Lessons learnt from aligning the CMS Silicon Tracker

Marco Musich^{a,b}

On behalf of the CMS Collaboration

a) Università degli Studi di Torino b) INFN

Forum2014: Forum on Tracking Detector Mechanics DESY, Hamburg - Germany, July 11, 2014

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

Overview

CMS Experiment at the LHC

CMS detector CMS Silicon Tracker

CMS Tracker alignment challenge Track based alignment

Tracker alignment in CMS during LHC Run I

Treatment of surface deformations Large Structure movements and prompt calibration Treatment of weak modes Getting rid of the ϕ -dependent curvature bias Lorentz Angle calibration in the alignment framework

Summary

The CMS Detector at the LHC

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

The CMS Tracker: All Silicon

rz-view (upper right quarter)

TOB and outer TEC: two chained sensors

- 1440 silicon pixel modules
- 15148 silicon strip modules (24244 sens.)
- Strips generally measure r-φ direction
- Some radii: additional modules rotated by 100 mrad

Alignment challenge: O(100k) parameters!

Why alignment is needed?

- Intrinsic resolutions:
 - σ_{hit}=9 μm for Pixel
 - σ_{hit} =20-60 μ m for Strip
- $\sigma_{meas} \sim \sqrt{\sigma_{hit}^2 + \sigma_{align}^2}$
- Momentum resolution is:

$$\frac{\delta p_T}{p_T} = C_1 \cdot p_T \oplus C_2$$

► C₁ depends on geometry:

$$C_1 \sim rac{\sigma_{meas}}{B \cdot L^2 \cdot \sqrt{n}}$$

CMS P-TDR (2006)

Tracker momentum resolution for single μ , CMS Simulation.

- \Rightarrow Need to keep $\sigma_{align} < 10 \ \mu m!$
 - Alignment is essential to guarantee CMS Tracker design performance!

M. Musich (Università di Torino / INFN)

Track Based Alignment: Principle

Simple Example

- parallel planes measuring 1D
- displaced in measurement direction
- fit $\mathcal{O}(10^4)$ straight tracks: $u = F_a(z) = a_1 + a_2 \cdot z$
- residual r_i = m_i − F_â at plane i: shift of plane i leads to ⟨r_i⟩ ≠ 0
- ► cannot simply shift plane by -⟨r_i⟩: depends on shifts of other planes
- ⇒ tracks correlate alignment parameters

Global Fit Approach (e.g. Least Squares)

- Simultaneous fit of all parameters: shifts, track parameters!
- Minimise sum of squares of residuals, $\chi^2(\mathbf{a}) = \sum_k \left(\frac{m_k F_{\mathbf{a}}}{\sigma_k}\right)^2$.
 - global: alignment parameters,
 - local: track parameters.

 $\bullet a = (a^{global}, a^{local}_{1}, \dots, a^{local}_{n})^{T}$

Track Based Alignment

Global Fit Approach MPII

- ► Linearising track model and minimisation requiring $\frac{d\chi^2(a)}{da} = 0$: ⇒ Normal equations of least squares *C a* = *b*.
- ► Local parameters appear in part of the data only: ⇒ Block structure in C, use matrix algebra to reduce problem:

$C' a^{global} = b'.$

- ► Matrix *C*′, vector *b*′ summing up contributions from all tracks.
- Solving *C'* a^{global} = b' provides alignment solution in one step. ⇒ All correlations from tracks taken care of.
- ► Need clever algorithms for > 100 000 global parameters: ⇒Millepede II^a and General Broken Lines Track Refit - CBL.

^adeveloped by **V. Blobel at the University of Hamburg** (maintenance and development now by **Helmholtz Terascale Alliance**)

Track-based Alignment in CMS

Alignment Parameters in CMS

- \blacktriangleright Millepede II algorithm with \sim 200,000 free alignment parameters.
- ▶ 8 (9) parameters per strip (pixel) sensor:
 - ▶ 5/6 rigid body like parameters (one insensitive for strips),
 - 3 bow parameters.
- Time dependent rigid body parameters for larger structures:
 - several different time periods in common fit,
 - ⇒ moving structures, modules constant within.

► $Z \rightarrow \mu^+ \mu^-$ combined object, adding Z mass "measurement".

Tracker alignment in CMS during LHC Run I

CMS Tracker Alignment Achievements in Run-I

- In the following slides, a few benchmark results from CMS Tracker alignment will be shown.
- ► CMS can fairly enough claim to have been able to align the Tracker with O(1 ÷ 10 µm) precision.
- Results are well documented in the 2011 data alignment paper: <u>TRK-11-001</u>, now published as JINST 9 (2014) P06009.
 - Result of the intensive dedicated work of the members of the tracker alignment group over many years. Represents a milestone document of CMS ...
- ... nevertheless we continue learning and we hope to improve Run-II alignment with several new improvements.

Alignment sensor deformations

Kinks and bows

- In reality, sensors not planar: non-perpendicular tracks are biased, depending on tan ψ!
- Investigate surface shape using:

 $\Delta u = \Delta w \cdot \tan \psi$

- Increasingly important for inner layers (bias up to ~ 100 μm)
- Alignment determines bow parameters, taken into account in hit reconstruction.
- Also angles and offsets between daisy-chained modules in outer Tracker are corrected.

Sensor Bow Treatment Improves Cosmic Tracking

Cosmic tracks mainly come from above

- ► Increasing d₀ increases average track angle from sensor normal,
 ⇒ increasing sensitivity to deviation from flat sensors.
- ► Average (*Prob*(*χ*², *ndf*)) vs *d*₀ shows improvements from flat modules via flat sensors, to curved sensors.
- Remaining structure related to radii of layers: material.

⇒ Nicely shows how fundamental are comsics data for alignment!

Prompt Large Structures Alignment

Prompt Calibration Loop (PCL)

- 1. Determines 6 alignment parameters for high-level-structures of pixel on *"express"* data.
- 2. if movements detected: new alignment delivered for prompt data.
- 3. provides feedback within 48 hours with latest data to reconstruct the same run.

Pixel Alignment in PCL

- Alignment of larger rigid structures (frames of modules, layers, subdetectors)
- ⇒ faster and less tracks required!

PCL and Pixel movements

- During last month of p-p run in 2012 PCL was running for monitoring (but not active)
- Major sudden movement of pixel half-shells along z detected in November 22nd (Δz ≈ 100 µm! in coincidence with cooling failure)

\Rightarrow PCL activated on Nov 30th to recover.

Weak Modes

- Minimization of residuals insensitive to some global distortions ($\Delta \chi^2 \approx 0$),
- These "weak modes" can however bias track parameters
- Example 1: "telescope": $\Delta z \propto r$
- creates bias in η

- Solution: cosmic muon tracks
- M. Musich (Università di Torino / INFN)

- Example 2: "twist": $\Delta \phi \propto z$
- curvature bias of charged particles

- weak mode even with cosmic muon tracks
- Solution: 0T cosmic muon tracks or mass constraint (Z → μμ)
- 2 muons from Z decay fitted together

Lessons learnt aligning CMS Tracker

Example 3: "sagitta": $\Delta r \propto y$

- curvature bias suspected in 2011,
- observed variation of Z mass as function of φ of positively charged muon
- φ-dependent curvature bias

Muon Curvature Bias

Several systematic distortions can bias track curvature κ ~ ±1/p_T
 Z⁰ → μ⁺μ⁻ events reveal this bias: invariant mass fitted as function of muon direction (η, φ), separating μ⁺ and μ⁻

Validation with $Z ightarrow \mu \mu$ decays

- invariant mass distribution fitted with wide fit range 75-105 GeV/c², Z⁰ width set to PDG value of 2.495 GeV/c²
- Fit function: a Breit-Wigner function convoluted with Crystal ball function (models finite track resolution and radiative tail) + exponential background

Necessity of Z^0 events in controlling weak modes

• Reconstructed $Z^0 \rightarrow \mu^+ \mu^{-1}$ mass peak as function of η_{μ^+} in 2011

- Twist distortion is weak mode even using cosmics
- The red curve: alignment without mass constraint

- Results in curvature changes, biasing measured p_T of positive or negative tracks oppositely.
- \Rightarrow Reconstructed Z mass depends on muon charge and η

^I N.B.: this study does not illustrate CMS muon reconstruction and calibration performance; momentum calibration is applied M. Musich (Università di Torino / INFN) Lessons learnt aligning CMS Tracker 24.06.2014 16 / 39

ϕ -bias in reconstructed Z^0 mass peak

- Reconstructed $Z^0 \to \mu^+ \mu^{-2}$ mass peak as function of $\phi(\mu^+)$
- Amplitude of sinusoidal shape clearly decreased with weighted input data, from 0.7 GeV/c² to 0.3 GeV/c² in barrel

Azimuthal angle ϕ of μ^+ , barrel muons

²N.B.: this study does not illustrate CMS muon reconstruction and calibration performance; momentum calibration is applied in addition in physics analyses

M. Musich (Università di Torino / INFN)

Alignment Precision and TEC Ring 7

2011 Data (not aligned) VS 2011 Data (aligned) VS 2011 Data (aligned)

Local Alignment precision measured by:

- ► tuning width of normalised residuals (r_{hit}/σ_{hit}) to ideal MC conditions $(\sigma_{hit}^2 \rightarrow \sigma_{hit}^2 + \sigma_{align}^2)$: all MC/data mismatch (hit/track uncertainties, etc.) assigned to misalignment.
- This method on 2011 data revealed *σ_{align}* < 10 μm basically everywhere.
- Exception: TEC Ring 7 (i.e. outermost radii), although OK for MC misalignment scenario (using same alignment procedures).

Alignment of the Tracker Endcaps

Treatment of Local y in Alignment

- Just not taken into account before in alignment procedures for strip modules!
- OK in barrel where strips parallel to local y-axis.
- In endcaps, strips are not parallel to y:
 - still no y-measurements,
 - still probably not problematic in pattern recognition,
 - ► but *x*'-residuals noticably affected.
- Indeed have handle on this degree of freedom
- Just few thousand parameters more in the fit

Endcap module

. . .

How we got rid of the ϕ -bias

- Deep investigations triggered by the fact that the APE in data in TEC Ring 7 was off by factor 3/(>20 µm) from the equivalent MC value while everywhere else it was not off by more than a few µm, found that:
- ⇒ Geometry description in recontruction software and design drawings of TEC Ring 7 were radially off by 1.33 mm.
 - this macroscopic error was not the (main) reason of the problem, it just helped to spot it:
 - Minor systematic radial ring misplacements became visible as well once local-y was a free parameter.
 - ▶ just the case that all TEC modules are a bit off in *x* and *y* from design drawings (as is the case for ALL modules), ⇒ but only corrected in r- ϕ (in contrast to the barrel and FPix), lead to the ϕ bias.

Effects of cure of the ϕ -bias

 $Z
ightarrow \mu\mu$ validation for 2011 Alignment Legacy

• Mass bias in μ -track η - ϕ bins (pre and post-alignment).

- Desired result: No modulation.
- This is the striking result! Modulation in φ strongly reduced when releasing local-y in Tracker Endcap Alignment.
- Available since some time in $\sqrt{s} = 7$ TeV reprocessed datasets.

Effects of cure of the ϕ -bias

Left: the resonant peak position, right: Gaussian width σ(M_{µµ}) minus natural width of the Z, from fit to the lineshape³

$$f(m_{\mu\mu};\sigma, M_Z, \Gamma_Z) = \int_{-\infty}^{\infty} \mathsf{CB}(m_{\mu\mu};\alpha, n, \sigma) \times \mathsf{BW}(m_{\mu\mu} - m'; M_Z, \Gamma_Z) \, dm'$$

An overall improvement of about 10% is visible

We are going to repeat this for 2012 data plus something even better...

³(Breit-Wigner convolved with Crystal-Ball)

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

Lorentz Angle calibration and alignment

Charge drift in magnetic field affects the measured hit position as

• θ_{LA} depends e.g. on bias voltage, temperature and irradiation dose.

- To correct this effect most precisely: tan(θ_{LA}) calibration integrated in MILLEPEDE II alignment procedure.
- ▶ Data with magnetic field ON and OFF used simultaneously: (isolated muons, $Z^0 \rightarrow \mu^+\mu^-$, cosmic ray muons and field OFF collision data)
- \blacktriangleright Granularity: 3 layers, 8 rings, 65 periods of time \rightarrow 1560 additional parameters
- \Rightarrow foresee to use it in the "Legacy" $\sqrt{s} = 8$ TeV data alignment

Lorentz Angle calibration in the Pixels (2012)

- Temperature and bias voltage stable in 2012.
- ⇒ Time dependence due to irradiation.
 - About 3 µm effect.
- Raising for layer 2 & 3 not fully understood.
- Less radiation at larger radii stretches curves and shifts right.
- \Rightarrow Qualitatively the same curves for all layers.

A few μ m effect, but will be relevant in 2015 with increased LHC

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

Lorentz Angle calibration in the Pixels (2012)

- For each layer: LA for modules of one ring as function of integrated luminosity
- Offset between R1-4 and R5-8 related to different bias voltages (one group not grounded).

- Slow decrease pronounced for innermost rings
- Increase followed by a decrease; more rapid for layer 2 smaller difference between rings.

Lorentz Angle Validation

 LA calibration validated comparing combined Millepede approach (alignment + LA) to alignment with standalone calibration. Independent set of tracks from isolated-µ used in validation.

- Distribution of median of unbiased residuals (DMR) between measured and predicted hit position for each module.
- Small, but visible improvement using combined approach.

Summary - I

- ► Large CMS silicon tracker is a challenge for alignment
- Alignment of ~ 200.000 alignment parameters was performed routinely for 2 years
- Alignment local precision has been brought below 10 μm in most regions of the Tracker. Track-based alignment *in situ* allowed such performance.
 - 1. Survey input was basically useless
 - 2. Laser Alignment System (LAS) input not exploited to full potential, but likely not necessary (except maybe for monitoring)
- Dataset input is vital: need plenty of tracks from different topologies:
 - 1. Field-on and field-off cosmic data was instrumental to control weak modes and to measure deviation-from-flatness of sensors.
 - 2. Resonant di-muon ($Z \rightarrow \mu \mu$) datasets are crucial to control "twist-like" deformations.
 - 3. Field-off data helps in disentangling misalignment from Lorentz Angle biases.

Summary - II

- Main working horse in past 2-3 years: Millepede-II with General Broken Lines
- The Global fit approach is powerful, but demands clean input:
 - ⇒ Incorrect parametrization of the geometry model can lead to large "weak mode" effects if not all the DOF are taken into account correctly (see φ-bias issue).
 - It is ESSENTIAL to simultaneously calibrate pure position constants and ALL other position sensitive calibration parameters such as the Lorentz Angle (LA).
- Showed capability to calibrate LA with $\sqrt{s} = 8$ TeV data.
 - especially important in view of RUN II in the Tracker innermost region (Pixel) were high irradiation dose will generate strong time dependencies.
- Recent alignment improvements:
 - Prompt Calibration Loop operational (end of 2012): able to follow promptly movements up to 150 µm!
 - Curvature bias modes in better control with $Z^0 \rightarrow \mu^+ \mu^-$ events.
 - Alignment framework extended to treat calibration parameters.

M. Musich (Università di Torino / INFN) Less

Lessons learnt aligning CMS Tracker

A few closing words ...

- The title of the talk should read: lessons learnt aligning the CMS silicon Tracker in Run-I;
 - ⇒ During Run-I, LHC,CMS and the Tracker were not operated at design conditions (different luminosity conditions, different detector temperatures, ...)
 - ► LHC Run-II data can still provide exciting alignment challenges, small input biases are know to generate large effects ⓒ!

Thanks!

- A relevant part of the CMS Tracker Alignment effort in the last decade has been carried by the DESY-CMS Group, which I would like to acknowledge gratefully on behalf of the CMS collaboration.
- I am especially indebted, also for the material shown here, with a former member, G. Flucke, who paved the way to most of these results and moved on in the meantime to other projects.

Backup Slides

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

24.06.2014 30 / 39

Minimising residuals can be insensitive to certain global distortions.

- Potential bias on track parameters.
- Dependent on data fed into matrix.

Example: Telescoping Shift in *z* growing linear with radius *r*

Magnetic field B || z: tracks are straight lines in rz

Minimising residuals can be insensitive to certain global distortions.

- Potential bias on track parameters.
- Dependent on data fed into matrix.

Example: Telescoping Shift in *z* growing linear with radius *r*

- Magnetic field B || z: tracks are straight lines in rz
- This distortion does not change that!
- \Rightarrow Bias in η

Minimising residuals can be insensitive to certain global distortions.

- Potential bias on track parameters.
- Dependent on data fed into matrix.

Example: Telescoping Shift in *z* growing linear with radius *r*

- Magnetic field B || z: tracks are straight lines in rz
- This distortion does not change that!
- \Rightarrow Bias in η

Solution:

Adding cosmic tracks.

Minimising residuals can be insensitive to certain global distortions.

- Potential bias on track parameters.
- Dependent on data fed into matrix.

Example: Telescoping Shift in *z* growing linear with radius *r*

- Magnetic field B || z: tracks are straight lines in rz
- This distortion does not change that!
- \Rightarrow Bias in η

Solution:

- Adding cosmic tracks.
- Telescope effect bends track:

Minimising residuals can be insensitive to certain global distortions.

- Potential bias on track parameters.
- Dependent on data fed into matrix.

Example: Telescoping Shift in *z* growing linear with radius *r*

- Magnetic field B || z: tracks are straight lines in rz
- This distortion does not change that!
- \Rightarrow Bias in η

Solution:

- Adding cosmic tracks.
- Telescope effect bends track: not allowed by track model.

Lorentz Angle validation, BPIX layers 3

- LA calibration validated by comparing to alignment with standalone calibration.
- Distribution of median of unbiased residuals (DMR) between measured and predicted hit position for each module. Independent set of tracks from isolated muons used in validation (from end of 2012).

- Clear improvement using integrated alignment and calibration.
- Double peak illustrates inconsistency between LA and alignment, corrected in the combined approach.
- A few μm effect, but this approach will be more relevant in 2015 with increased LHC luminosity.

Improvement in $Z \rightarrow \mu \mu$ decay validation

- Reconstructed Z → μ⁺μ⁻⁴ mass peak as function of both pseudorapidity η and azimuthal angle φ of positive muon
- Z-axis same in both pictures, centered at peak value of all 2011 events (91.08 GeV/c²)

Overall pattern significantly reduced for 2012!

M. Musich (Università di Torino / INFN)

⁴N.B.: this study does not illustrate CMS muon reconstruction and calibration performance; momentum calibration is applied in addition in physics analyses

Millepede II

An Experiment-Independent Global Fit Tool

(originally by V. Blobel, further developed by C. Kleinwort)

Task of the Global Fit Tool

Setting up and Solving Matrix Equation

$$C' a^{global} = b',$$

- from millions of tracks (containing outlier hits),
- ► *C*′ is *n* × *n* matrix:
- ▶ here n ≈ 200 000,
- typically sparse.
- \Rightarrow Very demanding for memory and CPU.

Input from Experiment

- Linearised track fit information:
 - residuals with uncertainties,
 - derivatives $\frac{\partial F}{\partial a^{local}}$ and $\frac{\partial F}{\partial a^{global}}$,

• Global parameter constraints: $\sum d_i a_i^{global} = e$.

M. Musich (Università di Torino / INFN)

Millepede II

Features: Computing Aspects

- Successor of Millepede I: able to deal with much larger number of parameters.
- **Stand alone** Fortran **program**.
- Reading (zipped) binary input from Fortran or C(++).
- Optimised for speed:
 - ▶ iterative MINRES to solve C' a^{global} = b',
 - CPU intense parts parallelised using OpenMP®,
 - ► local fit detects bordered band matrices (⇒ Broken Line Fit),
 - \Rightarrow reading data from disc and memory access remaining bottlenecks.
- Optimised for memory space:
 - ▶ symmetric C' would need 160 GB in double precision,
 - reduction due to sparsity
 - compression by bit packed addressing of continuous non-zero blocks,
 - ▶ and by single precision for elements summing up from few tracks.

Parameters a^{local}

Track Fit

- Charged particle in magnetic field: need 5 helix parameters.
- Traversing material: multiple scattering effects. (relevant for "heavy" tracking detectors)
- Usually treated by progressive track fit: Kalman filter.
- Millepede II needs global fit:
 - \Rightarrow 2 scattering angles per thin scatterer,
 - \Rightarrow 5+2*n*_{scat} explicit track parameters.
- ▶ Reaching > 50 parameters for cosmic tracks in CMS tracker.
- ⇒ Danger of CPU consuming single track fits when building matrix equation $C a^{global} = b$.

Way out:

General Broken Lines Track Refit

General Broken Lines Track Refit

Concept: Define Track Parameters with Local Meaning

- ► Reparametrise: $\boldsymbol{a}^{local} = (\Delta q / p, \boldsymbol{u}_1, \dots, \boldsymbol{u}_{n_{scat}}).$
- ► **u**_i: 2D offsets in local system at each scatterer.
- Predictions u_{int} for measurements: interpolating between scatterers.
- Kink angles from triplets of adjacent scatterers.
- \Rightarrow Local fit $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$:
 - bordered band matrix, band width $m \le 5$, border size b = 1.
 - Fast solution by root free Cholesky decomposition:
 - Fifort to calculate \mathbf{x} : $\sim n_{par} \cdot (m+b)^2$, \mathbf{A}^{-1} : $\sim n_{par}^2 \cdot (m+b)$
 - Equivalent to standard CMS Kalman filter track fit.

M. Musich (Università di Torino / INFN)

Lessons learnt aligning CMS Tracker

Alignment is big data!

a) Millepede-II is a Physics at the Terascale project.

- What we call global parameters are the calibration constants to be determined.
- A full alignment for every module (3 positions, 3 rotation, 3 surface deformation) determines O(200 000) numbers
- We need to solve a linear equation system of this size and use special high-RAM machines for this.
- Most recent sets of alignment constants delivered by Millepede-II^a).
- A variety of datasets (MinBias, Z → μμ, single μ, Cosmics) in large numbers are required (> 10⁷ events).
- Running one job takes about 24 hours of wall-clock time.

2012 "Legacy" alignment with $\sqrt{s} = 8$ TeV data

Offline-Validation with Isolated- μ Tracks

- Goal: to reach a stable reference alignment for 2012 data.
 - Including latest alignment procedures (Lorentz Angle & BackPlane corr. calibration).
- High precision after alignment.
 - Starting Tracker Alignment from 2011 Legacy Alignment
- \Rightarrow Stable after 0th iteration. And we include BP as well.

Distribution of the median of the residuals in BPIX

Distribution of the median of the residuals in TEC

M. Musich (Università di Torino / INFN)