Construction of an Actively Cooled MAPS Device operated in vacuum near a storage ring beam

Prometeusz Jasinski and Heinrich Leithoff on behalf of the PANDA Luminosity Group 01.07.2014

Forum on Tracking Detector Mechanics 2014, DESY Hamburg

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Helmholtz-Institut Mainz

A word on the PANDA Experiment

A word on the PANDA Experiment

A word on the $\overline{\mathsf{P}}\mathsf{ANDA}$ Experiment

Measurement close to the Beam

Requirements for the detector:

minimal track distortion by material maximum acceptance elastic events

measurement at smallest angles

Measurement close to the Beam

Requirements for the detector:

minimal track distortion by material

maximum acceptance elastic events

measurement at smallest angles

Requirements by the storage ring:

high vacuum < 10⁻⁹ mbar

maximum acceptance of the beam

slow changes of beam pipe diameter

PANDA beam pipe

PANDA beam pipe

Vacuum Box Prototype

Beam Pipe Prototype

Differential Pumping Scheme

First Pumping Tests

First Pumping Tests

Observations during vacuum tests

Lessons learned: keep the number of ports and connections as small as possible! (Not discussed) Permeability of the transition foil is not negligible.

Retractable Detector Halves

Retractable Detector Halves

Retractable Detector Halves

Displacement Measurement in Vacuum

Capacitive probes: *Capacitec 208-ACU*

2 mm range ~ 40 nm resolution

Aquisition via 18-bit differential ADC and microcontroller with CAN interface

-> final resolution ~(400-500)nm

Linearity of the linear shift mechanism

Lesson: High resolution does not necessarily mean a high linearity!

Cooling of HV-MAPS

 $2 \ x \ 2 \ cm^2$ individual HV-MAPS (50 $\mu m)$ 400 in total

2011

digitization on chip

expected power consumption : 2 mW/mm²

glued on a diamond wafer (200 μm) (high thermal conductivity)

module

tracking plane

Section through one side of a Plane

Simulations on cooling

Simulations vs. Reality

Testing contact materials for the module clamp and a copper dummy

Simulations vs. Reality

Simulations vs. Reality

A Support Structure as a Heat Sink

Production of Heat Sink Supports

Original idea: LHCb Velo Detector

melting AlMg4.5Mn alloy for 730°C 90 min in argon atmosphere

Production of Heat Sink Supports

Temperature uniformity tests

Trapped air bubbles are removed by evacuation procedure prior to coolant fludding. Observations: Temperature increase by 3° between inlet and outlet without applied loads! Heat from Radiation? Contact of temperature sensors? Turbulences?

Always perform experimental tests (specially if you have doubts)

Thank you

Differential Pumping Sheme

Cooling stations for cooling liquids

versus

Cooling power @-20°C 1.9 kW 2.2kW max. pumping speed 105 l/min 45 l/min max. pumping pressure 2.5 bar(special version) 2.9 bar

Setting up a distributed cooling circuit

Testing the tightness with 4 bar overpressure (argon)

Geometrical Acceptance

Acceptance at 1.5 GeV/c beam momentum

Welding tube inside

Melting in a copper mold

P3 ,

Melting in a SS mold with inert gas

The biggest fun we had: *"Baking cookies"*

Question was: Can we melt aluminum cooling blocks around a stainless steel pipe?

Prototype 5: Vacuum

melting / pressurized

freezing.. Perfect!

– As Aluminum crimps more we must get a nice crimp contact though?

Prototype 4: Mg vapor bubbles due to vacuum

Applied vacuum method bonded SS to Alu by diffusion of Fe into Al

Result of vacuum baking: A: Perfect contact around the pipe, B: perfect contra shape of the mold

- Aluminum cookie recipe:
 - Take a stainless steel tin and fill with aluminum blocks or bars (AIMg4,5Mn)
 - Melt aluminum under vacuum <1e-3 mbar at 700°C for 1.5 hour
 - Apply 1 bar Argon pressure for 10 minutes
 - Switch of oven and let cool down.
 - Remove cookies from the mold and machine

CERN

"The cookie bakery"

CERN

First Pumping Tests

