

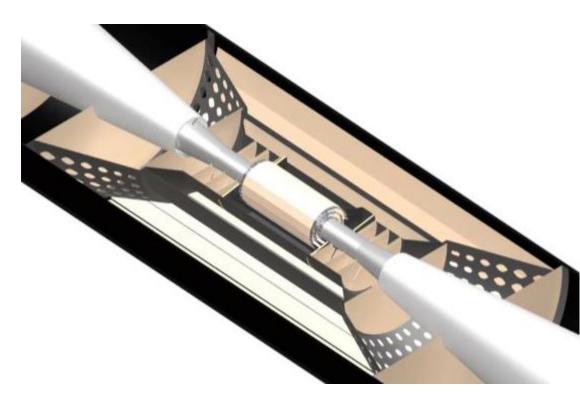
Optimisation studies and tests of low-mass support structures for the CLIC vertex detector

July 1st, 2014

François-Xavier Nuiry, on behalf of the CLICdp collaboration

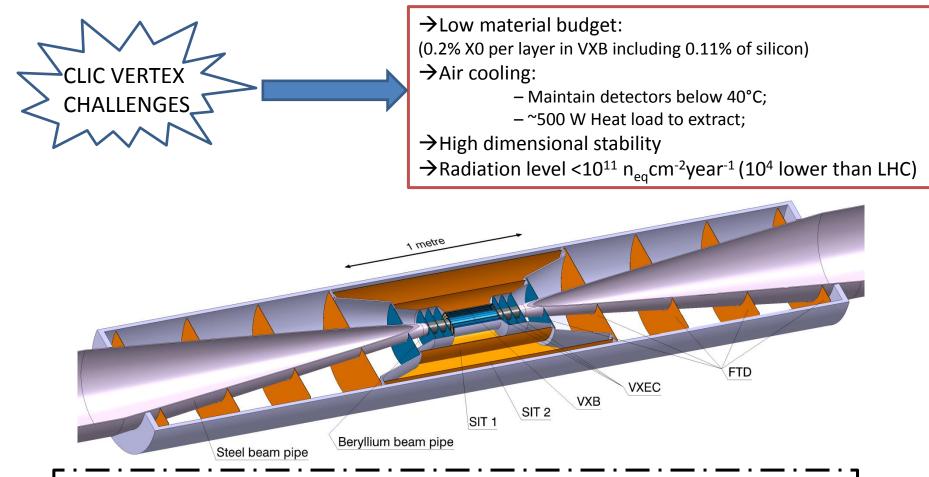
francois-xavier.nuiry@cern.ch

Contents



- CLIC vertex detector design and cooling concept
- 2. Prototyped staves Summary of all realised prototypes Materials

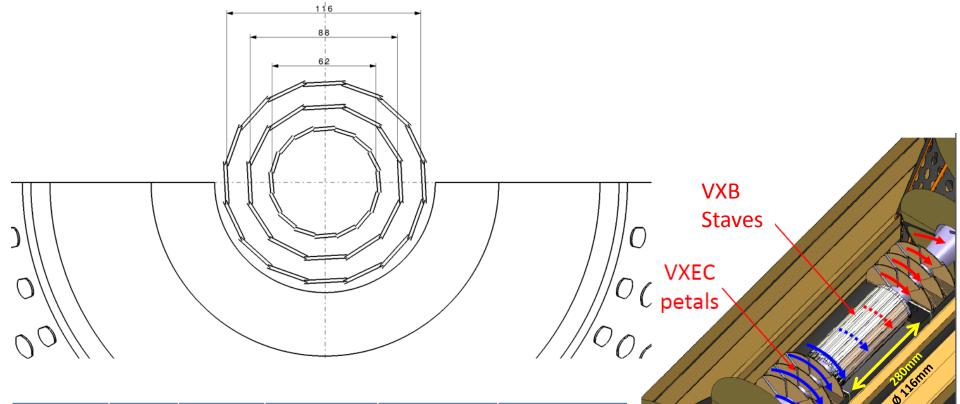
Manufacturing process description X0 calculations and measurements


3. Vertex stave studies:

Mechanical characterisation / simulations Vibration studies

4. Conclusion

The vertex detector thermo-mechanical requirements

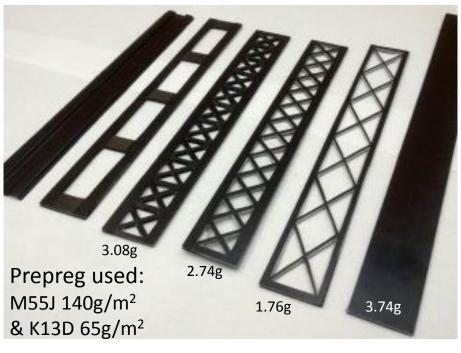


SHORT TERM OBJECTIVES:

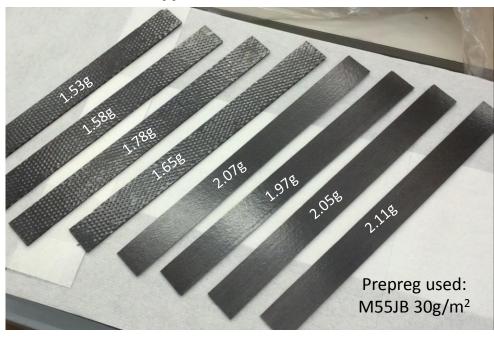
- \rightarrow Develop and characterize low-mass structures (STAVES): ~0.05% X0
 - ightarrow Evaluate forced convection air cooling of the structure
 - Nominal heat dissipation: 50mW/cm², Δ T measurements
 - ightarrow Measure air-flow induced vibrations on the structure
 - \rightarrow Validation of simulations (thermal and mechanical)

The vertex detector design

	Length	Width	Thickness	Inner Radius	Number of
					staves
Layer 1	200	13mm	1.8mm	31mm	16
Layer 2	280	26mm	1.8mm	44mm	12
Layer 3	mm	26mm	1.8mm	58mm	16



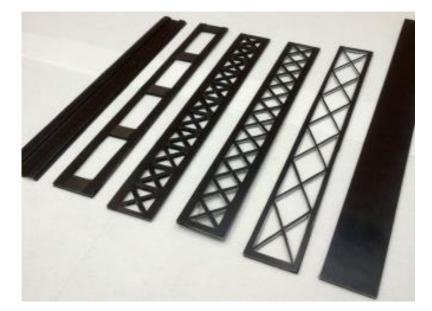
Prototyped staves



ightarrow Several stave designs have been prototyped

Omega stave - Cross bracing Staves – full sandwich staves prototyped under Andrea Catinaccio supervision 08/2013

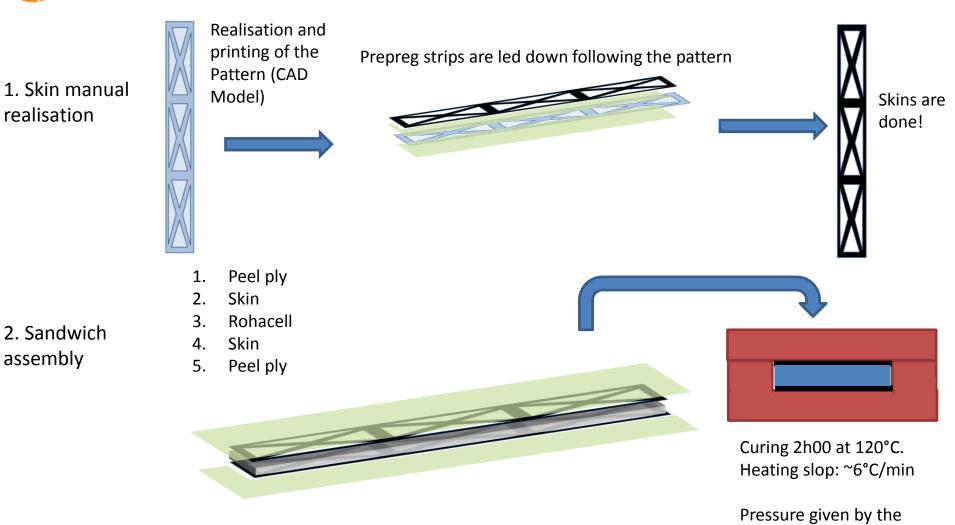
New set of full sandwich staves - June 2014



Prototypes with NTPT and Composite design (Switzerland) - 9/2013

Materials used for 1st prototypes

	M55J Prepreg	K13D prepreg	Rohacell
Thickness	0.140 mm	-	2 mm
Density	~140 g/m²	65g/m ²	51 kg/m ³
Bashukus	Longitudinal: 318 GPa	Longitudinal: 560 GPa	70 MPa
Modulus	Transversal: 6.5 GPa	Transversal: 5.1 GPa	(Isotropic)
Thermal conductivity	155 W/mK	800 W/mK (fibres only)	0.033 W/mK

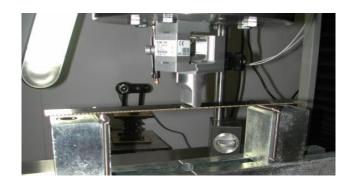

realisation

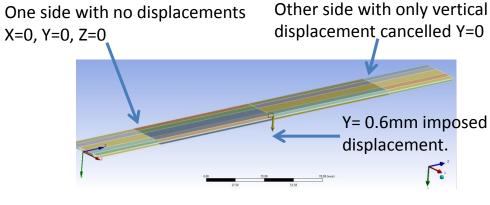
assembly

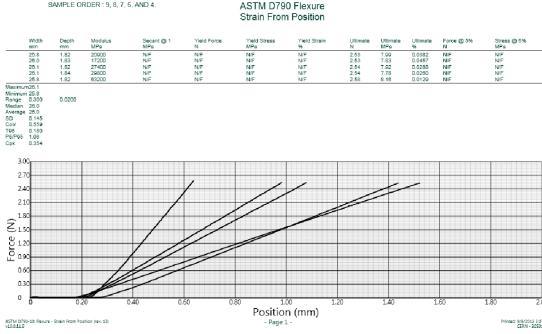
Manufacturing process X brace staves

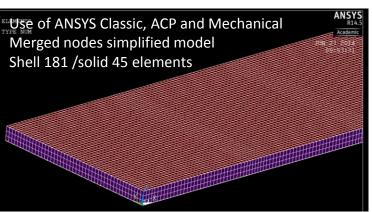
mould dimensions.

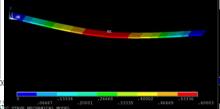
3. Rohacell cutting with a scalpel

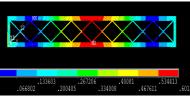





Mechanical studies on 1st prototypes




→ Stave Mechanical Characterisation. Measure of the Flexural stiffness. Span: 180mm.



 \rightarrow Stave Mechanical Characterisation. Measure of the Flexural stiffness.

Span: 180mm.

Stave label #	#1	#2	#3	#5
	M55J + Rohacell 51			
Material		020		\mathbf{X}
Flexural stiffness (N/mm) Measurements	6.95 N/mm	3.3 N/mm	2.96 N/mm	2.23 N/mm
Flexural stiffness (N/mm)				2.20 11/1
FEM Model	6.95 N/mm	-	-	2.30 N/mm
Mass (g) 280mm long	3.74 g	3.08 g	2.74 g	1.76 g
X/X0 % (Calculated)	0.121 %	(0.118 %)	0.068 %	0.051 %

- → Full sandwich stave #1 is stiff but out of radiation length specs.
- \rightarrow Cross bracing stave #5 should fulfil the radiation length goal. (0.05%).
- → Agreement between simulations and measurements, excepted for Rohacell characteristics where tunings are necessary.

FIBERS

Thin ply = up to 4 fibres diameters in the prepreg thickness (~18 microns).

 \rightarrow Use of PAN (Polyacrylonitrile) systems. Material use to get standard carbon fibres (starting compound/parent element).

 \rightarrow Use of Pitch systems. (specific molecular structures). Very high conductivity fibres.

RESIN

Resin quantity = About **38%** of the prepreg in mass. Up to **60%** if the resin is to be used for other purpose (e.g to fix the prepreg to the core).

→Tg from 110°C to 300°C.

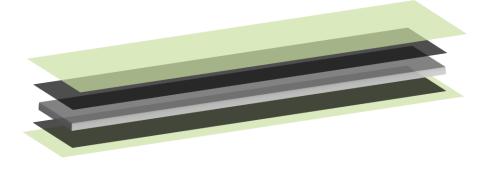
 \rightarrow Glue layers up to 4µm are feasible.

CORE

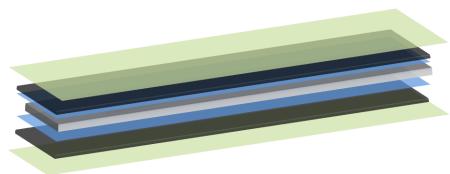
 \rightarrow Development of Carbon cores with an expected mass optimisation of 33%.

Only one wall instead of 2

Fibre	UD ply possible thickness (microns)	Fibre modulus (GPa)
T700	30	240
T800	18 and 30	294
M40J	30	377
M46J	30	436
M55J	30	540
XN80	45	780


Manufacturing process

Full sandwich staves 2 techniques



Full sandwich staves Co-curing with prepreg matrix Used for standard prepregs Full sandwich staves Assembly done after skin curing For thin prepregs <~50microns

Rohacell Stave

- 1. Lay down of a peel ply
- 2. Realisation of the sandwich: Skin / core / skin.
- 3. Lay down of the top peel ply
- Curing parameters: 2h00 at 120°C. Heating slope: ~6°C/min. pressure given by the mould.
- 5. Un-moulding when cooled down

Rohacell Stave

- 1. Liquid glue application on skins (150g/m2) DP490.
- 2. Realisation of the sandwich
- 3. Cure at room temperature under 0.2Bar

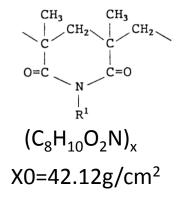
Alternative: Use of glue film

- 1. Glue film (30gsm) application on the 1st skin
- 2. Core application
- 3. Glue film (30gsm) application on core
- 4. 2nd skin lay down
- 5. Cure at 80°C under a vacuum bag (~1 bar pressure) during 16h 11

Thin prepregs used on sandwich staves Features

Stave label	Proto 1 Nomex	Proto 2 Nomex	Proto 3 Nomex	Proto 4 Nomex	Proto 5 Rohacell	Proto 6 Rohacell	Proto 7 Rohacell	Proto 8 Rohacell
Mass (g)	1.53g	1.58g	1.78g	1.65g	2.07g	1.97g	2.05g	2.11g
Mass after drying 96h at 3%RH	1.52g	1.57g	1.75g	1.64g	-	-	-	-
280.5	 26.37-2.17 26.12-2.13 26.51-2.12 	 ∠6.34-2.14 ∠6.15-2.15 ∠6.51-2.16 	 25.73-2.14 25.96-2.18 26.39-2.15 	26.07-2.11 280.5 25.97-2.13 26.06-2.15	 26.21-2.24 26.24-2.34 25.36-2.25 	 ↓ ↓	26.52-2.19 26.36-2.32 26.6-2.25	80 26.33-2.16 ⇒ 25.94-2.23 ⇒ 26.07-22
Default observed	,					l <u>efaults:</u> elimitation at e ng on ends	extremities	

Small holes on skins.



X0 estimates for thin ply staves

	Radiation length evaluation (based on measures and manufacturer's data)									
		PROTO 1 Nomex	PROTO 2 Nomex	PROTO 3 Nomex	PROTO 4 Nomex	PROTO 5 Rohacell	PROTO 6 Rohacell	PROTO 7 Rohacell	PROTO 8 Rohacell	
	Both Skins	0.0271	0.0279	0.0309	0.0313	0.0252	0.0221	0.0267	0.0233	
	Core	0.0145	0.0146	0.0146	0.0143	0.0268	0.0267	0.0267	0.0260	
В	oth Glue layers	0.0155	0.0143	0.0126	0.0166	0.0120	0.0109	0.0069	0.0092	
	Total X0%	0.057	0.0568	0.0581	0.0622	0.0640	0.0597	0.0603	0.0584	

Rohacell is PMI (polymethacrylimide).

We currently use the standard epoxy chemical formula:

 C_2H_4N

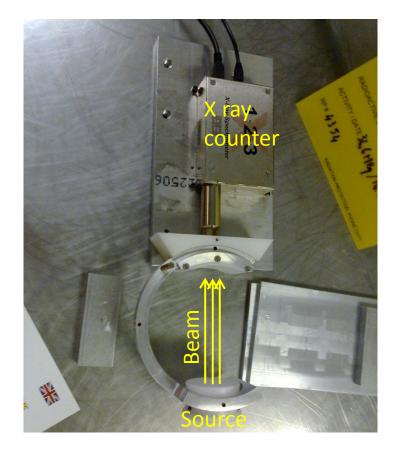
X0= 43.5g/cm²

We use the standard PAN *polyacrylonitrile* chemical formula for fibres:

 C_3H_3N

X0=42.86g/cm²

X0 measurements approximation for thin ply staves

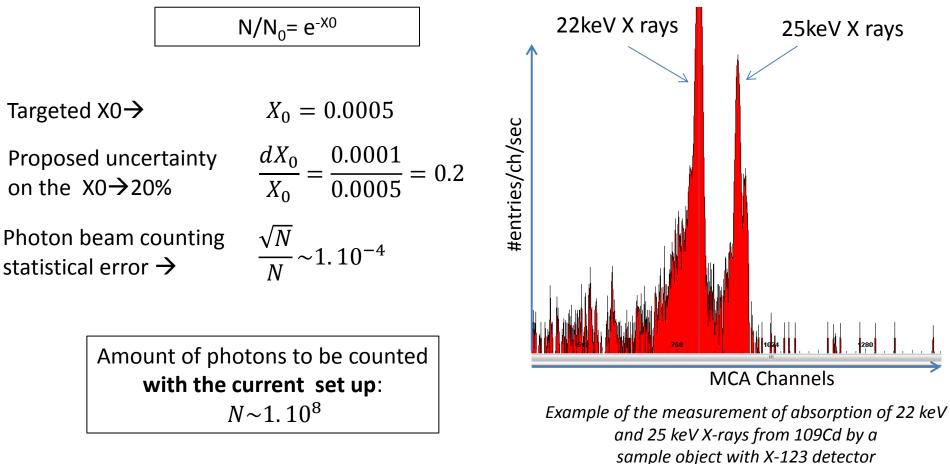


Thanks to Hideyuki Oide CERN and Mauricio Sciveres (LBL)

 \rightarrow Concept: measuring X-ray absorption by staves.

 \rightarrow We employed a fully-depleted Si-PIN X-ray counter X-123 with a 500 µm-thick, 6 mm² sensor produced by Amptek[4]

<u>http://www.amptek.com/products/x-123-complete-x-ray-spectrometer-wth-si-pin-detector/</u> →We use a Cd109 source with an activity of 3.1MBq (19/06/2014)

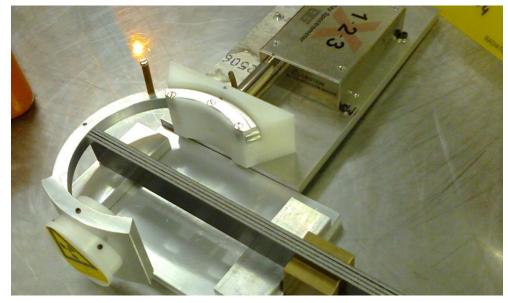

X0 measurements approximation for thin ply staves

15

 \rightarrow Process:

- Measure of the amount of detected photons over a certain period. No Stave on the beam trajectory. ightarrow N $_0$
- Measure of the amount of detected photons over a similar period with the stave located on the beam trajectory. \rightarrow N
- We get the X0 of the full stave sandwich thanks to the following law:

The effect of Compton scattering is negligibly small in this energy, and counting only the signals at the photoelectric peak is sufficient to measure the absorption.

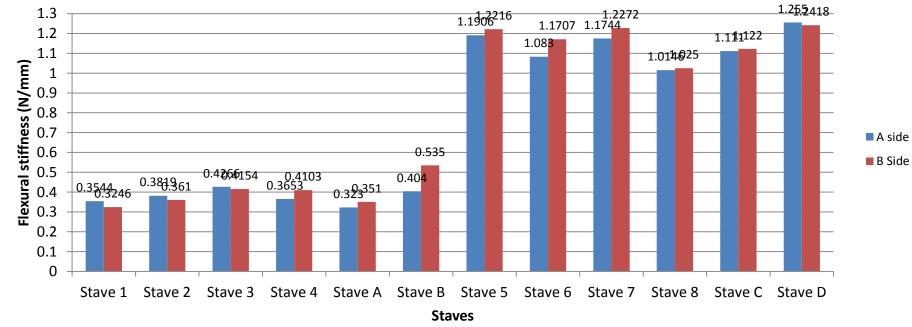


XO measurements approximation Current measurements and getting faster results

- ightarrow About 200 hours of measurement already taken.
- ightarrow ~3300000 photons detected.
- ightarrow To be continued...
- \rightarrow Ongoing studies:
- Trying to measure 4 staves in one go.

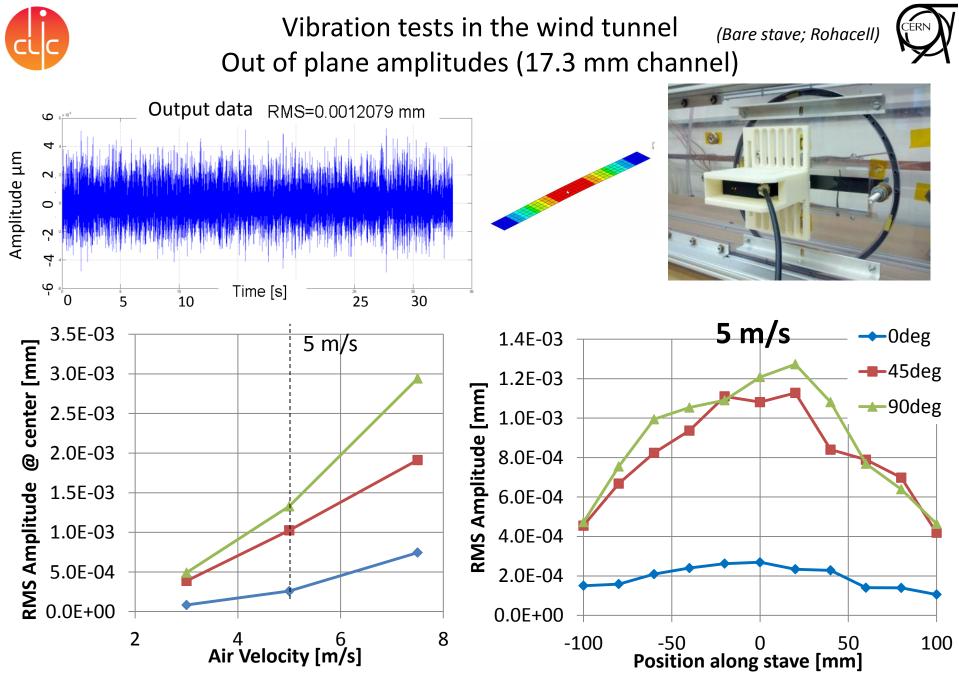
Hypothesis: staves are very similar. Problem: X₀ measurement for 1 stave not got.

- Trying to bring the source closer to the detector.
- Trying higher activity sources.

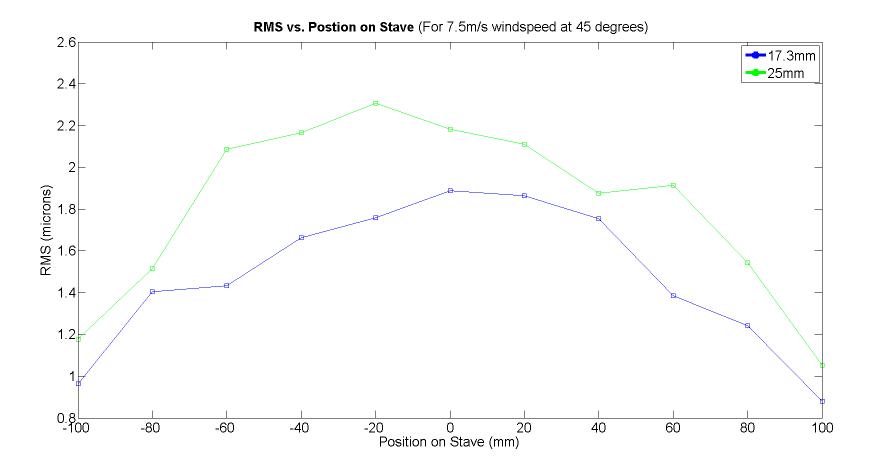


Stave flexural stiffness measurements Thin ply staves

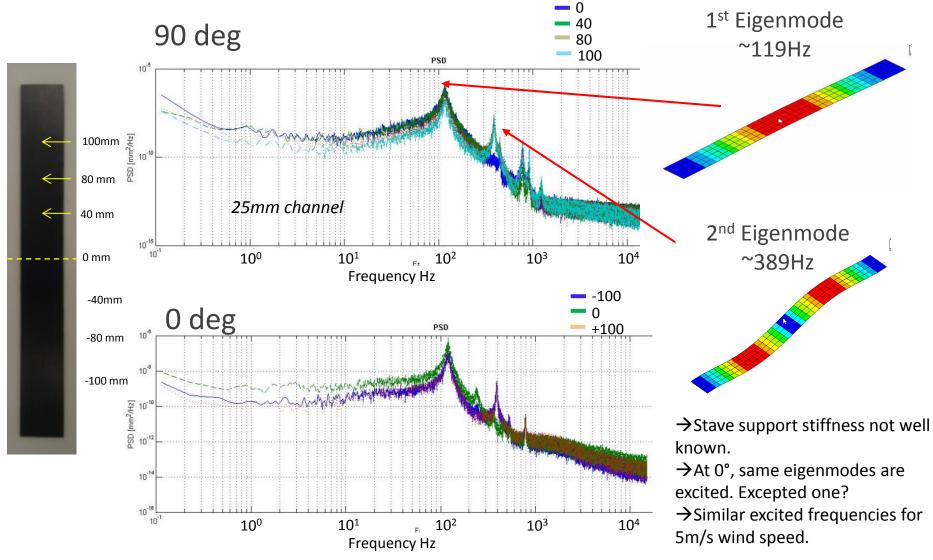
\rightarrow Results for a 260mm span.


Stave flexural stiffness

→ Honeycomb staves are more than 2 times softer than rohacell ones. (Not expected). Possible reasons:

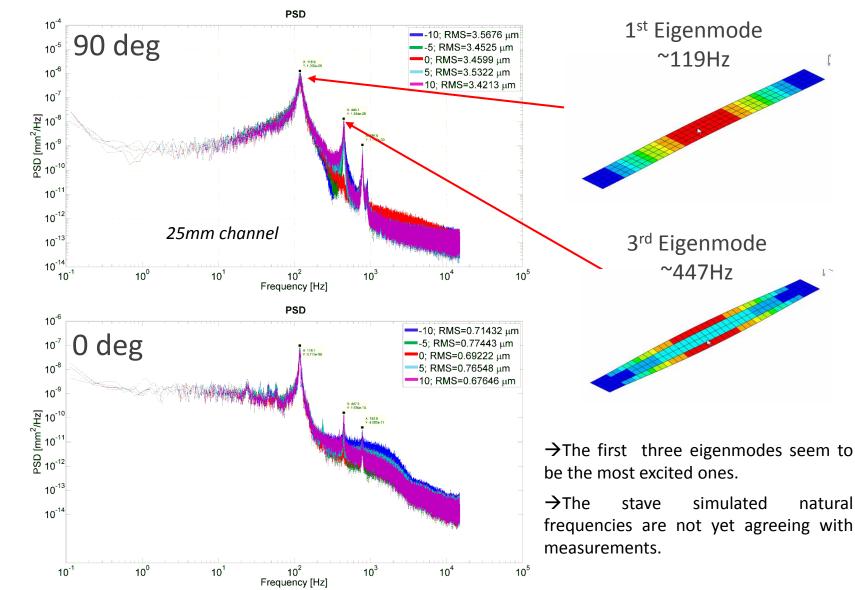

- Honeycomb staves are about 5% thinner than rohacell ones.
- Honeycomb stave skins are already locally buckling (60 microns waves, skin not flat).
- Staves are not very flat.

 \rightarrow Rohacell staves flexural stiffness values are the one expected since the beginning. But it does not fully correspond the FEA results if stave exact dimensions are updated. $_{17}$

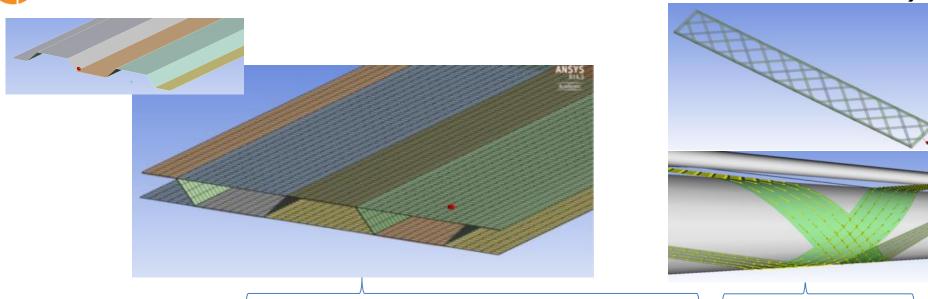


Vibration tests in the wind tunnel (Bare stave; Rohacell) RMS graphs looking at the difference in channel height

Sweep along length (Nomex HC – 7.6m/s)



Sweep along width (Nomex HC – 7.6m/s)



Ongoing stave developments

		OMEGA SHAPE (1.8mm thick)	OMEGA SHAPE (1.8mm thick)	Filament winding	
	Skin	1 lay. M55J per skin (0°)	1 lay. XN80 per skin (0°)	High modulus carbon fibre 3K	
Design	Core	T800 3 lay. Of 20μm	M55J 1 lay. of 30µm at 90°	filament (M60J) wrapped around 2 foam rods	
Mass with glue	g	1.55g	1.69g	~1g (estimate)	
	Skin	0.022%	0.038%	0.019% (estimate)	
Dadiation langth	Core	0.024%	0.013%	0.008% (estimate)	
Radiation length	Glue	(20 µm* 76%): 0.004%	(20 µm* 76%) 0.004%	0.012% (estimate)	
	Total	0.05%	0.054%	0.039% (estimate)	
Flexural stiffness	N/mm	3.5N/mm	4.35N/mm	?	
Approx. natural frequency	Clamped Hz	~183Hz With modules	~202Hz With modules	?	

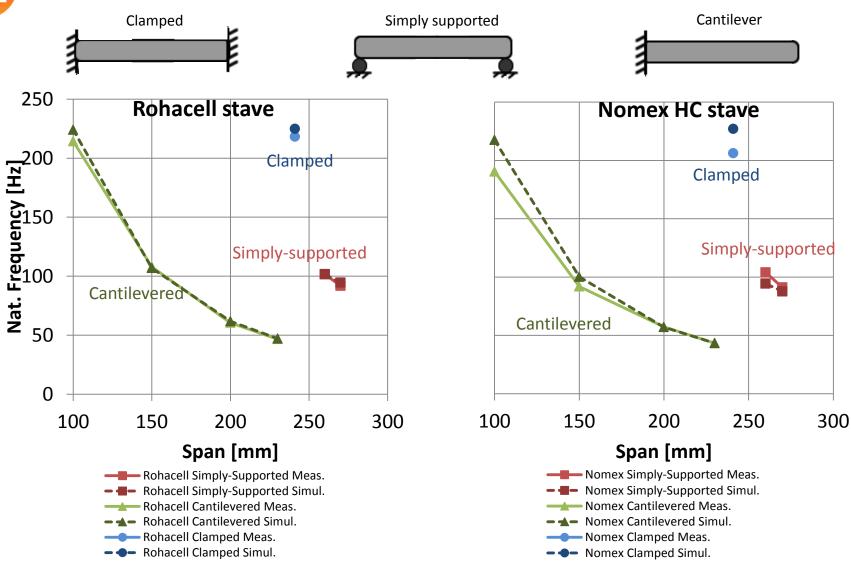
Stave flexural stiffness summary

\rightarrow Results for the **most optimised staves** with a 180mm span.

Stave label #	#1 (reference)	#5	New NTPT Staves	
Material	M55J + Rohacell 51	M55J + Rohacell 51	M55J + Rohacell 51	
Flexural stiffness (N/mm) Measurements	6.95 N/mm	2.23 N/mm	To be measured soon.	
Flexural stiffness (N/mm) FEM Model	6.95 N/mm	2.30 N/mm	3.27 N/mm	
Mass (g) 280mm long	3.74 g	1.76 g	1.97 g	
X/X0 % (Calculated)	0.121 %	0.051 %	0.0597 %	

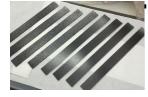
- → Very interesting design (#5), using standard prepreg was prototyped in order to reach the 0.5% radiation length.
- → Very simple design (NTPT) using new thin prepregs nearly reaches the XO target and providing interesting stiffness.

Conclusion

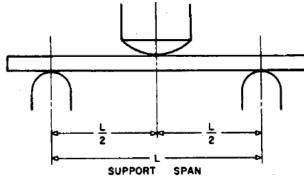

- The air cooling strategy proposed for the Vertex detector involves the design of stiff structures.
- Several designs have been prototyped including the use of new thin prepregs.
- Air flow <u>induced vibrations</u> are studied.
- \rightarrow First results shows the induced vibration amplitudes are acceptable.
- A dedicated mechanical laboratory is equipped with precise instruments.
 →Validations of the simulations thanks to the measurements.
- Ongoing stave developments:
- \rightarrow Production quality and regularity (at CERN and outside),
- \rightarrow Simulations

Thank you

Free vibration tests - Stave natural frequencies



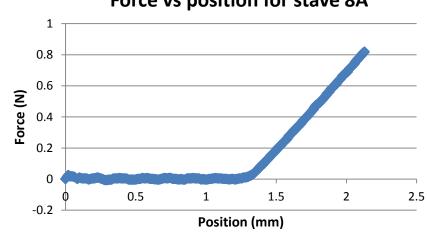
 \rightarrow Simulations are done with lower young modulus for staves (scaling parameter).


 \rightarrow Stave flatness could have an impact on vibration tests results (simply supported tests).

Stave flexural stiffness measurements Thin ply staves

- \rightarrow Objectives:
- Comparing stave stiffness versus design, geometrical imperfections, etc...
- Comparing results with FE simulations.
- Getting an idea of the stave natural frequency.
- Standard used: ASTM D790-02

Configuration: Loading nose and supports radius: 5mm Support span : 260mm Loading nose speed: 57.4mm/min Test stopped when 0.3N are reached for honeycomb staves and 0.8N for rohacell staves



Polymer lab facility

Load cell:

Capacity: 100N Accuracy of 1% of applied load (~+/-0.025N) **Position measurement accuracy:** Not well known (0.001mm ! announced by the manufacturer...)

Force vs position for stave 8A

X0 measurements

 \rightarrow Process:

- Measure of the amount of detected photons over a certain period. No Stave on the beam trajectory. ightarrow N $_0$
- Measure of the amount of detected photons over a similar period with the stave located on the beam trajectory. \rightarrow N
- We get the X0 of the full stave sandwich thanks to the following law:

22keV X rays $N/N_0 = e^{-X0}$ 25keV X rays A narrow beam of monoenergetic photons with #entries/ch/sec an incident intensity I_a, penetrating a layer of material with mass thickness x and density ρ , emerges with intensity I given by the exponential attenuation law : $I/I_{\rm o} = \exp[-(\mu/\rho)x]$. x = material mass thickness ρ = material density μ/ρ = attenuation coefficient **MCA Channels** I_0 = photon incident intensity

I = photon intensity after the material sample

Example of the measurement of absorption of 22 keV and 25 keV X-rays from 109Cd by a sample object with X-123 detector

The effect of Compton scattering is negligibly small in this energy, and counting only the signals at the photoelectric peak is sufficient to measure the absorption.

X0 measurements - uncertainty -

 \rightarrow Expectation:

- Stave is thin and made of very light materials. 0.05%X0 expected.
- The photon absorption will be small \rightarrow N/N₀ close to 1.
- Measurements could be long...
- Attenuation law \rightarrow

Attenuation law $\rightarrow \qquad X_0 = -\ln\left(\frac{N}{N_0}\right) = -\ln(r)$

 $\frac{N}{N_0} = e^{-X_0}$

given

 $r = \frac{N}{N_0} \sim 1$

$$dX_{0} = \frac{dX_{0}}{dr} \cdot dr = \frac{1}{r} \cdot dr$$
$$dr = r \cdot dX_{0} = r \cdot X_{0} \cdot \frac{dX_{0}}{X_{0}} \sim X_{0} \cdot \frac{dX_{0}}{X_{0}}$$
$$X_{0} = 0.0005$$

Targeted X0 \rightarrow

Pro

Proposed uncertainty on the
$$X0 \rightarrow 20\%$$

$$\frac{dX_0}{X_0} = \frac{0.0001}{0.0005} = 0.2$$

 $dr \sim 1.10^{-4}$

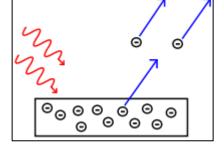
 \rightarrow

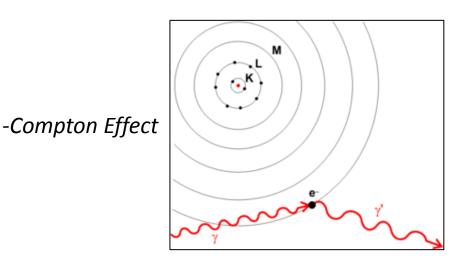
Amount of photons to be counted: $N \sim 1.10^8$

Photon beam counting statistical error $\rightarrow \frac{\sqrt{N}}{N} \sim 1.10^{-4}$

Photon rate ~ 4.72/s \rightarrow 245 days of measurements...

X0 measurements

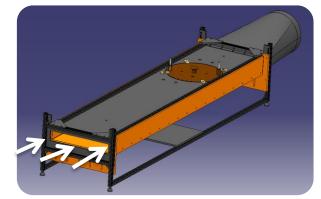



 \rightarrow Process:

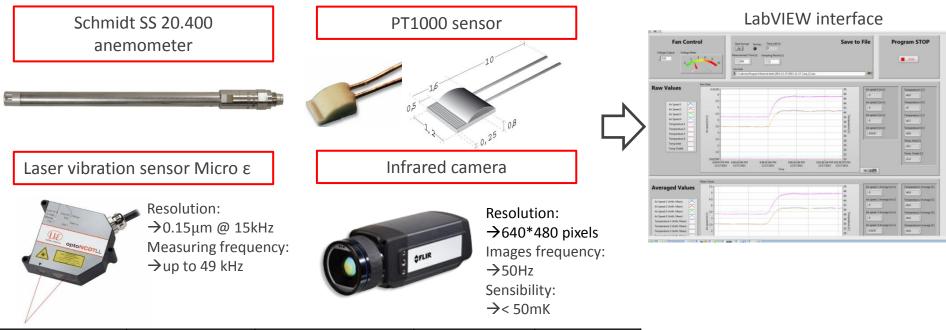
- Measure of the amount of detected photons over a certain period. No Stave on the beam trajectory. ightarrow N $_0$
- Measure of the amount of detected photons over a similar period with the stave located on the beam trajectory. $\rightarrow N$
- We get the X0 of the full stave sandwich thanks to the following law:

 $N/N_0 = e^{-X0}$

-Photo electron effect




-electron pair effect (photon nucleus interaction) $\gamma + \gamma \rightarrow e^- + e^+$


CLIC vertex laboratory at CERN

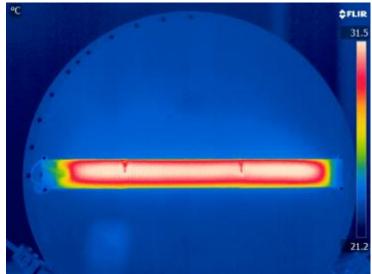
 \rightarrow Construction of thermo-mechanical test bench for Vertex staves

ightarrow Read out system and equipment

1. Vertex requirements	2. Air cooling strategy	3. CLIC mech. lab @ CERN	4. Vertex stave studies	5. Conclusion
		Read out system		

CLIC vertex laboratory at CERN Read out

 \rightarrow Read out system and equipment


Thermal camera FLIR A655 sc

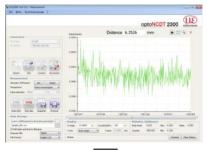
- -Resolution:
- -Images frequency:
- -Sensibility:
- -External trigger

640*480 pixels 50Hz < 50mK

gger

output

1. Objectives	2. Vertex requirements	3. Air cooling strategy	4. CLIC mech. lab @ CERN	5. Vertex stave studies	6. Conclusion	32
			IR Camera			


Data acquisition

Micro-Epsilon optoNCDTLL 2300-10LL

Proprietary software

Matlab scripts

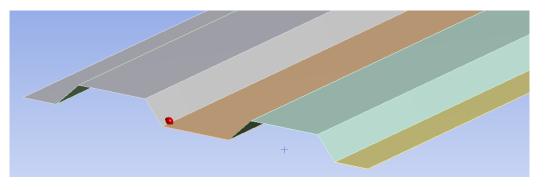
Model		ILD 2300-2LL	ILD 2300-10LL	ILD 2300-20LL	
Measuring range 1)		2 (2) mm	10 (5) mm	20 (10) mm	
Start of measuring range	SMR	24 (24) mm	30 (35) mm	40 (50) mm	
Midrange	MMR	25 (25) mm	35 (37.5) mm	50 (55) mm	
End of measuring range	EMR	26 (26) mm	40 (40) mm	60 (60) mm	
Linearity		0.6µm	2 <i>µ</i> m	4µm	
Linearity		≤±0.03% FSO		$\leq \pm 0.02\%$ FSO	
Resolution (20kHz)		0.03µm	0.15µm	0.3µm	
nesolution (20kHZ)			0.0015%	FSO	
Measuring rate		adjustable via soft	vare 49.02 / 30 / 20 / 10 / 5 / 2.5 /	1.5kHz (49.02kHz with reduce	
Permissable ambient light			10.0004	0.000Ix	
	SMR	85 x 240µm	120 x 405µm	185 x 485µm	
Spot diameter	MMR	24 x 280µm	35 x 585µm	55 x 700µm	
	EMR	64 x 400µm	125 x 835µm	195 x 1200µm	

\rightarrow Stave Mechanical Characterisation. Evaluation of the **Bending stiffness.**

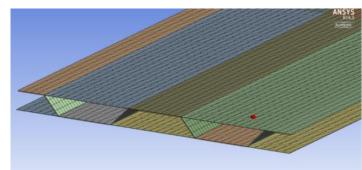
$\frac{F*l^3}{3*E_s*I} + \frac{F*l}{4*G*b*h}$	$1 = \frac{m * l^3}{48 * E * I}$	$+\frac{m*l}{4*G*b*h} \qquad E*I$	$=\frac{m*l^{3}}{48*(1-\frac{m*l}{4*G*b*h})}$	-
#5	#1	#7	#8	#9
M55J + Rohacell 51	M55J + Rohacell 51	T800, [0°; 90°; 0°],	T800, [0°; 90°; 0°],	T800, [0°; 90°; 0°],
2.23 N/mm	6.95 N/mm	2.12 N/mm	2.17 N/mm	2.24 N/mm
3.210*10 ⁵ N.mm ²	1.769*10 ⁶ N.mm ²	3.605*10 ⁵ N.mm ²	3.132*10 ⁵ N.mm ²	3.238*10 ⁵ N.mm ²
157 Hz	314 Hz	152 Hz	140 Hz	142 Hz
	#5 M55J + Rohacell 51 Image: Comparison of the second sec	#5 #1 M55J + Rohacell 51 M55J + Rohacell 51 Image: State of the state o	$\begin{array}{c cccc} I & I & I & I & I & I & I & I & I & I $	#5 #1 #7 #8 M55J + Rohacell 51 M55J + Rohacell 51 T800, [0°; 90°; 0°], T800, [0°; 90°; 0°], Image: State of the sta

→ Vibration tests should tell us if such natural frequencies are close to exciting vibration of air.

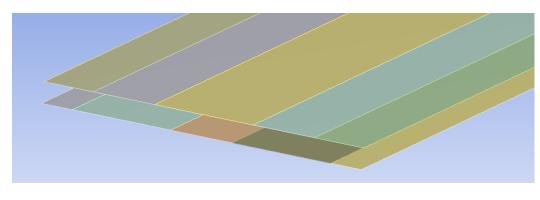
1. Objectives	2. Vertex requirements	3. Air cooling strategy	4. CLIC mech. lab @ CERN	5. Vertex stave studies	6. Conclusion
				Stave stiffness	

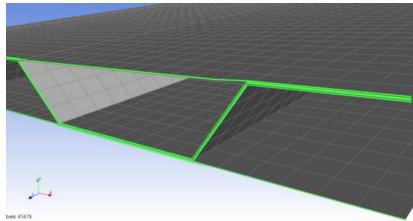


Stave ongoing simulations Different designs studied



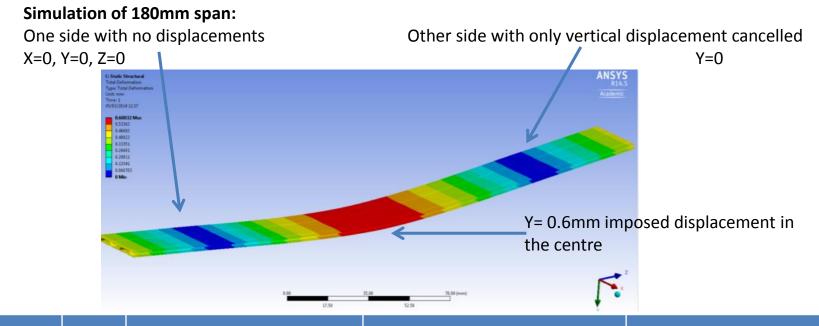
Omega shape


Core 3 layers [0, 90, 0] of very thin prepreg: T800, 3*0.020mm thick



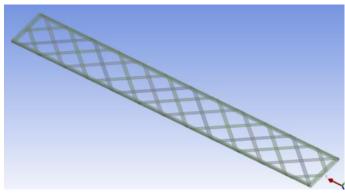
- Merged nodes simplified model
- Shell 181 elements
- Layup realised in ACP or Mechanical

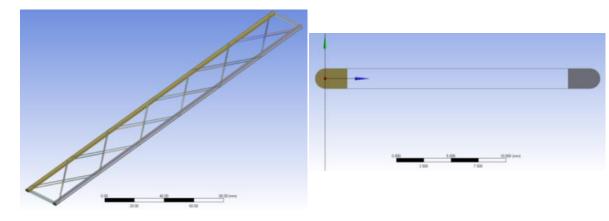
Skins 1 layer per skin of high modulus prepreg: M55J : 2* 0.030mm

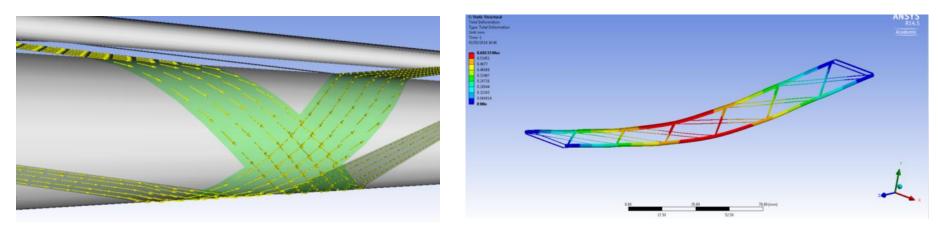


1. Objectives	2. Vertex requirements	3. Air cooling strategy	4. CLIC mech. lab @ CERN	5. Vertex stave studies	6. Conclusion
				Ongoing developments	

Stave ongoing simulations Omega shape


		OMEGA SHAPE (1.8mm thick)	SANDWICH SHAPE (1.8mm thick)	Former prototype
Design	Skin	1 lay. M55J per skin (0°)	1 lay. M55J per skin (0°)	3lay. T800 of 30 µm per skin
Design	Core	T800 3 lay. Of 20μm	Nida nomex 1.74mm thick	Rohacell
Mass with glue	g	1.55g	1.44g	3.17g
Radiation length	Skin	0.022%	0.022%	0.064%
	Core	0.024%	0.012%	0.020%
	Glue	(20 μm* 76%): 0.004%	(40 μm* 200%): 0.019%	0.042%
	Total	0.05%	0.053%	0.126%
Flexural stiffness	N/mm	3.5N/mm	2.69N/mm	2.12N/mm
Approx. natural frequency	Clamped Hz	~183Hz With modules	~178Hz With modules	~150Hz With modules




Stave ongoing simulations Filament winding

Filament winding stave

1. Objectives	2. Vertex requirements	3. Air cooling strategy	4. CLIC mech. lab @ CERN	5. Vertex stave studies	6. Conclusion
				Ongoing developments	