ) ’
=% o (xv)—g(xv)—x v +x2v$
——
2
v X evB ev, D
x"v? — — (1 SX) =20 L 8 ets divide by v?
p p m m
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Remember:

1 B
X~_<1_X)_eo+xeg
P p mv mv mv =p
s 1 x By xg
p p*> ple ple
X”//+X
p

)
N

_/+ lx the particle:
p g B 1

plep/e  p’

x" + x iz —k| =0
P
Equation for the vertical motion
» L — 0

; usually there are not vertical bends
> k+— —k

quadrupole field changes sign

y//+ky:O

Normalise to the momentum of
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Remarks

» Weak focusing:

x”—l—<12—k>x:0
P

there is a focusing force even without a quadrupole gradient
1
k=0 = x'= ——X
P
even without quadrupoles there is retrieving force (focusing) in the bending
plane of the dipole magnets

» In large machine this effect is very weak...

S .
180° spectrometer | Mass spectrometer: particles are separated
magnet . .

\ according to their energy and focused due to

the 1/p effect of the dipole

lon source
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Solution of the trajectory equations: focusing quadrupole
Definition:

horizontal plane K =1/, —k

11 _
vertical plane K =k } x"+Kx=0

This is the differential equation of a harmonic oscillator ... with spring constant
K. We make an ansatz:

x (s) = a1 cos (ws) + az sin (ws)
General solution: a linear combination of two independent solutions:

x' () = —aywsin (ws) + aw cos (ws)

2

x" (5) = —a1w? cos (ws) 4+ aw?sin (ws) = —w?x(s) — w=VK

General solution, for K > 0:

x(s) = aj cos (\/Rs) + a;sin (ﬁs)
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We determine a1, a» by imposing the following boundary conditions:

{X(O) = Xo, dlr = Xo

’
X)) =, a= 2%

s=0

Horizontal focusing quadrupole, K > 0:

x (8) = xo cos (\Fs) —|—xofsm (\FS)
x'(s) = —xoV K sin (\/Rs) + xg cos (\/Rs)

For convenience we can use a matrix formalism:

Where:
cos (ﬁs) # sin ( Ks)
—\/Vsin (\/Rs) cos (\/?s)
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Defocusing quadrupole
The equation of motion is

X"+ Kx=0
with K <0

f (s) = cosh (s)
f' (s) = sinh (s)

Remember:

Now the solution is in the form:
x (s) = a1 cosh (ws) + az sinh (ws)
and the transfer matrix:

B cosh( |K|s) \/‘lﬂsinh( \K|s) )
Maetoe = ( \/Wsmh( |K| 5) cosh( K| s)

Notice that for a drift space, when K =0 — My = ( é i )
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Summary of the transfer matrices

» Focusing quad, K >0

B cos (\/RL) LK sin <\/RL)
Mhoe = ( —v/Ksin (\/RL) \Cos (\/RL)

» Defocusing quad, K < 0

cosh (\/WL) \/Tﬂsinh (\/WL>
V/IK]|sinh (\/WL> cosh <ML)

1 L
Mdrift:<0 1 >

With the assumptions we have made, the motion in the horizontal and vertical
planes is independent: “... the particle motion in x and y is uncoupled”

Mdefoc =

» Drift space, K =0
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Thin-lens approximation

When the focal length, f, of the lens is much bigger than the length of the

magnet L
1

TK-L
we can derive the limit for L — 0 while we keep K - L = const.

f > 1L

The transfer matrices are

me (G 0) e
-1

focusing, and defocusing respectively.

= =
= O
N—

This approximation (yet quite accurate, in large machines) is useful for fast
calculations... and for the guided studies !
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Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

focusing lens
R
Rogwi

}/ dipole magnet

s > AR Y
. & %
i q :
.-e,: . 37 « (%5 defocusing lens
X $% &7 h »
( x! ) = M, s, - Msyss, - ( )
S2 So

court. K. Wille

In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

x(s)

...typical values are:
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Orbit and Tune

Tune: the number of oscillations per turn.

Example:

Bl YASP DV LHCRING / INJ-TEST-NB / beam 1 {12
Grews| =R [na/n) ) 0B v |35
FT—P450.12 Gevje il # 627 IIDUMP - 10/09/08 10-41-34 IT]

|

T PAS0.12 GV/C - Fll # 827 INJDUMP - 10/09/08 10-41-34 T

64.31

W pos (mm]

59.32

¥ pos ()

)

G

Relevant for beam stability studies is : the non-integer part

u]
o)
I
i
it




Envelope
Question: what will happen, if the particle performs a second turn ?

> ... or a third one or ... 10%° turns ...

x
Telichenbohnen und Enveioppe
o
=
\
B
i
i
0 o
E
£
/
gl ]
T
o 10 20 30 40
s/ ———
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Summary
beam rigidity: Bp =

Qs

i c Qe 1 [p—17 _ 0.2098-Bo [T]
bending strength of a dipole: - [m™"] = e

focusing strength of a quadruple:  k [m™2?] = %
focal length of a quadrupole: f = 54—

equation of motion:  x” + Kx =

transfer matrix of a foc. quad: x5, = M - x5,

B cos (\/RL) e sin (\/RL)
Mar = ( —vKsin (\/RL) \:os (\/RL)

B cosh (\/WL) \/17 sinh (\/WL) (1 L
Mao = ( \/Wsinh (\/WL) ‘colsh (\/WL) Mo = ( 0 1 )
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