> [R. Alemany] [CERN BE/OP]
> [Engineer In Charge of LHC]
> Lectures JUAS (16.01.2013)

The Large Hadron Collider

I. LHC layout
II. LHC Operational cycle
III. Beam measurements

I. Basic layout of the machine

I. Basic layout of the machine: the arc

LHC arc cells = FoDo lattice* with

$\sim 90^{\circ}$ phase advance per cell in the V \& H plan

The FoDo-Lattice

A magnet structure consisting of focusing and defocusing quadrupole lenses in alternating order with nothing in between.
Nothing = elements that can be neglected on first sight: drift, bending magnets, RF structures ... and especially experiments...)

MQ: main quadrupole
MQT: Trim quadrupole
MQS: Skew trim quadrupole
MO: Lattice octupole (Landau damping)
MSCB: Skew sextupole +
Orbit corrector (lattice chroma+orbit)
MCS: Spool piece sextupole
MCDO: Spool piece octupole +
Decapole
BPM: Beam position monitor

I. Basic layout of the machine

Golden formula (you should know by heart) Circumference \rightarrow FIXED!!! by LEP

$B \rho=\frac{p}{Z e}$

$$
\rho \approx \frac{26658.9 \mathrm{~m}}{2 \pi} \cdot 66 \% \approx 2780 \mathrm{~m}
$$

$\sim 66 \%$ of the lattice elements are dipoles
$\mathrm{p}=$ nucleon momentum \rightarrow defined by the physics case $\boldsymbol{\rightarrow} \mathrm{TeV}$ range $\boldsymbol{\rightarrow} \mathbf{7 ~ T e V}$

$$
B=\frac{p}{\rho Z e} \approx 3.33 \frac{p\left(\frac{G e V}{c}\right)}{\rho(m)}=8.39 \mathrm{~T}
$$

We need SUPERCONDUCTING technology

Field limit for normal conducting magnets due to saturation
$4 / 42$

I. Basic layout of the machine: Superconducting magnets

Superconducting cables of $\mathrm{Nb}-\mathrm{Ti}$

LHC ~ 27 km circumf. with 20 km of superconducting magnets operating @8.3 T. An equivalent machine with normal conducting magnets would have a circumference of 100 km and would consume 1000 MW of power \rightarrow we would need a dedicated nuclear power station for such a machine. LHC consumes ~ 10\% nuclear power station

He gas $\boldsymbol{\rightarrow}$ liquid @ $4.2 \mathrm{~K} \rightarrow$ superfluid @ 2.17 K

Total amount of He used @LHC ~500-700 T

I. Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cr, 2)

Superconducting

Cold bore
non magnetic
au stenitic steel
36.9 mm 46.5 mm

coils

LHC DIPOLE : STANDARD CROSS-SECTION

He Vessel
Thermal shield

Vacuum vessel (10^{-6} mbar)

I. Basic layout of the machine: main quadrupoles

LHC quadrupole cross section

[^0]
I. Basic layout of the machine: main dipoles \rightarrow Field quality

The magnetic field of the main dipoles:
The stability of the geometry of the superconducting coils is essential to the field quality.
Mechanical stress during coil assembly Thermal stresses during cool-down Electromagnetic stresses during operation
= sources of deformations
of the coil geometry

Additional sources of field errors are the dimensional tolerances of the magnet components and of the manufacturing and assembling tooling.

The relative variations of the integrated field and of the field shape imperfections must not exceed 10^{-4} and their reproducibility better than $10-4$ Reference: LHC Project Report 501 SHC Lhe Maicaicion Dor the LHC
"Field Qulity

I. Basic layout of the machine: main dipoles \rightarrow Field quality

Why the tolerances are so tight?
\rightarrow Because the field quality determines how long the particles can circulate in the accelerator
$\mathrm{n}=\mathrm{I} \rightarrow$ dipole
$\mathrm{n}=2 \rightarrow$ quadrupole
$\mathrm{n}=3 \boldsymbol{\rightarrow}$ sextupole
$n=4 \rightarrow$ octupole
$\mathrm{n}=5 \rightarrow$ decapole
Up to which order do we care?
\rightarrow Up to $n=7$ at least

$$
\sim 10^{-4}
$$

I. Basic layout of the machine: main dipoles \rightarrow Field quality

Error	Side effects if error is > few 10^{-4}	Corrected with
al	Closed orbit perturbations and thus feed-down contributions from higher order multiple errors	Dipole correctors (MCB)
bl		
a2	Linear coupling and vertical dispersion	Skew quadrupoles (MQS)
b2	Tune change, β and dispersion beating	Trim quadrupoles (MQT)
a3	Chromatic coupling and Q"	Skew sextupoles (MSS)
b3	b2 feed-down at injection (persistent current effect) and off-momentum β-beat	Sextupole (MCS)
a4	Dynamic aperture (DA) at injection	
b4	DA and Q" at injection	Octupole (MCO)
a5	DA for off-momentum particles at injection	
b5	DA and Q"' at injection	Decapole (MCD)
a6 to b7	DA at injection Sextupole	

I. Basic layout of the machine: dipole corrector magnets

I. Basic layout of the machine: quadrupole corrector magnets

I. Basic layout of the machine: quadrupole corrector magnets

20.) Chromaticity:
 A Quadrupole Error for $\Delta p / p \neq 0$

Why the orbit and sextupole correctors are placed close to a quadrupole?

I. Basic layout of the machine: quadrupole corrector magnets

I. Basic layout of the machine

I. Basic layout of the machine: Dispersion suppression

ARC

- Cancels the horizontal dispersion generated on one side by the arc dipoles and on the other by the separation/recombination dipoles and the crossing angle bumps
- Helps in matching the insertion optics to the periodic solution of the arc
- If only dipoles are used they cannot fully cancel the dispersion, just by a factor 2.5. Therefore individual powered quadrupoles are required (Q8-QII with I ~ 6000 A)

$$
\alpha=\frac{\int B d l}{P D e}
$$

(Courtesy of B. Holzer)

$$
x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p}
$$

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p}
$$

I. Basic layout of the machine: Dispersion suppression

$D(s)$ is created by the dipole magnets and afterwards focused by the quadrupoles

The inhomogeneous solution changes the beam size

$$
\underset{\longrightarrow}{\mathcal{E}}=\frac{\varepsilon_{n}}{\beta_{\text {rel }} \gamma_{r e l}}
$$

At 7 TeV in LHC: $\varepsilon n=3.5 \mu \mathrm{~m} \mathrm{rad}, \beta=180 \mathrm{~m}, \mathrm{D}=2 \mathrm{~m}, \Delta \mathrm{p} / \mathrm{p} \sim 10^{-3}$
$\sigma=\sqrt{\sigma_{\beta}^{2}+\sigma_{D}^{2}}=\sqrt{\varepsilon \beta+D^{2}\left(\frac{\Delta p}{p}\right)^{2}} \zeta$

$$
\sigma=\sqrt{0.084 \cdot 10^{-6}+4 \cdot 10^{-6}} \cong \sigma_{D}
$$

What is the beam size at $\mathbf{4 5 0} \mathbf{G e V}$?

$$
\begin{aligned}
& \sigma=\sqrt{\frac{\varepsilon_{n}}{(\beta \gamma)} \beta+D^{2}\left(\frac{\Delta p}{p}\right)^{2}} \rightarrow \gamma(@ 7 \mathrm{TeV}) \sim 7463 \gamma(@ 450 \mathrm{GeV}) \sim 480 \beta \approx 1 \\
& \rightarrow \sigma=\sqrt{1.3 \cdot 10^{-6}+4 \cdot 10^{-6}} \cong \sigma_{D}+30 \% \sigma_{\beta}
\end{aligned}
$$

When you design your beam pipe you have to take into account the contribution of $D(s)$

I. Basic layout of the machine: Dispersion suppression

- Quadrupole types: MQ, MQM, MQTL

Nominal gradient $=200 / 160 \mathrm{~T} / \mathrm{m}$
Inominal $=5.4 / 4.3 \mathrm{kA}$
Lmag=2.4/3.4/4.8 m
$\mathrm{T}=1.9 / 4.5 \mathrm{~K}$
Cold bore $\varnothing=53 / 50 \mathrm{~mm}$
Individual powered apertures

I. Basic layout of the machine

I. Basic layout of the machine: Luminosity insertions

* Protect Inner Triplet (TAS) and D2 (TAN) from particles coming from the IP

The mechanical aperture of the inner triplets limits the maximum β^{*} @IPs and the maximum Xangle \rightarrow limit peak lumi

I. Basic layout of the machine: Luminosity insertions

I. Basic layout of the machine: Luminosity insertions

We can have up to 30 parasitic interactions around the IP

I. Basic layout of the machine: Luminosity insertions

I. Basic layout of the machine: Luminosity insertions

β is very small at the IP, but very big at the Inner triplets $\rightarrow \beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}$
Therefore, the quadrupoles around the IP have such a big apertures

I. Basic layout of the machine: High luminosity insertions

I. Basic layout of the machine: Low luminosity insertions

LHCINJ.B1

ALICE

LHCb

Extra challenge \rightarrow the lattice has to accommodate the injection region

I. Basic layout of the machine

Which parameter determines the beam size (ignoring $\mathrm{D}(\mathrm{s})$)?

$$
r^{2}=\varepsilon_{x} \beta_{x}+\varepsilon_{y} \beta_{y}
$$

(In general in proton machines $\varepsilon x \approx \varepsilon y \rightarrow$ beams are round)
In order to get the maximum aperture possible the $\beta(s)$ in both planes have to be minimized:

$$
\begin{gathered}
\frac{d}{d \mu}\left(\beta_{\max }+\beta_{\text {min }}\right)=\frac{d}{d \mu}\left(\frac{\left(1+\sin \frac{\mu}{2}\right) L}{\sin \mu}+\frac{\left(1-\sin \frac{\mu}{2}\right) L}{\sin \mu}\right)=\frac{d}{d \mu}\left(\frac{2 L}{\sin \mu}\right)=0 \\
\frac{L}{\sin ^{2} \mu} \cos \mu=0 \quad \rightarrow \quad \mu=90^{\circ}
\end{gathered}
$$

II. LHC Operational cycle

($2 \mathrm{E} 12-2000$

M. Solfaroli Evian 2012

II. LHC Operational cycle:

Squeeze \rightarrow reduce β^{*}

Relative beam sizes around IP1 (Atlas) in collision

Squeeze the beam size down as much as possible at the collision point to increase the chances of a collision

$$
L \approx \frac{N_{1} N_{2} f_{r e v} N_{b}}{4 \pi \sigma^{2} \longrightarrow} \sigma=\sqrt{\beta \frac{\varepsilon_{n}}{(\beta \gamma)_{r e l}}}
$$

- So even tough we squeeze our $\mathrm{N}_{1,2}=100,000$ million protons per bunch down to 16 microns ($1 / 5$ the width of a human hair) at the interaction point. We get only around 20 collisions per crossing with nominal beam currents.
- The bunches cross (every 25 ns) so often we end up with around 600 million collisions per second - at the start of a fill with nominal current.
- Most protons miss each other and carry on around the ring. The beams are kept circulating for hours $\rightarrow 10$ hours

II. LHC Operational cycle: Squeeze \rightarrow reduce $\beta^{*}(\beta$ @IP)

Why we cannot have $\beta^{*}=0.5 \mathrm{~m}$ at injection?
@IP $\beta^{*}=0.5 \mathrm{~m}$
$s(m)[* 10 * *(3)]$
$\sigma=\sqrt{\beta \frac{\varepsilon_{n}}{(\beta \gamma)_{r e l}}}\left\{\begin{array}{l}\beta=4500 \mathrm{~m} \\ \gamma(@ 450 \mathrm{GeV}) \sim 480 \\ \varepsilon \mathrm{n}=3.5 \mu \mathrm{~m} \text { rad }\end{array}\right.$

Remember:

there is no
$D(s)$ here
$\sigma \sim 6 \mathrm{~mm}$!!

Rbeampipe~29/24 mm we could only accommodate ~ 4 times the beam size and we need at least 7o clearance
@ 7 TeV
σ बт $\sim 1.2 \mathrm{~mm}$

II. Beam measurements:

Beam trajectory

 yasp dv lic if you count the numbarameter do you get?
㔷 Views \mid 田

 sos

FT - P $450.12 \mathrm{GeV} / \mathrm{c}$ - Fill \# 827 INJDUMP - 10/09/08 10-41-34

II. Beam measurements: Beam trajectory correction

YASP DV LHCRING / INJ-TEST-NB / beam 2

Before correction [11/09/08 21:50:38]
Diff. MICADO / 4 iter / V [11/09/08 $21: 50: 38 \mathrm{l}$
Ξ^{10} Mean $=10003 /$ RMS $=2098$

MSCB

MSM- (sextupole)

376 twinaperture assemblies supplied by Tesla Eng. MCBM (dipole)

Why the orbit and sextupole correctors are placed close to a quadrupole?

II. Beam profile measurements: Beam I on TDI screen $-\left.\right|^{\text {st }}$ and $2^{\text {nd }}$ turns

II. Beam profile measurements: Emittance measurement - Wire scanner

Emittance is the figure of merit for profile measurements.
But it is a derived quantity from the beam size ($\sigma=\sqrt{\beta \varepsilon}$)
Where would you install a wire scanner in LHC to get the beam size and then the emittance?

Particles generated by the interaction wire - beam

II. Beam measurements: Aperture scan

II. Beam measurements: Dispersion measurement

YASP DV LHCRING / NOM 1.2 TeV / beam 1

II. Beam measurements: Beta measurement

a quadrupol error leads to a shift of the tune:

$1^{\text {st }}$ Change quadrupole strength in steps
$2^{\text {nd }}$ Measure Tune
$3^{\text {rd }}$ Plot Tune vs Quadrupole strength
Example: measurement of β in a storage ring: tune spectrum

II. Beam measurements: Beta measurement

Reference: Record low beta beating in the LHC
Tomas, R. et al. Phy. Rev. Special Topics - Accelerators and Beams15(9).

II. Beam measurements: Non-integer tunes

II. Beam measurements: Fast BCT (Beam Current Transformer)

Torus to guide the magnetic field

High Light of the LHC

production rate of events is determined by the cross section $\Sigma_{\text {react }}$ and a parameter L that is given by the design of the accelerator: ... the luminosity

$$
R=L * \Sigma_{\text {react }} \approx 25 \frac{1}{10^{-15} b} 10^{-12} b=\text { some } 1000 H
$$

$$
\begin{aligned}
& \text { remember: } \\
& 1 b=10^{-24} \mathrm{~cm}^{2}
\end{aligned}
$$

Integrated luminosity during RUN I

$$
\int L d t \approx 25 f b^{-1}
$$

Official number: I 400 clearly identified Higgs particles "on-tape"

High Light of the HEP year

ATLAS event display: Higgs => two electrons \& two muons

SPARE SLIDES

I. Basic layout of the machine:
 Superconducting magnets

- Superfluid helium \rightarrow Why is it so great?!!
- very high thermal conductivity \rightarrow is able to conduct away heat a thousand times better than a metallic conductor like copper
- very low viscosity coefficient \rightarrow can penetrate tiny cracks, deep inside the magnet coils to absorb any generated heat
- very high heat capacity \rightarrow prevents small transient temperature fluctuations

XIV. Beam captured - mountain range

 display

Beam parameters (nominal)

		Injection	Collision	2012
Proton energy	GeV	450	7000	4000
Particles/bunch		1.15×10^{11}		1.6×10^{11}
Num. bunches		2808		1380
Longitudinal emittance (4б)	eVs	1.0	2.5	
Transverse normalized emittance	$\mu \mathrm{mrad}$	3.5	3.75	
Beam current	A	0.582		
Stored energy/beam	MJ	23.3	362	
$\beta^{*}=0.55 \mathrm{~m}$	Peak luminosity related data			
RMS bunch length $\quad \varepsilon=0.5 \mathrm{~nm} \mathrm{rad}$	cm	11.24	7.55	$\begin{aligned} & \beta^{*}=0.6 \mathrm{~m} \\ & \varepsilon \mathrm{n}=2.5 \mu \mathrm{~m} \\ & \mathrm{rad} \end{aligned}$
RMS beam size @IPI \& IP5 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	375.2	16.7	
RMS beam size @IP2 \& IP8 $\rightarrow \sigma_{x, y}=\sqrt{ } \varepsilon \beta$	$\mu \mathrm{m}$	279.6	70.9	
Geometric luminosity reduction factor (F)			0.836	
Instantaneous lumi @IPI \& IP5 (IP2Pb-Pb, IP8)	$\mathrm{cm}^{-2} \mathrm{~s}^{-1}$		$\begin{aligned} & 10^{34}\left(10^{27},\right. \\ & \left.10^{32}\right) \end{aligned}$	710^{33}

2012 Performance evolution - in one slide

2012 - Luminosity Delivered

A. Macpherson Evian 2012

pPb physics during 2013

Timeseries Chart between 2012-09-12 21:41:26.494 and 2012-09-13 00:52:21.044 (LOCAL_TIME)

\square

$6 \longdiv { 1 4 4 }$ Save Restore ?
\# selected: 1, \# bunches: 1

[^1]
I. Basic layout of the machine: main cryodipoles (two dipoles in one)

- The geometry of the main dipoles (Total of 1232 cryodipoles)

VERTICAL PLANE

The theoretical shape of the beam channels is a straight line, while the natural shape has ~ 0.3 mm deflection between two supports at 5.4 m distance

HORIZONTAL PLANE

Length of the bend part $=14.3 \mathrm{~m}$

II. The experiments: Low luminosity insertions: LHCb

Centre of the exp cavern

(c) Beam 1. collision optics
IV. Momentum and betatron cleaning insertions (IR3, IR7)

S. Redaelli, OP WG on Checkout, 08-11-2007

Settings @7TeV and $\beta^{*}=0.55 \mathrm{~m}$ Beam size (σ) $=300 \mu \mathrm{~m}$ (@arc) Beam size $(\sigma)=17 \mu \mathrm{~m}(@ \operatorname{R} 1$, IR5 $)$

I. Basic layout of the machine: quadrupole corrector magnets

II. LHC Operational cycle:

Squeeze \rightarrow reduce β^{*}

II. Beam measurements: Integer tunes

Yasp dV LhCRING / INJ-TEST-NB_V1@O_[START] / beam 2

[^0]: CERN AC - SQI-12/97

[^1]: 02:15:02 - Subscription update 475 of LHC.BWS.5R4.B1V1/Status, Fri Jan 18 02:15:02 CET 2013

