
Indico DB Technology
An update

Pedro Ferreira
Ferhat Elmas



Last presentation
Why change?
Solutions
Database types

Our solution
Migration
Conclusion



Last time we spoke...

ZODB was not a satisfactory solution.



Traditional databases

Bob
Alice

How much do I have in my account?

20 CHF



Traditional databases

Bob
Alice

Can you tell me what happened in the last 3 days?

You bought IKEA furniture, groceries and an E-book



Object-Oriented Databases

Bob
Alice

Can you tell me what happened in the last 3 days?

Hm… let’s see...



Traditional databases

Bob
Alice

Hi, I’d like to add 100 CHF to my account

Done! Thank you!



Object-Oriented Databases

Bob
Alice

Hi, can I have all my money?

I wonder how 
much this will 
cost in shipping 
charges...



ZODB
“Glorified pickle store”
Tightly integrated with Python
Object-oriented
Transactional
ACID - no surprises



Why change?
ZODB has no server-side queries
No built-in indexing
Getting data out of it = slow
No way of fetching > 1 object at once





Last time we spoke...

We were relying on workarounds.



Workaround
Example: Dashboard

Data mirrored in Redis
Structured for querying
It works!

ZODB

Redis

Worker



Workaround
Example: Dashboard

7 LUA scripts for server-side queries
Synchronizing updates on both storages
Redundant data, code
Hard to maintain!



Last time we spoke...

We were in a dilemma...



The problem
Working around ZODB’s weaknesses
Development time ⇢ DB
Risking data inconsistency
Shouldn’t things be easier?



Plus...

ZODB has to be packed regularly
No caching on server side (only OS)
Replication not that easy *
Niche project



Last time we spoke...

We were in the middle of a careful analysis.



The Quest for the Holy Grail



Availability (OSS) 
Scalability / Replication 
Easiness of use / development 
Transactions / Consistency 
Community / Momentum 
Costs / Exit Strategy

Criteria



The Contestants
The relational suspects

MySQL and forks
PostgreSQL

The NoSQL crowd
Key-value
Document-oriented
Column-oriented
Graph databases



Not so simple...
A single DB?
Primary + Secondary DB?
DB + caching?



Narrowing down

MongoDB

CouchDB

OrientDB

RavenDB

RethinkDB

Terrastore

Cassandra

HBase

Hypertable

Neo4J

FlockDB Infinite 
Graph

InfoGrid

Accumulo

Voldemort

Tarantool

Riak

Redis

MemcacheDB

LevelDB

VoltDB

PostgreSQL

MySQL

MariaDB

Drizzle

Wakanda

ZODB



Community &
Project Activity

MongoDB

CouchDB

OrientDB

RavenDB

RethinkDB

Terrastore

Cassandra

HBase

Hypertable

Neo4J

FlockDB Infinite 
Graph

InfoGrid

Accumulo

Voldemort

Tarantool

Riak

Redis

MemcacheDB

LevelDB

VoltDB

PostgreSQL

MySQL

MariaDB

Drizzle

Wakanda

ZODB



Key-value stores
Tunable - in-memory and persistent
Fast, minimalistic
As simple as it can get
Lack of complex data structures *
Namespacing is hard (no tables!)
Values are strings, no data types



Column-Oriented DBs
Closer to the relational model
Faster range queries
Highly distributable, scalable
Eventually consistent
No transactions



Graph-Oriented DBs
ACID compliant
Schema fits nicely to Indico’s core concepts
Not everything in Indico is graph-like
Sharding is hard/impossible
Niche-oriented



Document-Oriented DBs
Simple and intuitive
Data is JSON-like
Super-fast querying capabilities
JOINs done client-side
No atomicity (transactions)



Relational DBs
Solid and mature
Arbitrary queries
Fully ACID
Replication out of the box
Schema has to be normalized (less natural)
SQL or ORM needed



Back to focus



Key-value stores
Can’t be used by themselves

Need to work around limitations
Conceived mostly for caching

Can be very useful as caches
Current usage in Indico



Column-Oriented DBs
Could be used in particular contexts 

Super-large distributed Indico instance 

Killing a mosquito with a nuclear warhead?
Unnecessary complexity is introduced
Non-trivial infrastructure



Graph-Oriented DBs
Could be a great way of extracting useful data

Meetings, Speakers, Interests…?
Not exactly general-purpose

Useful in a subset of the application (Indico)
Would introduce complexity



Document-Oriented DBs
Store data in a very natural way 

Indico events, users, etc…
Closer to what ZODB does 
Good for simple cases such as Indico Mobile’s

Tend to lead to redundant data
Since JOINs are expensive (client-side)

Introduce complexity that is not needed
e.g. compensating for lack of transactions
For a performance gain we probably don’t need



Relational DBs
They fit Indico’s highly-transactional nature

ACID, no surprises
In widespread use

Large user communities (MySQL, PostgreSQL)
Library availability and know-how

Need for an intermediate layer
Object-Relational Mapping



Our solution
RDBMS (PostgreSQL)
SQLAlchemy + Flask-sqlalchemy
Redis strictly for caching and web sessions

Scaling according to needs
No over-engineering



Easiness of Use



Community



Exit Strategy



Migrating



The Plan
Gradual migration over ~1 year period
Migrating module by module
No external releases in that period
CERN will be the testbed

We’ll take care of it, don’t worry!



Divide
&

Conquer



Strategy
“Divide and Conquer”

Room Booking
Collaboration
Other plugins
User data
….

A modular Indico would for sure help



Problems
Legacy code will have to co-exist with new 
code
Need to account for complexity of 2 DBs
There are risks



Trying it out
Our Guinea Pig: Room Booking Module

DB is independent from rest of Indico
No cross-DB references (other than IDs)
Not too big, not too small
Extrapolating results



The Battle so far…



Our “army”
1 person, full time
Weapons:

Regular stand-up meetings (schema, 
decisions)

Flask-Testing

Fixture

sqlalchemy_schemadisplay

flask-migrate

SQLAlchemy

Flask-SQLAlchemy

zope.sqlalchemy

alembic



The enemy
Lack of Modularity
Deeply nested objects (normalization)

Complex queries
Conforming to a strict schema

No custom attributes / no rich data structures
“Temptation to refactor” *
Over-engineering



Room Booking Schema
Location

Map
Room

Reservation
Attributes
Notifications
Repeats

Blocking



Status Quo
~7 weeks of useful work
Schema design & impl. - done
Test infrastructure - ready
Migration script - ready
Front-end

Location management - done
Room management - ongoing
Room booking / booking management - tbd



Estimates
First full-working alpha by the end of February

Room Booking: 10-11 weeks of work @ 1 FTE

What about the rest?



Things to consider
The boilerplate is in place
A lot of preparatory work has been done
Know-how has been acquired
Allocated resources will increase from March on



But also...
2 people don’t necessarily do twice the work
Interdependency of tasks
Unpredictability of some rewriting costs
Risks are there (low impact, though)



Conclusions
No ideal scenarios, no silver bullets



Conclusions
Relational seems to provide the best balance
Room Booking experiment - a success so far

If everything goes as expected…

Indico 2.0 world-wide release 1H 2015



Questions?
Thank you!


