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Concentric transfer lines for CO2 cooling 

• Why? 

• How? 

Insulation 

Common approach: ATLAS & CMS choices 

Overview of ATLAS Transfer lines 

• Rigid transfer lines 

• Flexible transfer lines 

CMS Transfer lines 

• On detector 

• Off detector 

Common issues: 

• Design 

• Installation 

• Testing 

Conclusions 
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2PACL: 2-Phase Accumulator Controlled Loop   
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CO2 evaporative cooling: 

• Atlas IBL 

• CMS Pixel Phase I 
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Why do we need saturated liquid? 
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The possible solutions  
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Technology Pro Cons 

Local heat 

exchanger at the 

detector inlet 

Local control Bulky, heavy, not accessible 

Common insulation 

for inlet and return 

Can be applied on 

existing pipes 

Distribution of pipes in the 

bundle strongly influences the 

performances, heat from 

environment can still reach 

inlet, bulky 

Concentric: inlet into 

return 

Compact, full control of 

liquid no matter heat 

sources around 

New installation (for CMS) 

Concentric 

insulated tube 
Bundled 

insulated 

tubes 
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Foam insulation? 
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LHCb-Velo system 

Armaflex: k=0.04 W/m*K 
Dries out and looses flexibility, shall be carefully glued 

Aerogel Spaceloft 9251: k=0.013 W/m*K  
Dusty and difficult material to handle, but good performance if 
super well protected from humidity. All parts enclosed in 
polyethylene bags, sealed, then adhesive vapor barrier around: 
QA during installation shall be super strict… 

CMS Tracker system 
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What about vacuum insulation?  
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CMS 
• 0.4 watt/m for -196’C for a vacuum jacket of 63mm (25.5mm 

insulation thickness) 

• 6 watt with vacuum compared to 87 Watt with foam (but vacuum 

reference at -196’C) 

• YB0 lines will have a reduced diameter (28mm) 

Atlas IBL 
• 0.55 Watt/m for -196’C for a vacuum jacket of 63mm 

 (32mm insulation thickness) 

• 55 watt with vacuum compared to 800 Watt with foam (but vacuum 

reference at -196’C) 

Vacuum insulation performs a magnitude better than 

foam, is more reliable and is smaller in diameter 
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Summary of pro & cons 

Foam insulation: Vacuum insulation: 

 

Advantages 

 

Disadvantages 

In principle cheaper... Expensive 

Large heat leak: allowing high T set points with no 

additional load 

Small heat leak: ask for additional load in order to 

operate at high T 

 

Disadvantages 

 

Advantages 

Risk of leaking seals (Water condensation) No seals 

Large diameter (ex: -30 C /12mm pipe +2x32 mm 

insulation =76mm external envelope) 

Small diameter (ex: -40 C/12 mm pipe - 28mm external 

envelope for vacuum jacket) 

Hard to apply in crowded areas, access needed 

everywhere 

Only access needed at welds 

More heat leak (larger primary chiller) 

 

Small heat leak (smaller primary chiller) 
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A common approach with 
different boundaries 

• CO2 @ -40 C 

• Main transfer line an industrial 

cryogenic solution 

• Distribution to IBL an in-house 

development as only flexible lines 

were possible. 

• Flex lines routing is as cabling 

• Flex lines are actively pumped  

 

ATLAS  

• All paths concentric  

• All passive vacuum insulated 

along main routing  

• An industrial approach by 

cryogenic transfer line technology 

• Customized design inside the 

detector for reduced diameter  
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CMS 

• CO2 @ -20 (but design of 

insulation for -40) 

• 3 separate paths, different sizes 

and granularity 

• all vacuum insulated, passive 
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ATLAS IBL Transfer lines 
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Vacuum insulated  

concentric transfer tube  

Concentric split & end 

of vacuum shield 

Vacuum insulated  

Concentric flexible 

detector loops 

LAR station 

To plants in 

USA-15 

cavern 

Junction box containing valves, 

sensors and dummy load 

Manifold box 

Vacuum system for 

flex line insulation 

Vacuum line 

Muon 

In Atlas 2 technologies:  

1 Concentric main transfer line (21.3x2.11mm) in a 63.5mm stationary vacuum tube (100m) 

14x Flexible concentric detector loops (1.6x0.3mm) in a 17mm flexible bellow tube (11m) 
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ATLAS IBL Main Transfer line 
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~80m transfer line 

(Vacuum, 63.5 mm) 

Detector 

Cooling plant in USA15 MLI 

10mmOD / 8mmID 

concentric CO2 

liquid tube. 

21.3mmOD / 

17.08mmID CO2 

vapor return tube 

50mmOD / 47mmID Vacuum 

tube for 12m section 

63.5mmOD / 60.5mmID Vacuum 

tube for 80m section 

Industrial solution (Demaco) 
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ATLAS IBL flexible detector loops 
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• The routing towards the IBL has 
limited space in the Inner detector 
end plate.  

• Need to be like cabling in order to 
fit. 

• Routing through inaccessible areas  

• Only 1 solution: Flexible and 
Diameter < 18mm = Vacuum 

 

 

Flexible vacuum insulated 

detector loops 

Purpose of the concentric flexible detector loop. 

1. Prevent unwanted boiling of the flow distribution capillary 

2. Make it flexible as a cable for integration purposes 

3. Avoid condensation on outer surface 
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Concentric flex line considerations 
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No Boiling

Boiling starts

Boiling starts

Simulation without concentric heat exchange Simulation with concentric heat exchange 

Outer sleeve -

spacer 

10 layers MLI 

Ø4x0.5mm 

Stainless steel 

tube 

Ø16mm ID Outer  

flexible corrugated 

hose Vacuum 

interspace 

Ø1.6x0.3mm Stainless 

steel capillary 

Flex line dimensions: 
•  A Ø1.6x0.3mm flow distribution 

   capillary inside a Ø4x0.5mm tube. 

•  Length 11m long   

•  Vacuum hose Ø16mm bellow hose 

•  MLI inside glass fibre sleeve 

•  A 4mm stainless steel tube is considered as flexible 

 

Concentric 

capillary 
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Flex line design 
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A-A ( 1 : 1 )
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Laboratory testing 
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Goal of tests: see if surface temperature is above dew-point 

Test set-up with coiled hose (Maximum wall contact) 4mm tube with MLI and glass fibre as 

continuous  thermal spacer 

Surface temperature 

measurements to spot cold 

contact bridges 
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Flex line production 
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Detector side splitting 
CO2 tubes with MLI 

Prepared flexlines Ready for installation 

Concentric weld 
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Flex lines installed in Atlas (June 2014) 
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Flex line manifold in PP2 sector 5 
Flex line installation Flex line terminal box near IBL 

Almost identical: cooling lines and cables 

Extra length storage 
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CMS Pix Phase I upgrade CO2 cooling 
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UXC 55 
USC 55 

Manifolds 

Cooling plant cores and 
accumulators 

YB0 

R507 Chiller 

1 

2 

3 

4 

2 plants, 15 kW each, -20 C nominal 

1) Preliminary layout done, to be installed with detector in YETS 2016 

2) Installed in Jan 2014 

3) In construction, installation August 2014 

4) Design on-going, installation September 2014 
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CMS vacuum insulated transfer lines 
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Plant 

BPix 

Plant 

Fpix 

Manifold 

Bpix 

Manifold 

FPix 

USC55 UXC55 

2x 

concentric 

transfer 

lines 

4x4 concentric 

cooling loops, 

common vacuum 

jacket 

4x4 concentric 

cooling loops 
Vacuum jacket  

max 80 mm OD 

Liquid line 

(12 mm x1) 

2-phase 

return 

(33 mm x3) 

Vacuum jacket 

(max 80 mm OD) 

Liquid line 

(6 mm x1) 

2-phase return 

(12 mm x1) 

Vacuum jacket  

28 mm OD 

Liquid line 

(6 mm x1) 

2-phase return 

(12 mm x1) 
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CMS on detector transfer line sizing 

20 P. Tropea 

0 5 10 15 20 25 30
19.7

19.75

19.8

19.85

19.9

19.95

20

20.05

20.1

20.15

Length [m]

P
re

s
s
u
re

 [
b
a
r]

L = 30.0m | d = 8.00mm | m = 10.0g/s | 50% Vapor | V
max

 = 2.02m/s | DP
max

 = 0.45bar

 

 

Friedel

Gronnerud

Chisholm

Lockhart & Martinelli

Bankoff

Muller-Steinhagen & Heck

30m line results into 

ΔPmax = 0.45bar ≈ 1°C 

• The CO2 transfer line regulates the detector 

inlet liquid temperature via internal heat 

exchange with the detector’s returning flow. 

MINIMIZING RETURN Δp IS THE GOAL 

• Max required mass flow up to 10g/s at main 

transfer line. 

• 2-Phase pressure drop models indicate loss 

of 1°C for max flow rate 

FROM 

INTEGRATION 

ISSUES   

& CALCULATIONS 

of SUPPLIER 

Vacuum jacket  

28 mm OD 

Liquid line 

(6 mm x1) 

2 phase return 

(12 mm x1) 

J. Noite 
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PP1 +14 Connection box 

Vacuum ports 

Sector -6 

P. Tropea  21 

This was great! Rather do differently… 

3D model almost perfect on YB0 Verification with mock-up for zones 

outside detector 

Swagelok VCRs: not a single leak Small size vacuum ports in difficult 

locations 

2 routings not needing on-site welds 2 routings needing on-site welds, included 

vacuum jacket… 

Welding QA Preparation of supports in advance 

PP1 by-passes 

Installed in January 

2014, pressure and 

leak tested 



Y
B

0
 T

O
 M

A
N

IF
O

L
D

 T
R

A
N

S
F

E
R

 L
IN

E
S
 

22 

30 June 2014 

P. Tropea  

Construction on-

going 

Installation mid-

August 

…so we changed 

Full scale mock-up with PVC pipes to 

update 3D model 

Sections coming with pre-vacuumed 

jackets, only small volumes to be pumped 

on-site 

High pressure leak testing test bench for 

pressure decay method being built 

T. Pakulski, N. Smiljkovic 
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23 Nicolas Szilasi (Louvain), CMS E&I office 

Order placed last week 

Installation mid-

September 

1 

3 

2 
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Integration 
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Mock-ups or 3D model or both? 

• 3D model very precise in the proximity of the detector, looser 

precision at the interface cavern/detector in some cases 

• Mock up with PVC piping super useful also for verification of 

handling procedures 

 

 

Passive or active vacuum? 

All parts installed so far in “big sizes”, coming from industrial 

standards, passive vacuum 

• 10 years theoretical guarantee, periodic check recommended 

• Better not to rely on vacuuming on site, use bake-out and pre-

vacuuming whenever possible 

• No active components, no interlock 

Atlas flex lines with active vacuum 

• Constant performance monitoring 

• Smaller envelope 
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Pressure and leak testing on site 

25 

CO2 transfer lines are designed for high service pressure. CMS PS = 

110 bar, ATLAS PS = 110 bar. 

- PED: 1.43*PS = testing pressure 

- CERN safety: pressure tests to be executed when pipework in their 

final destination 

- Gas test: cavern evacuation (noise issues) 

- Specific equipment needed (pressure reducer and gauges) 

30 June 2014 
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Leak detection 

- He in sniffer mode (but test in 

vacuum rather than in pressure: 

VCR connectors not loaded 

properly!) – not always accepted 

- Pressure decay: time consuming, 

need proper test bench 

J. Daguin, N. Frank 
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Both Atlas and CMS have invested in vacuum insulated 

transfer lines for their CO2 cooling systems 

- Increased insulation capacity wrt volume 

- Significant increase of reliability 

 

“Industrial” solutions applied where possible, same 

cryogenic standards, no big surprises and good results! 

Some attention & innovative design (see flex lines) when 

routing is on detector (integration, accessibility of 

connections/vacuum ports). 

So far only positive feedback! 

 

Thanks for your attention! 



SPARE 
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CMS CO2 cooling 
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Details of pressure drops for YB0 concentric 
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Liquid pressure drop of the CMS YB0 liquid feed tube

Fluid=CO
2
, T=-20 ºC, Length=15 m, Angle=0º, Roughness=0 mu, Po=10 bar
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