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Luminosity run of a typical storage ring
In a storage ring: the protons are accelerated and stored for ∼ 12 hours

The distance traveled by particles running at nearly the speed of light, v ≈ c , for
12 hours is

d ≈ 12× 1011km

→ it’s several times the distance from Sun to Pluto and back !
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Introduction and basic ideas

It’s a circular machine: we need a transverse deflecting force→the Lorentz force

~F = q ·
(
~E + ~v ∧ ~B

)
where, in high energy machines, |~v | ≈ c ≈ 3 · 108 m/s. Usually there is no
electric field, and the transverse deflection is given by a magnetic field only.

Example

B = 1 T →

F = q · 3 · 108 m
s
· 1 T

= q · 3 · 108 m
s
· 1 Vs

m2

= q · 300 MV
m

Notice that there is a technical limit
for an electric field:

E . 1
MV
m
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Therefore in an accelerator, use magnetic fields wherever it’s possible

Lorentz force FL = evB
Centrifugal force Fcentr = γmv2

ρ

γmv �2
ρ = e�vB


p
q
= Bρ

Bρ = "beam ridigity"
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Dipole magnets: the magnetic guide

I Dipole magnets:
I define the ideal orbit
I in a homogeneous field created

by two flat pole shoes, B = µ0nI
h

I Normalise magnetic field to momentum:

p
e
= Bρ ⇒ 1

ρ
=

eB
p

B = [T ]; p=
[
GeV
c

]
; 1 T=

1 V · 1 s
1 m2

I Example: the LHC

B = 8.3 T

p = 7000 GeV
c


1
ρ
= e

8.3 Vs
m2

7000 · 109 eV
c

=
8.3s · 3 · 108 m

s
7000 · 109 m^2

=

= 0.333 · 8.3
7000

1
m

=
1

2.53
1

km
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Dipole magnets: the magnetic guide

Very important rule of thumb:

1
ρ [m]

≈ 0.3
B [T ]

p [GeV /c]

In the LHC, ρ = 2.53 km. The circumference 2πρ = 17.6 km ≈ 66% of the entire
LHC.

The field B is ≈ 1 . . . 8 T

which is a sort of “normalised bending strength”, normalised to the momentum of
the particles.
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The focusing force

~F = q ·
(
~E + ~v ∧ ~B

)

Remember the 1d harmonic oscillator: F = −k x
7 / 31



Quadrupole magnets: the focusing force
Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:

Bx = −gy
By = −gx

⇒
Fx = −evgx
Fy = evgy

Gradient of a quadrupole magnet:

g =
2µ0nI
r2

[
T
m

]
=

Bpoles

raperture

[
T
m

]
I LHC main quadrupole magnets:

g ≈ 25 . . . 220 T/m
the arrows show the force exerted
on a particle

Focusing strength:

k =
g

p/e
[
m−2]; ⇒ g =

[
T
m

]
;

p
e
=

[
GeV
c · e

]
=

[
GV
c

]
=[T m]

A simple rule: k
[
m−2] ≈ 0.3

g [T/m]

p [GeV /c]
.
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Fringe fields
I Hard edge model:

x ′′ +
(

1
ρ2 − k

)
x = 0

this equation is not really correct
I Bending and focusing forces -even inside a magnet- depend on the position s

x ′′ (s) +
{

1
ρ2 (s)

− k (s)
}

x (s) = 0

Dipole fringe field. Quadrupole and sex-
tupole field components can be seen by look-
ing at the transverse slope and curvature, re-
spectively.

But still: inside the magnet the focusing
properties hold:

1
ρ
= const

k = const
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Effective length

B · Leff =

ˆ lmag

0
Bds
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Multipolar moments
Taylor expansion of the B field:

By (x) = By0 +
∂By

∂x
x +

1
2
∂2By

∂x2 x2 +
1
3!
∂3By

∂x3 x3 + . . . divide by By0

Multipole coefficients:

I divide by the main field to get the
relative error contribution
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Towards the equation of motion

Linear approximation:

I the ideal particle ⇒ stays on the design
orbit

I any other particle ⇒ has coordinates x , y
I which are small quantities x , y � ρ

I only linear terms in x and y of B are taken
into account

Let’s recall some useful relativistic formulæ:

P0 = m γ v reference momentum
δ relative momentum offset

Pc = P0c (1+ δ) total kinetic energy

E =
√

P2c2 + m2c4 total energy
β = Pc

E relativistic beta

We assume to be ultra-relativistic...
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Towards the equation of motion
We use a Curved Reference System: the Frenet–Serret rotating frame

Curvilinear → Cartesian Cartesian → Curvilinear
(x, y , z)→ (X , Y , Z) (X , Y , Z)→ (x, y , z)

z = s + βct s = ρ arctan Z
X+ρ

X = (ρ + x) cos
s
ρ
− ρ

Y = y

Z = (ρ + x) sin
s
ρ

x =
√

(X + ρ)2 + Z2 − ρ

y = Y

z = s − βct

Px = PX cos
s
ρ

+ PZ sin
s
ρ

Py = PY

PX = Px cos
s
ρ
− Pz sin

s
ρ

PY = Py

Z

X

x

ρ

s

The y and Y axes are parallel and ortogonal to this page.
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Summary of momenta and angles definitions

P = P0 (1 + δ) total w.r.t. reference momentum

P =
√

P2
x + P2

y + P2
z

• General convention: lower case momenta: normalised to P0

p =
P
P0

= 1 + δ

px =
Px

P0
x ′ =

dx
ds

=
Px

Pz
=

px

pz
≈

px

1 + δ

py =
Py

P0
y ′ =

dy
ds

=
Py

Pz
=

py

pz
≈

py

1 + δ

pz =
Pz

P0
=

√
P2 − P2

x − P2
y

P0
=
√

(1 + δ)2 − p2
x − p2

y ≈

≈ (1 + δ)

(
1−

1
2

p2
x + p2

y

(1 + δ)2

)
=

= 1 + δ −
1
2

p2
x + p2

y

1 + δ
≈ 1 + δ for small px and py
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Representation of the transverse coordinates

With
x ′ =

dx
ds

=
Px

Pz
≈ Px

P0 (1+ δ)
; y ′ =

dy
ds

=
Py

Pz
≈ Py

P0 (1+ δ)

The state of a particle (the phase space) is represented with a 6-dimensional
vector:

(x , x ′, y , y ′, z = s − βct, δ)
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Towards the equation of motion
Taylor expansion of the B field:

By (x) = By0 +
∂By

∂x
x +

1
2
∂2By

∂x2 x2 +
1
3!
∂3By

∂x3 x3 + . . .

if we normalise to the momentum p/e = Bρ

B (x)
p/e

=
B0

B0ρ
+

g
p/e

x +
1
2

eg ′

p/e
x2 +

1
3!

eg ′′

p/e
x3 + . . .

=
1
ρ
+ kx +

1
2
mx2 +

1
3!

nx3 + . . .

In the linear approximation, only the terms linear in x and y are taken into
account:

I dipole fields
I quadrupole fields

It is more practical to use “separate function” machines:
I split the magnets and optimise them regarding their function

I bending
I focusing, etc.
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The equation of motion in radial coordinates
Let’s consider a local segment of one particle’s trajectory:

the radial acceleration is ar =
d2ρ

dt2 − ρ
(
dθ
dt

)2

=
d2ρ

dt2 − ρω
2. In our case, for the

ideal orbit: ρ = const ⇒ dρ
dt = 0

⇒the force is
F = mρ

(
dθ
dt

)2

= mρω2

F = mv2/ρ
For a general trajectory:

ρ→ ρ+ x : F = m ar ⇒ m

[
d2

dt2 (ρ+ x)− v2

ρ+ x

]
= eByv
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F = m
d2

dt2 (ρ+ x)︸ ︷︷ ︸
term 1

− mv 2

ρ+ x︸ ︷︷ ︸
term 2

= eByv

I Term 1. As ρ =const...

m
d2

dt2 (ρ+ x) =
d2

dt2 x

I Term 2. Remember: x ≈ mm whereas ρ ≈ m → we develop for small x

remember Taylor expansion:
1

ρ+ x
≈ 1
ρ

(
1− x

ρ

)
f (x) = f (x0)+

+ (x − x0) f ′ (x0) +
(x−x0)2

2! f ′′ (x0) + · · ·

m
d2x
dt2 −

mv 2

ρ

(
1− x

ρ

)
= eByv
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The guide field in linear approximation By = B0 + x ∂By
∂x

m
d2x
dt2 −

mv2

ρ

(
1− x

ρ

)
= ev

{
B0 + x

∂By

∂x

}
let’s divide by m

d2x
dt2 −

v2

ρ

(
1− x

ρ

)
=

evB0

m
+ x

evg
m

Independent variable: t → s

dx
dt

=
dx
ds

ds
dt

= x ′v

d2x
dt2 =

d
dt

dx
dt

=
d
dt

 dx
ds︸︷︷︸
x′

ds
dt︸︷︷︸
v

 =
d
dt

(x ′v) =

=
d
ds

ds
dt︸︷︷︸
v

(x ′v) =
d
ds
(
x ′v2) = x ′′v2 + x ′

�
�
�

2v
dv
ds

x ′′v 2 − v 2

ρ

(
1− x

ρ

)
=

evB0

m
+ x

evg
m

let’s divide by v 2
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x ′′ − 1
ρ

(
1− x

ρ

)
=

eB0

mv
+ x

eg
mv

x ′′ − 1
ρ
+

x
ρ2 =

B0

p/e
+

xg
p/e

x ′′
�
��−1
ρ
+

x
ρ2 =

�
��−1
ρ
+ kx

Remember:

mv = p

Normalise to the momentum of
the particle:

g
p/e

B0

p/e
= −1

ρ
;

g
p/e

= k.

x ′′ + x
(

1
ρ2
− k
)

= 0

Equation for the vertical motion

I 1
ρ2 = 0 usually there are not vertical bends

I k ←→ −k quadrupole field changes sign

y ′′ + ky = 0
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Remarks
I Weak focusing:

x ′′ +
(

1
ρ2 − k

)
x = 0

there is a focusing force even without a quadrupole gradient

k = 0 ⇒ x ′′ = − 1
ρ2 x

even without quadrupoles there is retrieving force (focusing) in the bending
plane of the dipole magnets

I In large machine this effect is very weak...

Mass spectrometer: particles are separated
according to their energy and focused due to
the 1/ρ effect of the dipole
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Solution of the trajectory equations: focusing quadrupole
Definition:

horizontal plane K = 1/ρ2 − k
vertical plane K = k

}
x ′′ + Kx = 0

This is the differential equation of a harmonic oscillator ... with spring constant
K . We make an ansatz:

x (s) = a1 cos (ωs) + a2 sin (ωs)

General solution: a linear combination of two independent solutions:

x ′ (s) = −a1ω sin (ωs) + a2ω cos (ωs)

x ′′ (s) = −a1ω
2 cos (ωs) + a2ω

2 sin (ωs) = −ω2x (s) → ω =
√

K

General solution, for K > 0:

x (s) = a1 cos
(√

Ks
)
+ a2 sin

(√
Ks
)
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We determine a1, a2 by imposing the following boundary conditions:

s = 0 →

{
x (0) = x0, a1 = x0

x ′ (0) = x ′0, a2 =
x′
0√
K

Horizontal focusing quadrupole, K > 0:

x (s) = x0 cos
(√

Ks
)
+ x ′0

1√
K

sin
(√

Ks
)

x ′ (s) = −x0
√
K sin

(√
Ks
)
+ x ′0 cos

(√
Ks
)

For convenience we can use a matrix formalism:

(
x
x ′

)
s1

= Mfoc

(
x0

x ′0

)
s0

Where:

Mfoc =

 cos
(√

Ks
)

1√
K
sin
(√

Ks
)

−
√

K sin
(√

Ks
)

cos
(√

Ks
) 
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Defocusing quadrupole
The equation of motion is

x ′′ + Kx = 0
with K < 0

Remember:
f (s) = cosh (s)

f ′ (s) = sinh (s)
Now the solution is in the form:

x (s) = a1 cosh (ωs) + a2 sinh (ωs)

and the transfer matrix:

Mdefoc =

 cosh
(√
|K |s

)
1√
|K |

sinh
(√
|K |s

)
√
|K | sinh

(√
|K |s

)
cosh

(√
|K |s

)


Notice that for a drift space, when K = 0 → Mdrift =

(
1 L
0 1

)
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Summary of the transfer matrices
I Focusing quad, K > 0

Mfoc =

 cos
(√

KL
)

1√
K
sin
(√

KL
)

−
√

K sin
(√

KL
)

cos
(√

KL
) 

I Defocusing quad, K < 0

Mdefoc =

 cosh
(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
√
|K | sinh

(√
|K |L

)
cosh

(√
|K |L

)


I Drift space, K = 0

Mdrift =

(
1 L
0 1

)
With the assumptions we have made, the motion in the horizontal and vertical
planes is independent: “... the particle motion in x and y is uncoupled”
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Thin-lens approximation

When the focal length, f , of the lens is much bigger than the length of the
magnet L

f =
1

K · L
� L

we can derive the limit for L→ 0 while we keep K · L = const.

The transfer matrices are

Mx =

(
1 0
− 1

f 1

)
My =

(
1 0
1
f 1

)
focusing, and defocusing respectively.

This approximation (yet quite accurate, in large machines) is useful for fast
calculations... and for the guided studies !
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Transformation through a system of lattice elements
One can compute the solution of a system of elements, by multiplying the
matrices of each single element:

Mtotal = MQF ·MD ·MBend ·MD ·MQD · · · ·(
x
x ′

)
s2

= Ms1→s2 ·Ms0→s1 ·
(

x
x ′

)
s0

In each accelerator element the particle trajectory corresponds to the movement
of a harmonic oscillator.

...typical values are:

x ≈ mm

x ′ ≤ mrad
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Orbit and Tune

Tune: the number of oscillations per turn.

Example:

64.31

59.32

Relevant for beam stability studies is : the non-integer part
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Envelope
Question: what will happen, if the particle performs a second turn ?

I ... or a third one or ... 1010 turns ...
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Summary
beam rigidity: Bρ = p

q

bending strength of a dipole: 1
ρ
[m−1] = 0.2998·B0 [T]

p [GeV/c]

focusing strength of a quadruple: k [m−2] = 0.2998·g
p [GeV/c]

focal length of a quadrupole: f = 1
k·LQ

equation of motion: x ′′ + Kx = 1
ρ

∆p
p

transfer matrix of a foc. quad: xs2 = M · xs1

MQF =

 cos
(√

KL
)

1√
K
sin
(√

KL
)

−
√
K sin

(√
KL
)

cos
(√

KL
) 

MQD =

 cosh
(√
|K |L

)
1√
|K |

sinh
(√
|K |L

)
√
|K | sinh

(√
|K |L

)
cosh

(√
|K |L

)
 MD =

(
1 L
0 1

)
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