

CONCENTRIC VACUUM INSULATED TRANSFER LINES: FEEDBACK FROM ATLAS AND CMS NEWLY INSTALLED SYSTEMS

<u>P. Tropea</u>, N. Bacchetta, T. Blaszczyk, C. Bortolin, J. Daguin, T. Eisel, J. Godlewski, M. Gutt-Mostowy, P. Petagna, H. Postema, B. Verlaat, L. Zwalinski

30 June 2014- Forum on Tracking Detector Mechanics - DESY

Detector Technologies

OUTLINE

Outline

Concentric transfer lines for CO2 cooling

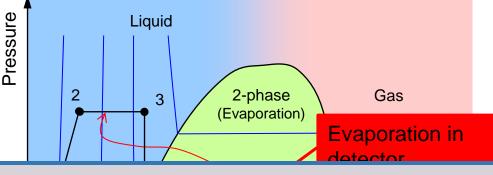
- Why?
- How?

Insulation

Common approach: ATLAS & CMS choices Overview of ATLAS Transfer lines

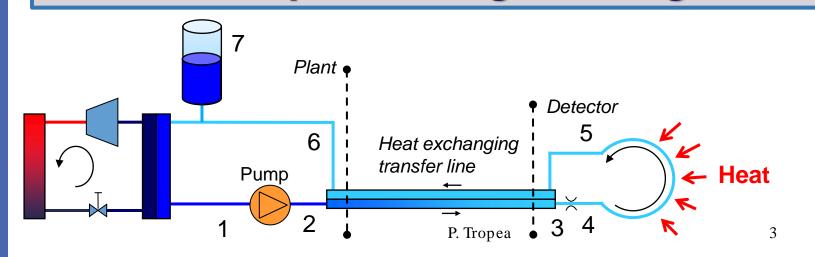
- Rigid transfer lines
- Flexible transfer lines
- CMS Transfer lines
 - On detector
 - Off detector

Common issues:


- Design
- Installation
- Testing

Conclusions

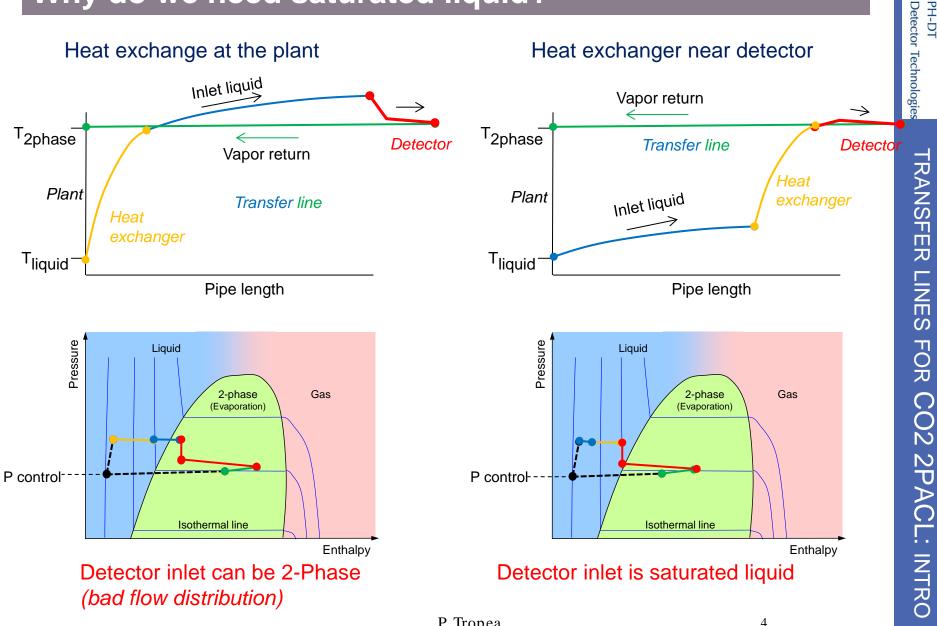
2PACL: 2-Phase Accumulator Controlled Loop


CO₂ evaporative cooling:

- Atlas IBL
- CMS Pixel Phase I

All very nice if evaporation starts at the detector inlet! Need to ensure saturated liquid up to there,

despite the long travelling!



PH-DT

Detector Technologies

PH-DT

Why do we need saturated liquid?

The possible solutions

Technology	Pro	Cons	
Local heat exchanger at the detector inlet	Local control	Bulky, heavy, not accessible	
Common insulation for inlet and return	Can be applied on existing pipes	Distribution of pipes in the bundle strongly influences the performances, heat from environment can still reach inlet, bulky	
Concentric: inlet into return	Compact, full control of liquid no matter heat sources around	New installation (for CMS)	
	Bundled insulated tubes P. Tropea	<section-header><section-header></section-header></section-header>	

CERN

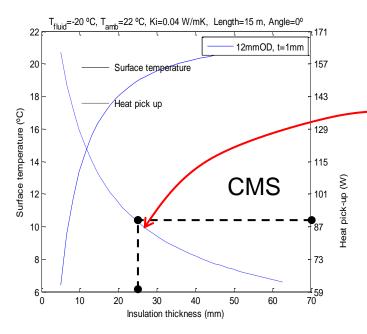
PH-DT Detector Technologies

Detector Technologies

HERMAL SHIELDING

Foam insulation?

LHCb-Velo system


CMS Tracker system

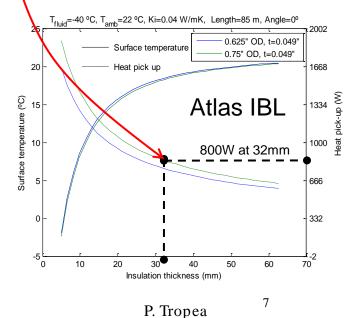
Armaflex: k=0.04 W/m*K

Dries out and looses flexibility, shall be carefully glued Aerogel Spaceloft 9251: k=0.013 W/m*K

Dusty and difficult material to handle, but good performance if super well protected from humidity. All parts enclosed in polyethylene bags, sealed, then adhesive vapor barrier around: QA during installation shall be super strict...

What about vacuum insulation?

CMS


- 0.4 watt/m for -196'C for a vacuum jacket of 63mm (25.5mm insulation thickness)
- 6 watt with vacuum compared to 87 Watt with foam (but vacuum reference at -196'C)
- YB0 lines will have a reduced diameter (28mm)

Atlas IBL

- 0.55 Watt/m for -196'C for a vacuum jacket of 63mm (32mm insulation thickness)
- 55 watt with vacuum compared to 800 Watt with foam (but vacuum reference at -196'C)

Vacuum insulation performs a magnitude better than foam, is more reliable and is smaller in diameter

	Pipe dimension	s:					
	Pipe size	Process line	Vacuum jacket	Max.Capacity	Heat in leak		
		[mm]	[mm]	indication (L/h)	indication (W/m)		
_	DN10	Ø12x1,0	Ø63,5x1,5	300	0,40		
	DN15	Ø18x1,0	Ø63,5x1,5	500	0,45		
	DN20	Ø23x1,5	Ø63,5x1,5	1000	0,55		
	DN25	Ø28x1,0	Ø63,5x1,5	2000	0,65		
	1″	Ø33.7x1,6	Ø76,1x2,0	3000	0,75		
	11⁄2″	Ø48.3x1,6	Ø88.9x2,0	4500	0,85		
	2″	Ø60.3,1,6	Ø114.3x2,0	6000	1,0		
	21⁄2″	Ø76,1x2,0	Ø139.7x2,0	11500	1,3		
	3″	Ø88.9x2,0	Ø154x2,0	16000	1,9		
	4″	Ø114.3x2,0	Ø168,3x3,0	27000	2,0		
	6″	Ø168.3x2,0	Ø219.1x3,0	60000	3,3		

PH-DT

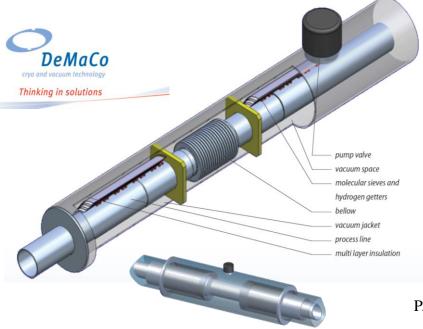
Detector Technologies

CERN

PH-DT Detector Technologies

THERMAL SHIELDING III

Summary of pro & cons


Foam insulation:	Vacuum insulation:	
Advantages	Disadvantages	
In principle cheaper	Expensive	
Large heat leak: allowing high T set points with no additional load	Small heat leak: ask for additional load in order to operate at high T	
Disadvantages	Advantages	
Risk of leaking seals (Water condensation)	No seals	
Large diameter (ex: -30 C /12mm pipe +2x32 mm insulation =76mm external envelope)	Small diameter (ex: -40 C/12 mm pipe - 28mm external envelope for vacuum jacket)	
Hard to apply in crowded areas, access needed everywhere	Only access needed at welds	
More heat leak (larger primary chiller)	Small heat leak (smaller primary chiller)	

A common approach with different boundaries

- All paths concentric
- All passive vacuum insulated along main routing
- An industrial approach by cryogenic transfer line technology
- Customized design inside the detector for reduced diameter

ATLAS

- CO2 @ -40 C
- Main transfer line an industrial cryogenic solution
- Distribution to IBL an in-house development as only flexible lines were possible.
- Flex lines routing is as cabling
- Flex lines are actively pumped

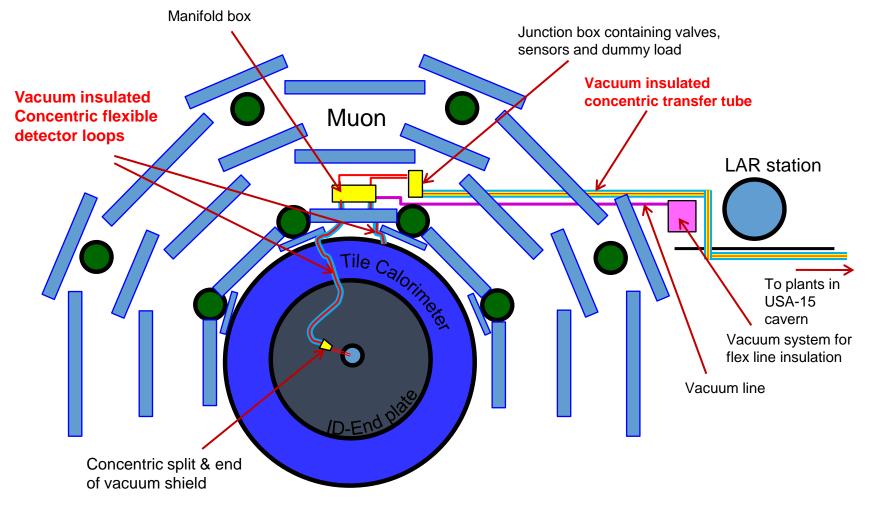
CMS

- CO2 @ -20 (but design of insulation for -40)
- 3 separate paths, different sizes and granularity
- all vacuum insulated, passive

PH-DT

Detector Technologies

Detector Technologies

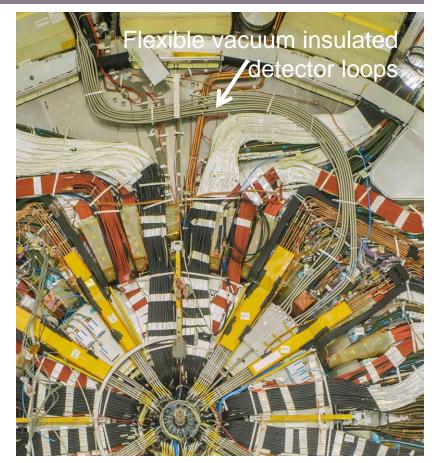

CONCEPT

ATLAS IBL Transfer lines

In Atlas 2 technologies:

1 Concentric main transfer line (21.3x2.11mm) in a 63.5mm stationary vacuum tube (100m)

14x Flexible concentric detector loops (1.6x0.3mm) in a 17mm flexible bellow tube (11m)



P. Tropea

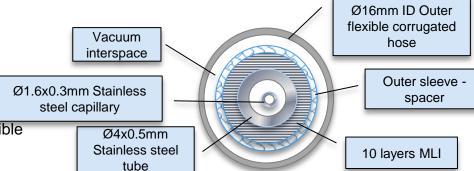
ATLAS IBL Main Transfer line PH-DT Detector Technologies Industrial solution (Demaco) MLI Cooling plant in USA15 21.3mmOD / 17.08mmID CO2 vapor return tube 10mmOD / 8mmID 50mmOD / 47mmID Vacuum **FRANSFER** concentric CO2 tube for 12m section liquid tube. 63.5mmOD / 60.5mmID Vacuum Detector -12 mtransferline tube for 80m section -14^{111 1131131121 111112} (Vacuum, D=50mm ~80m transfer line (Vacuum, 63.5 mm) SOLUTIONS 11 P. Tropea

ATLAS IBL flexible detector loops

- The routing towards the IBL has limited space in the Inner detector end plate.
- Need to be like cabling in order to fit.
- Routing through inaccessible areas
 - Only 1 solution: Flexible and Diameter < 18mm = Vacuum

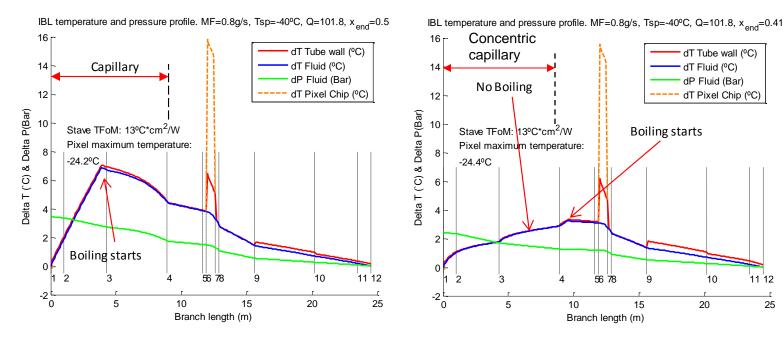
Purpose of the concentric flexible detector loop.

- 1. Prevent unwanted boiling of the flow distribution capillary
- Make it flexible as a cable for integration purposes 2.
- 3. Avoid condensation on outer surface


P. Tropea

PH-DT

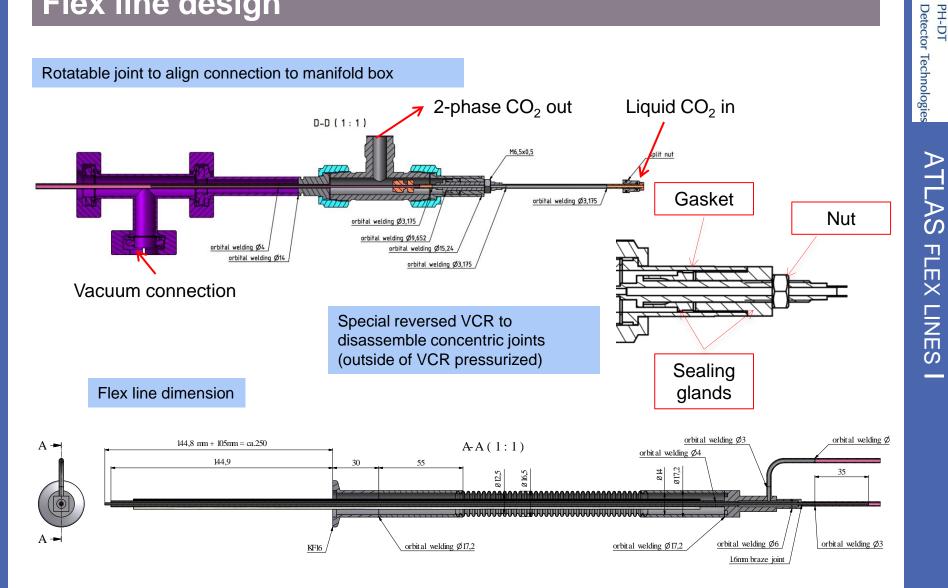
Concentric flex line considerations


Flex line dimensions:

- A Ø1.6x0.3mm flow distribution capillary inside a Ø4x0.5mm tube.
- Length 11m long
- Vacuum hose Ø16mm bellow hose
- MLI inside glass fibre sleeve
- A 4mm stainless steel tube is considered as flexible

Simulation without concentric heat exchange

Simulation with concentric heat exchange



PH-DT

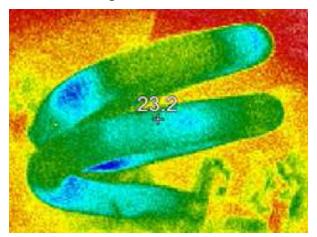
Detector Technologies

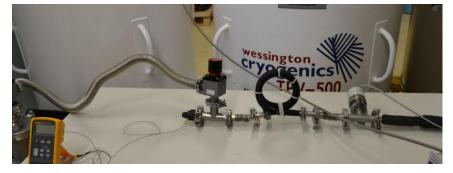
P. Tropea 13

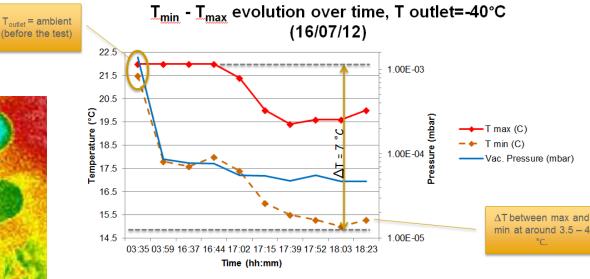
Flex line design

Detector Technologies

ATLAS


FLEX LINES


Laboratory testing


4mm tube with MLI and glass fibre as continuous thermal spacer

Surface temperature measurements to spot cold contact bridges

Test set-up with coiled hose (Maximum wall contact)

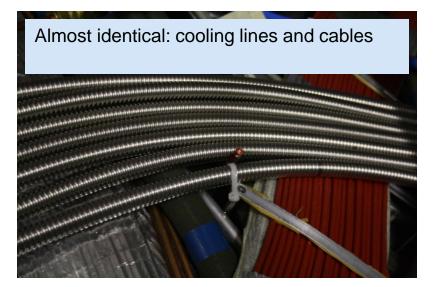
Goal of tests: see if surface temperature is above dew-point

P. Tropea

Flex line production

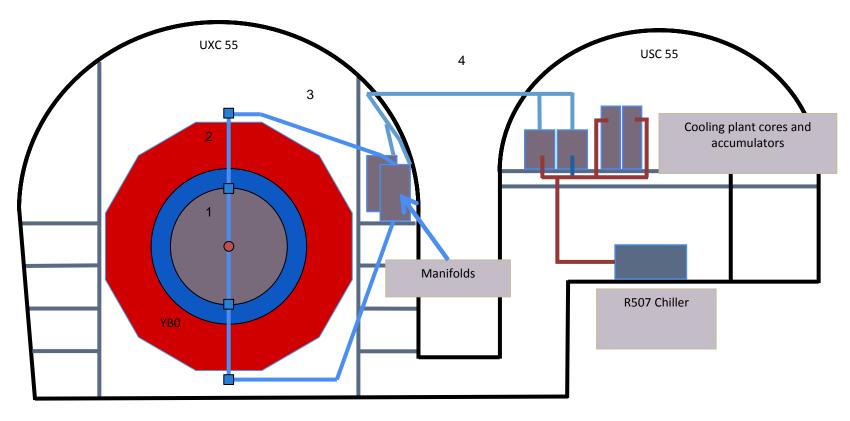
Concentric weld

ERN


PH-DT Detector Technologies

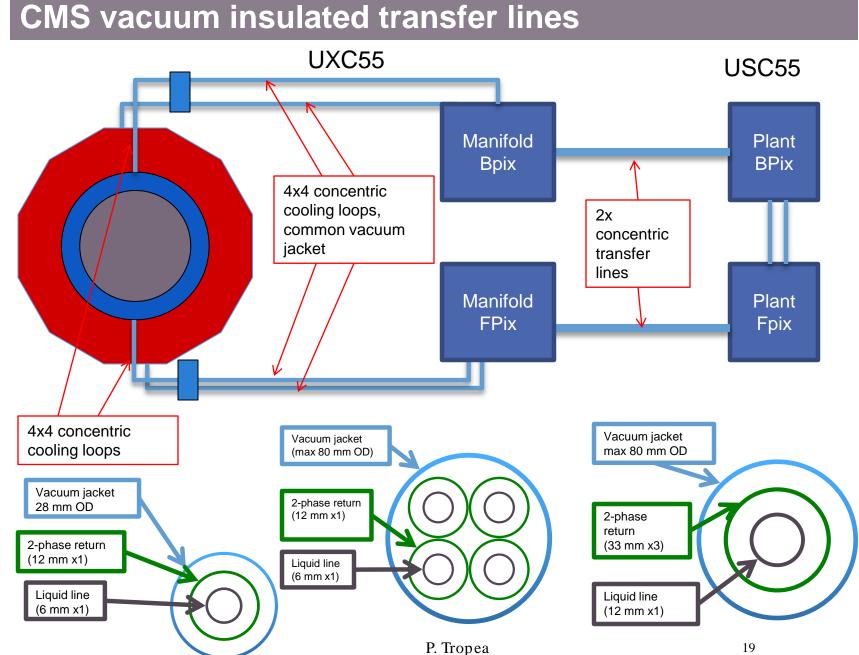
Flex lines installed in Atlas (June 2014)

Flex line manifold in PP2 sector 5


PH-DT

Detector Technologies

CMS Pix Phase I upgrade CO2 cooling


2 plants, 15 kW each, -20 C nominal

- 1) Preliminary layout done, to be installed with detector in YETS 2016
- 2) Installed in Jan 2014
- 3) In construction, installation August 2014
- 4) Design on-going, installation September 2014

PH-DT

Detector Technologies

CERN

PH-DT

Detector Technologies

TECHNICAL SOLUTION

SIZING

EXAMPLE: MINIMIZING

RETURN AF

CMS on detector transfer line sizing

L = 30.0m | d = 8.00mm | m = 10.0g/s | 50% Vapor | V_{max} = 2.02m/s | DP_{max} = 0.45bar 20.15 Friedel 20.1 Gronnerud Chisholm Lockhart & Martinelli 20.05 Bankoff Muller-Steinhagen & Heck 20 Pressure [bar] 19.95 30m line results into 19.9 $\Delta P_{max} = 0.45 bar \approx 1 \,^{\circ}C$ 19.85 19.8 19.75 19.7 5 10 15 20 25 30 Length [m] J. Noite FROM 2 phase return (12 mm x1)**CALCULATIONS**

Liquid line

(6 mm x1)

& TESTS

 The CO₂ transfer line regulates the detector inlet liquid temperature via internal heat exchange with the detector's returning flow.
MINIMIZING RETURN Δp IS THE GOAL

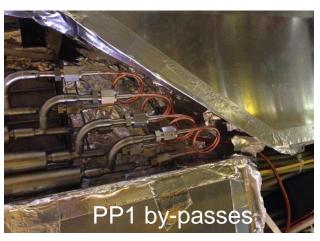
- Max required mass flow up to 10g/s at main transfer line.
- 2-Phase pressure drop models indicate loss of 1°C for max flow rate

Vacuum jacket 28 mm OD INTEGRATION ISSUES & CALCULATIONS of SUPPLIER

This was great!	Rather do differently	
3D model almost perfect on YB0	Verification with mock-up for zones outside detector	
Swagelok VCRs: not a single leak	Small size vacuum ports in difficult locations	
2 routings not needing on-site welds	2 routings needing on-site welds, included vacuum jacket	
Welding QA	Preparation of supports in advance	

PH-DT Detector Technologies CMS BO **FRANSFER**

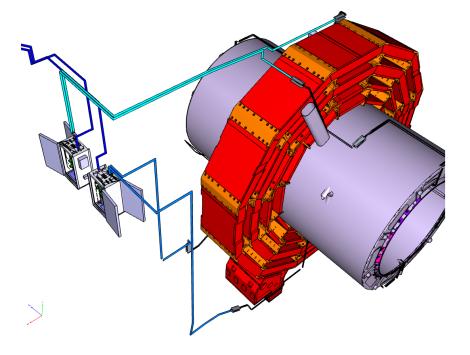
LINES


ERN

Installed in January 2014, pressure and leak tested

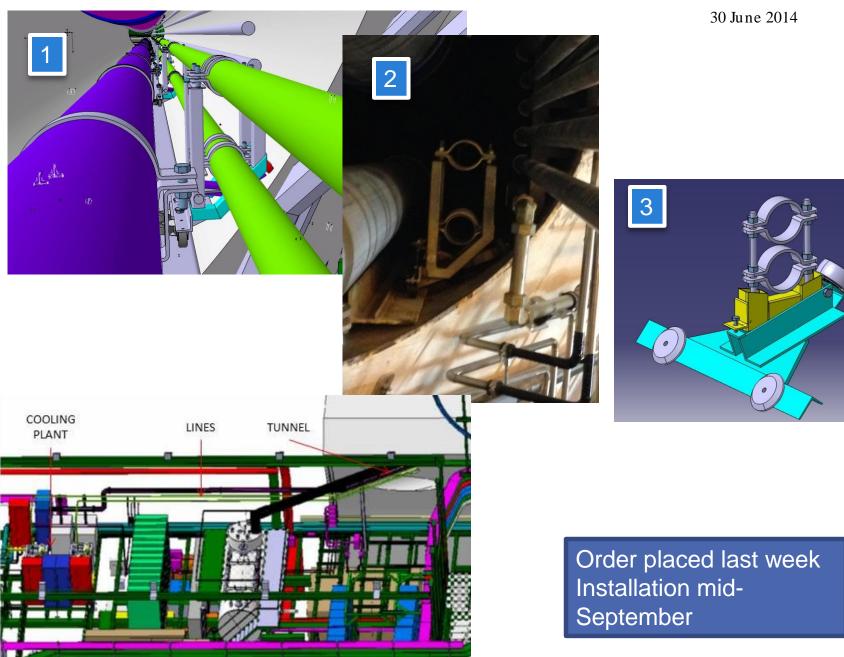
P. Tropea

...so we changed


Full scale mock-up with PVC pipes to update 3D model

Sections coming with pre-vacuumed jackets, only small volumes to be pumped on-site

High pressure leak testing test bench for pressure decay method being built


Construction ongoing Installation mid-August

PH-DT Detector Technologies YB0 TO MANIFOLD TRANSFER LINES

T. Pakulski, N. Smiljkovic

23

ERN

PH-DT Detector Technologies

UXC55/USC55

TR. LINES

Detector Technologies

m

SSONS

LEARNT

Integration

Mock-ups or 3D model or both?

- 3D model very precise in the proximity of the detector, looser precision at the interface cavern/detector in some cases
- Mock up with PVC piping super useful also for verification of handling procedures

Passive or active vacuum?

All parts installed so far in "big sizes", coming from industrial standards, passive vacuum

- 10 years theoretical guarantee, periodic check recommended
- Better not to rely on vacuuming on site, use bake-out and prevacuuming whenever possible
- No active components, no interlock Atlas flex lines with active vacuum
- Constant performance monitoring
- Smaller envelope

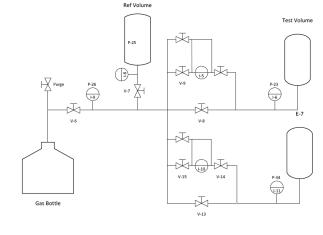
Detector Technologies

.ESSONS

LEARNT

Pressure and leak testing on site

 CO_2 transfer lines are designed for high service pressure. CMS PS = 110 bar, ATLAS PS = 110 bar.


- PED: 1.43*PS = testing pressure

- CERN safety: pressure tests to be executed when pipework in their final destination

- Gas test: cavern evacuation (noise issues)
- Specific equipment needed (pressure reducer and gauges)

Leak detection

- He in sniffer mode (but test in vacuum rather than in pressure: VCR connectors not loaded properly!) – not always accepted
- Pressure decay: time consuming, need proper test bench

J. Daguin, N. Frank

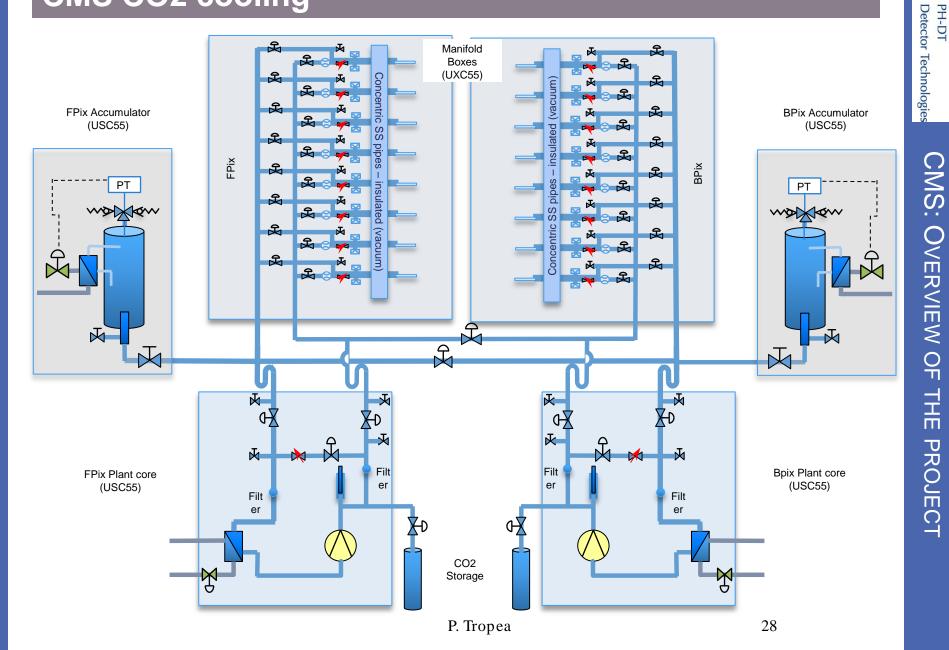
Detector Technologies

Conclusions

Both Atlas and CMS have invested in vacuum insulated transfer lines for their CO₂ cooling systems

- Increased insulation capacity wrt volume
- Significant increase of reliability

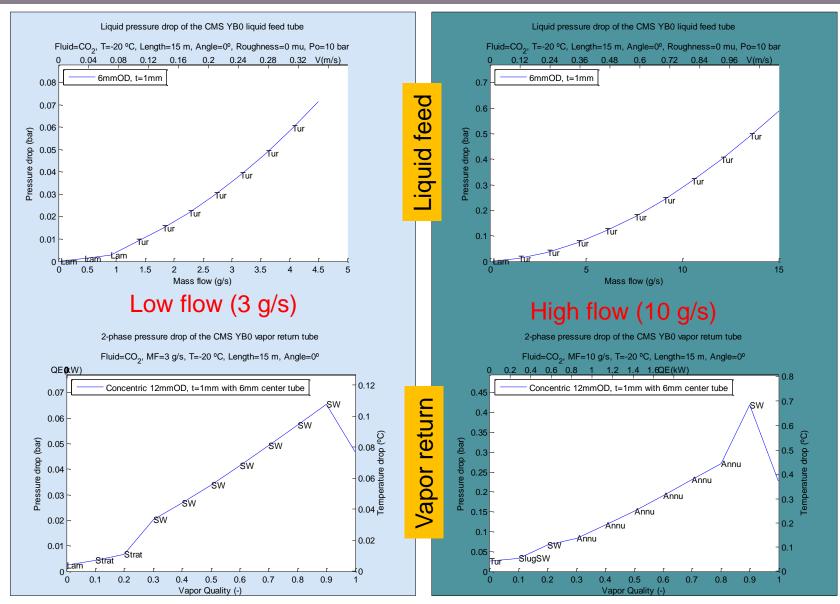
"Industrial" solutions applied where possible, same cryogenic standards, no big surprises and good results! Some attention & innovative design (see flex lines) when routing is on detector (integration, accessibility of connections/vacuum ports).


So far only positive feedback!

Thanks for your attention!

CMS CO2 cooling

CERN


30 June 2014

Detector Technologies

CMS

YB0 CONCENTRIC

Details of pressure drops for YB0 concentric

