Introduction to Transverse Beam Dynamics

Lecture 1: Magnetic fields and particle trajectories

Andrea Latina (CERN)

JUAS 2014

13th January 2014

Luminosity run of a typical storage ring

In a storage ring: the protons are accelerated and stored for ~ 12 hours

The distance traveled by particles running at nearly the speed of light, $v \approx c$, for 12 hours is

$$\text{d}\approx 12\times 10^{11}\text{km}$$

ightarrow it's several times the distance from Sun to Pluto and back !

Introduction and basic ideas

It's a circular machine: we need a transverse deflecting force→the Lorentz force

$$ec{ extit{F}} = q \cdot \left(ec{ extit{E}} + ec{ extit{v}} \wedge ec{ extit{B}}
ight)$$

where, in high energy machines, $|\vec{v}| \approx c \approx 3 \cdot 10^8$ m/s. Usually there is no electric field, and the transverse deflection is given by a magnetic field only.

Example

$$F = q \cdot 3 \cdot 10^8 \frac{m}{s} \cdot 1 \text{ T}$$

$$B = 1 \text{ T} \rightarrow = q \cdot 3 \cdot 10^8 \frac{m}{s} \cdot 1 \frac{Vs}{m^2}$$

$$= q \cdot 300 \frac{MV}{m}$$
Notice that there is a technical limit for an electric field:
$$E \lesssim 1 \frac{MV}{m}$$

$$\Xi \lesssim 1 \; rac{MV}{m}$$

Therefore in an accelerator, use magnetic fields wherever it's possible

Dipole magnets: the magnetic guide

- ▶ Dipole magnets:
 - define the ideal orbit
 - in a homogeneous field created by two flat pole shoes, $B = \frac{\mu_0 nl}{h}$

Normalise magnetic field to momentum:

$$\boxed{\frac{p}{e} = B\rho \quad \Rightarrow \quad \frac{1}{\rho} = \frac{eB}{p}} \qquad B = [T]; \quad p = \left[\frac{GeV}{c}\right]; \quad 1 \text{ T} = \frac{1 \text{ } V \cdot 1 \text{ } s}{1 \text{ } m^2}$$

► Example: the LHC

$$B = 8.3 \text{ T}$$

$$p = 7000 \frac{\text{GeV}}{c}$$

$$= 0.333 \cdot \frac{8.3}{7000} \cdot \frac{1}{m} = \frac{8.3 \cdot 3 \cdot 10^8 \cdot \frac{m}{s}}{7000 \cdot 10^9 \cdot m^2 2} = \frac{8.3 \cdot 3 \cdot 10^8 \cdot \frac{m}{s}}{7000 \cdot 10^9 \cdot m^2 2} = \frac{1}{2.53} \cdot \frac{1}{km}$$

Dipole magnets: the magnetic guide

Very important rule of thumb:

$$\frac{1}{\rho \ [m]} \approx 0.3 \frac{B \ [T]}{p \ [GeV/c]}$$

In the LHC, $\rho=$ 2.53 km. The circumference $2\pi\rho=$ 17.6 km \approx 66% of the entire LHC.

The field B is $\approx 1...8$ T

which is a sort of "normalised bending strength", normalised to the momentum of the particles.

The focusing force

$$ec{ extit{F}} = q \cdot \left(ec{ extit{E}} + ec{ extit{v}} \wedge ec{ extit{B}}
ight)$$

Remember the 1d harmonic oscillator: F = -kx

Quadrupole magnets: the focusing force

Quadrupole magnets are required to keep the trajectories in vicinity of the ideal orbit

They exert a linearly increasing Lorentz force, thru a linearly increasing magnetic field:

$$B_x = -gy$$
 $\Rightarrow F_x = -evgx$
 $B_y = -gx$ $\Rightarrow F_y = evgy$

Gradient of a quadrupole magnet:

$$g = \frac{2\mu_0 n I}{r^2} \, \left[\frac{T}{m} \right] = \frac{B_{\rm poles}}{r_{\rm aperture}} \, \left[\frac{T}{m} \right] \label{eq:gaussian}$$

► LHC main quadrupole magnets: $g \approx 25...220 \text{ T/m}$

the arrows show the force exerted on a particle

Focusing strength:

$$k = \frac{g}{p/e} [m^{-2}]; \quad \Rightarrow \quad g = \left[\frac{T}{m}\right]; \quad \frac{p}{e} = \left[\frac{\text{GeV}}{c \cdot e}\right] = \left[\frac{GV}{c}\right] = [T \ m]$$

A simple rule: $k \left[m^{-2} \right] \approx 0.3 \frac{g \left[T/m \right]}{p \left[GeV/c \right]}$.

Fringe fields

► Hard edge model:

$$x'' + \left(\frac{1}{\rho^2} - k\right)x = 0$$

this equation is not really correct

lacktriangle Bending and focusing forces -even inside a magnet- depend on the position s

$$x''(s) + \left\{\frac{1}{\rho^2(s)} - k(s)\right\} x(s) = 0$$

Dipole fringe field. Quadrupole and sextupole field components can be seen by looking at the transverse slope and curvature, respectively.

But still: inside the magnet the focusing properties hold:

$$\frac{1}{
ho}=const$$

$$k = const$$

Effective length

$$B \cdot L_{eff} = \int_0^{I_{mag}} B ds$$

Multipolar moments

Taylor expansion of the B field:

$$B_{y}(x) = B_{y0} + \frac{\partial B_{y}}{\partial x}x + \frac{1}{2}\frac{\partial^{2}B_{y}}{\partial x^{2}}x^{2} + \frac{1}{3!}\frac{\partial^{3}B_{y}}{\partial x^{3}}x^{3} + \dots$$
 divide by B_{y0}

Multipole coefficients:

divide by the main field to get the relative error contribution

Towards the equation of motion

Linear approximation:

- ▶ the ideal particle ⇒ stays on the design orbit
- ▶ any other particle \Rightarrow has coordinates x, y
 - ▶ which are small quantities $x, y \ll \rho$
- only linear terms in x and y of B are taken into account

Let's recall some useful relativistic formulæ:

$$P_{0} = m \gamma v$$

$$\delta$$

$$P_{c} = P_{0}c (1 + \delta)$$

$$E = \sqrt{P^{2}c^{2} + m^{2}c^{4}}$$

$$\beta = \frac{P_{c}}{E}$$

reference momentum relative momentum offset

total kinetic energy

total energy relativistic beta

We assume to be ultra-relativistic...

Towards the equation of motion

We use a Curved Reference System: the Frenet–Serret rotating frame

Curvilinear \rightarrow Cartesian $(x, y, z) \rightarrow (X, Y, Z)$	Cartesian \rightarrow Curvilinear $(X, Y, Z) \rightarrow (x, y, z)$	V
$z = s + \beta ct$	$s= ho$ arctan $rac{ extsf{Z}}{ extsf{X}+ ho}$	X
$X = (\rho + x)\cos\frac{s}{\rho} - \rho$ $Y = y$ $Z = (\rho + x)\sin\frac{s}{\rho}$	$x = \sqrt{(X + \rho)^2 + Z^2} - \rho$ $y = Y$ $z = s - \beta ct$	s z
$P_{x} = P_{X} \cos \frac{s}{\rho} + P_{Z} \sin \frac{s}{\rho}$ $P_{y} = P_{Y}$	$P_{\mathbf{X}} = P_{\mathbf{x}} \cos \frac{s}{\rho} - P_{\mathbf{z}} \sin \frac{s}{\rho}$ $P_{\mathbf{Y}} = P_{\mathbf{y}}$	

The y and Y axes are parallel and ortogonal to this page.

Summary of momenta and angles definitions

$$P=P_0\left(1+\delta
ight)$$
 total w.r.t. reference momentum $P=\sqrt{P_x^2+P_y^2+P_z^2}$

• General convention: lower case momenta: normalised to P_0

• General convention: lower case momenta: normalised to
$$p = \frac{P}{P_0} = 1 + \delta$$

$$p_x = \frac{P_x}{P_0}$$

$$p_y = \frac{P_y}{P_0}$$

$$p_z = \frac{P_z}{P_0} = \frac{\sqrt{P^2 - P_x^2 - P_y^2}}{P_0} = \sqrt{(1+\delta)^2 - p_x^2 - p_y^2} \approx$$

$$\approx (1+\delta) \left(1 - \frac{1}{2} \frac{p_x^2 + p_y^2}{(1+\delta)^2}\right) =$$

$$= 1 + \delta - \frac{1}{2} \frac{p_x^2 + p_y^2}{1 + \delta} \approx 1 + \delta \text{ for small } p_x \text{ and } p_y$$

$$x' = \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{P_x}{P_z} = \frac{p_x}{p_z} \approx \frac{p_x}{1+\delta}$$
$$y' = \frac{\mathrm{d}y}{\mathrm{d}s} = \frac{P_y}{P_z} = \frac{p_y}{p_z} \approx \frac{p_y}{1+\delta}$$

Representation of the transverse coordinates

With

$$x' = \frac{\mathrm{d}x}{\mathrm{d}s} = \frac{P_x}{P_z} \approx \frac{P_x}{P_0 (1 + \delta)}; \quad y' = \frac{\mathrm{d}y}{\mathrm{d}s} = \frac{P_y}{P_z} \approx \frac{P_y}{P_0 (1 + \delta)}$$

The state of a particle (the phase space) is represented with a 6-dimensional vector:

$$(x, x', y, y', z = s - \beta ct, \delta)$$

Towards the equation of motion

Taylor expansion of the B field:

$$B_{y}(x) = B_{y0} + \frac{\partial B_{y}}{\partial x}x + \frac{1}{2}\frac{\partial^{2} B_{y}}{\partial x^{2}}x^{2} + \frac{1}{3!}\frac{\partial^{3} B_{y}}{\partial x^{3}}x^{3} + \dots$$

if we normalise to the momentum $p/e = B\rho$

$$\frac{B(x)}{p/e} = \frac{B_0}{B_0 \rho} + \frac{g}{p/e} x + \frac{1}{2} \frac{eg'}{p/e} x^2 + \frac{1}{3!} \frac{eg''}{p/e} x^3 + \dots$$
$$= \frac{1}{\rho} + kx + \frac{1}{2} mx^2 + \frac{1}{3!} nx^3 + \dots$$

In the linear approximation, only the terms linear in x and y are taken into account:

- dipole fields
- quadrupole fields

It is more practical to use "separate function" machines:

- split the magnets and optimise them regarding their function
 - bending
 - focusing, etc.

The equation of motion in radial coordinates

Let's consider a local segment of one particle's trajectory:

the radial acceleration is
$$a_r = \frac{\mathrm{d}^2 \rho}{\mathrm{d}t^2} - \rho \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = \frac{\mathrm{d}^2 \rho}{\mathrm{d}t^2} - \rho \omega^2$$
. In our case, for the ideal orbit: $\rho = \mathrm{const} \Rightarrow \frac{\mathrm{d}\rho}{\mathrm{d}t} = 0$ \Rightarrow the force is $F = m\rho \left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2 = m\rho \omega^2$

$$F = mv^2/\rho$$

For a general trajectory:

$$\rho \to \rho + x$$
: $F = m a_r \Rightarrow m \left[\frac{d^2}{dt^2} (\rho + x) - \frac{v^2}{\rho + x} \right] = e B_y v$

$$F = \underbrace{m\frac{d^2}{dt^2}(\rho + x)}_{\text{term 1}} - \underbrace{\frac{mv^2}{\rho + x}}_{\text{term 2}} = eB_y v$$

▶ Term 1. As $\rho = \text{const...}$

$$m\frac{\mathrm{d}^2}{\mathrm{d}t^2}\left(\rho+x\right) = \frac{\mathrm{d}^2}{\mathrm{d}t^2}x$$

▶ Term 2. Remember: $x \approx \text{mm}$ whereas $\rho \approx \text{m} \rightarrow \text{we develop for small } x$

remember
$$\frac{1}{\rho+x} \approx \frac{1}{\rho} \left(1 - \frac{x}{\rho}\right) \qquad \text{Taylor expansion:}$$

$$f\left(x\right) = f\left(x_0\right) + \\ + \left(x - x_0\right) f'\left(x_0\right) + \frac{\left(x - x_0\right)^2}{2!} f''\left(x_0\right) + \cdots$$

$$m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}\left(1 - \frac{x}{\rho}\right) = eB_y v$$

The guide field in linear approximation $B_y = B_0 + x \frac{\partial B_y}{\partial x}$

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \frac{mv^2}{\rho} \left(1 - \frac{x}{\rho} \right) = ev \left\{ B_0 + x \frac{\partial B_y}{\partial x} \right\} \qquad \text{let's divide by } m$$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho} \right) = \frac{ev B_0}{m} + x \frac{ev g}{m}$$

Independent variable: $t \rightarrow s$

$$\frac{dx}{dt} = \frac{dx}{ds} \frac{ds}{dt} = x'v$$

$$\frac{d^2x}{dt^2} = \frac{d}{dt} \frac{dx}{dt} = \frac{d}{dt} \left(\underbrace{\frac{dx}{ds}}_{x'} \underbrace{\frac{ds}{dt}}_{v} \right) = \frac{d}{dt} (x'v) =$$

$$= \frac{d}{ds} \underbrace{\frac{ds}{dt}}_{t} (x'v) = \frac{d}{ds} (x'v^2) = x''v^2 + x'2v \frac{dv}{ds}$$

$$x''v^2 - \frac{v^2}{\rho}\left(1 - \frac{x}{\rho}\right) = \frac{evB_0}{m} + x\frac{evg}{m}$$
 let's divide by v^2

$$x'' - \frac{1}{\rho} \left(1 - \frac{x}{\rho} \right) = \frac{eB_0}{mv} + x \frac{eg}{mv}$$
$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = \frac{B_0}{p/e} + \frac{xg}{p/e}$$
$$x'' - \frac{1}{\rho} + \frac{x}{\rho^2} = \frac{1}{\rho} + kx$$

Remember:

$$mv = p$$

Normalise to the momentum of the particle:

$$\frac{g}{p/e}\frac{B_0}{p/e} = -\frac{1}{\rho}; \quad \frac{g}{p/e} = k.$$

$$x'' + x\left(\frac{1}{\rho^2} - k\right) = 0$$

Equation for the vertical motion

- ▶ $\frac{1}{a^2} = 0$ usually there are not vertical bends
- $k \longleftrightarrow -k$ quadrupole field changes sign

$$y'' + ky = 0$$

Remarks

▶ Weak focusing:

$$x'' + \left(\frac{1}{\rho^2} - k\right)x = 0$$

there is a focusing force even without a quadrupole gradient

$$k = 0 \quad \Rightarrow \quad x'' = -\frac{1}{\rho^2}x$$

even without quadrupoles there is retrieving force (focusing) in the bending plane of the dipole magnets

▶ In large machine this effect is very weak...

Mass spectrometer: particles are separated according to their energy and focused due to the $1/\rho$ effect of the dipole

Solution of the trajectory equations: focusing quadrupole

Definition:

horizontal plane
$$K = 1/\rho^2 - k$$
 vertical plane $K = k$ $X'' + Kx = 0$

This is the differential equation of a harmonic oscillator \dots with spring constant K. We make an ansatz:

$$x(s) = a_1 \cos(\omega s) + a_2 \sin(\omega s)$$

General solution: a linear combination of two independent solutions:

$$x'(s) = -a_1\omega\sin(\omega s) + a_2\omega\cos(\omega s)$$

$$x''(s) = -a_1\omega^2\cos(\omega s) + a_2\omega^2\sin(\omega s) = -\omega^2x(s) \rightarrow \omega = \sqrt{K}$$

General solution, for K > 0:

$$x(s) = a_1 \cos\left(\sqrt{K}s\right) + a_2 \sin\left(\sqrt{K}s\right)$$

We determine a_1 , a_2 by imposing the following boundary conditions:

$$s = 0$$
 \rightarrow
$$\begin{cases} x(0) = x_0, & a_1 = x_0 \\ x'(0) = x'_0, & a_2 = \frac{x'_0}{\sqrt{K}} \end{cases}$$

Horizontal focusing quadrupole, K > 0:

$$x(s) = x_0 \cos\left(\sqrt{K}s\right) + x_0' \frac{1}{\sqrt{K}} \sin\left(\sqrt{K}s\right)$$
$$x'(s) = -x_0 \sqrt{K} \sin\left(\sqrt{K}s\right) + x_0' \cos\left(\sqrt{K}s\right)$$

For convenience we can use a matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_1} = M_{foc} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}_{s_0}$$

Where:

Where:
$$M_{
m foc} = \left(egin{array}{cc} \cos\left(\sqrt{K}s
ight) & rac{1}{\sqrt{K}}\sin\left(\sqrt{K}s
ight) \\ -\sqrt{K}\sin\left(\sqrt{K}s
ight) & \cos\left(\sqrt{K}s
ight) \end{array}
ight)$$

Defocusing quadrupole

The equation of motion is

$$x'' + Kx = 0$$
 with $K < 0$

$$f(s) = \cosh(s)$$

 $f'(s) = \sinh(s)$

Now the solution is in the form:

$$x(s) = a_1 \cosh(\omega s) + a_2 \sinh(\omega s)$$

and the transfer matrix:

$$M_{\mathsf{defoc}} = \left(\begin{array}{cc} \cosh\left(\sqrt{|K|}s\right) & \frac{1}{\sqrt{|K|}}\sinh\left(\sqrt{|K|}s\right) \\ \sqrt{|K|}\sinh\left(\sqrt{|K|}s\right) & \cosh\left(\sqrt{|K|}s\right) \end{array} \right)$$

Notice that for a drift space, when $K = 0 \rightarrow M_{\text{drift}} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$

Summary of the transfer matrices

▶ Focusing quad, K > 0

$$M_{\text{foc}} = \begin{pmatrix} \cos\left(\sqrt{K}L\right) & \frac{1}{\sqrt{K}}\sin\left(\sqrt{K}L\right) \\ -\sqrt{K}\sin\left(\sqrt{K}L\right) & \cos\left(\sqrt{K}L\right) \end{pmatrix}$$

▶ Defocusing quad, K < 0

$$M_{\mathsf{defoc}} = \left(\begin{array}{cc} \cosh\left(\sqrt{|K|}L\right) & \frac{1}{\sqrt{|K|}}\sinh\left(\sqrt{|K|}L\right) \\ \sqrt{|K|}\sinh\left(\sqrt{|K|}L\right) & \cosh\left(\sqrt{|K|}L\right) \end{array} \right)$$

▶ Drift space, K = 0

$$M_{\text{drift}} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$

With the assumptions we have made, the motion in the horizontal and vertical planes is independent: "... the particle motion in x and y is uncoupled"

Thin-lens approximation

When the focal length, f, of the lens is much bigger than the length of the magnet L

$$f = \frac{1}{K \cdot L}$$
 $\gg L$

we can derive the limit for $L \to 0$ while we keep $K \cdot L = \text{const.}$

The transfer matrices are

$$M_{\mathsf{x}} = \left(\begin{array}{cc} 1 & 0 \\ -rac{1}{f} & 1 \end{array} \right) \qquad M_{\mathsf{y}} = \left(\begin{array}{cc} 1 & 0 \\ rac{1}{f} & 1 \end{array} \right)$$

focusing, and defocusing respectively.

This approximation (yet quite accurate, in large machines) is useful for fast calculations... and for the guided studies !

Transformation through a system of lattice elements

One can compute the solution of a system of elements, by multiplying the matrices of each single element:

$$M_{\text{total}} = M_{\text{QF}} \cdot M_{\text{D}} \cdot M_{\text{Bend}} \cdot M_{\text{D}} \cdot M_{\text{QD}} \cdot \cdots$$
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_2} = M_{s_1 \to s_2} \cdot M_{s_0 \to s_1} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

In each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator.

...typical values are:

$$x \approx \text{mm}$$

$$x' \leq \mathsf{mrad}$$

Orbit and Tune

Tune: the number of oscillations per turn.

Example:

64.31

59.32

Relevant for beam stability studies is : the non-integer part

Envelope

Question: what will happen, if the particle performs a second turn?

ightharpoonup ... or a third one or ... 10^{10} turns ...

Summary

beam rigidity:
$$B\rho = \frac{p}{q}$$

bending strength of a dipole:
$$\frac{1}{\rho} [m^{-1}] = \frac{0.2998 \cdot B_0 [T]}{\rho [\text{GeV/c}]}$$

focusing strength of a quadruple:
$$k \left[m^{-2} \right] = \frac{0.2998 \cdot g}{p \left[\text{GeV/c} \right]}$$

focal length of a quadrupole:
$$f = \frac{1}{k \cdot L_{\mathbf{Q}}}$$

equation of motion:
$$x'' + Kx = \frac{1}{\rho} \frac{\Delta p}{P}$$

transfer matrix of a foc. quad:
$$x_{s_2} = M \cdot x_{s_1}$$

$$M_{\rm QF} = \left(\begin{array}{cc} \cos\left(\sqrt{K}L\right) & \frac{1}{\sqrt{K}}\sin\left(\sqrt{K}L\right) \\ -\sqrt{K}\sin\left(\sqrt{K}L\right) & \cos\left(\sqrt{K}L\right) \end{array} \right)$$

$$M_{\rm QD} = \left(\begin{array}{cc} \cosh\left(\sqrt{|K|}L\right) & \frac{1}{\sqrt{|K|}}\sinh\left(\sqrt{|K|}L\right) \\ \sqrt{|K|}\sinh\left(\sqrt{|K|}L\right) & \cosh\left(\sqrt{|K|}L\right) \end{array} \right) \qquad M_{\rm D} = \left(\begin{array}{cc} 1 & L \\ 0 & 1 \end{array} \right)$$

Bibliography

- 1. Edmund Wilson: Introduction to Particle Accelerators Oxford Press, 2001
- 2. Klaus Wille: Physics of Particle Accelerators and Synchrotron Radiation Facilities, Teubner, Stuttgart 1992
- 3. Peter Schmüser: Basic Course on Accelerator Optics, CERN Acc. School: 5th general acc. phys. course CERN 94-01
- Bernhard Holzer: Lattice Design, CERN Acc. School: Interm.Acc.phys course, http://cas.web.cern.ch/cas/ZEUTHEN/lectures-zeuthen.htm
- M.S. Livingston, J.P. Blewett: Particle Accelerators, Mc Graw-Hill, New York, 1962
- 6. The CERN Accelerator School (CAS) Proceedings
- 7. Mathew Sands: The Physics of e+ e- Storage Rings, SLAC report 121, 1970
- 8. D. Edwards, M. Syphers: An Introduction to the Physics of Particle Accelerators, SSC Lab 1990