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parameter value 

energy  [TeV] 7 

protons/bunch [10 11] 2.2 (~2x nominal) 

bunches 2808 

bunch spacing 25 ns 

rms bunch length [cm] 7.55 

β function at IP1, 5 [m] 0.15 (~1/4 nominal) 

normalized rms emittance [μm] 3.75 

full crossing angle [μrad] 590 (~2x nominal) 

HL-LHC baseline parameters 
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Goal of High Luminosity LHC (HL-LHC) as 
fixed in November 2010 

The main objective of HiLumi LHC Design Study is to determine a 
hardware configuration and a set of beam parameters that will allow the 
LHC to reach the following targets: 
 

A peak luminosity of 5×1034 cm-2s-1 with levelling, allowing: 
 
An integrated luminosity of 250 fb-1 per year, enabling the 
goal of 3000 fb-1 twelve years after the upgrade.  
This luminosity is more than ten times the luminosity reach 
of the first 10 years of the LHC lifetime. 

CC are an essential ingredient to obtain this goal:  
First for performance as CC are critical to increase peak lumi! 

Secondly as method of levelling 
Thirdly to improve the data quality by reducing pile up density 

Machine Protection Panel        13 December 2013                          M. Zerlauth                                                 4  



Effect of the crab cavities 

• RF crab cavity deflects head and tail in opposite direction so that collision is 
effectively “head on” and then luminosity is maximized 

• Crab cavity maximizes the lumi and can be used also for luminosity levelling:  if the 
lumi is too high, initially you don’t use it, so lumi is reduced by the geometrical 
factor. Then they are slowly turned on to compensate the proton burning 
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Situation: from drawings to reality… 

LARP-BNL LARP-ODU-JLAB UniLancaster-CI-CERN 
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Crab Cavities for fast beam rotation 

Present baseline: 4 cavity /cyomodule to allow 
study  for Crab Kissing and integration  
TEST in SPS under preparation (A. MacPherson) 
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Failure classifications of crab cavities 

@400MHz and 
Qext = 1E6  
-> τ= 800μs 

Courtesy: T.Baer 
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New ultra fast failures due to Crab Cavities 

• Little experience with ultra-fast 
CC failures - KEKB case suggests 
possibility of single-turn failures 
(true magnet quench?!) 
 

• (Worst case) tracking simulations 
predict orbit distortion of 1.5s* 
within the first turn (1.7s after 3 
turns) 
 

• Orbit distortion modulated by b-
tron tune. 

 

 

  *  3 CCs/IP and beam, 3.3 MV/module, 
 I  instantaneous drop of in single CC 

Courtesy K. Nakanishi 
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Expected energy lost due to 1.5s beam shift  

• Measurement in LHC showed beams with 
overpopulated tails (2% of beam outside 4σ) 
[F. Burkart, CERN Thesis 2012 046] 

• Tracking studies show that 
~1/3 of this beam is lost 
within the first 3 turns 
(see previous talk)   

 
• Potentially >  2MJ of beam 

impacting on collimators 
 above (current) 
damage limit 

4e-5 (28kJ)  

8e-3 (5.8MJ) 

Courtesy: D.Wollmann 
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Possible mitigation strategies  1/2 
• ‘Passive’ protection through more and weaker 

crab cavities per side of IP  

• Avoid correlated failures 
(mechanical/cryo/electrical  separation) 

• Compensation with fast LLRF control 

• Partial depletion of transverse beam tails (1.5σ 
outside of primary collimators) 

• Hollow electron-lens, tune modulation, 
excitation of halo particles with AC dipole,…  

 

Reduced detection 
time budget and 
redundancy in BLMs 
(depends on halo). 

New crab-kissing 
schemes may need 4 
CC with max 6.6 MV  
double kick expected. 

Effectiveness in LHC to 
be proven 

See next talk. 

Integration?! 
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Possible mitigation strategies  2/2 
• Improvement of MPS architecture  

• Direct dump links from CCs to IR6  
• Accept (more) asynchronous dumps with 

risk of local damage 
• Additional disposable absorbers 
• More abort gaps?! 
 

• Investigate use of fast failure detection 
mechanisms as redundancy to LLRF 
• RF field monitor probe 
• Diamond beam loss detectors 
• Head-tail monitors 
• Power transmission through input coupler 
• … 

All come with 
potential decrease of 
safety/availability 

High reliability 
method required. 
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Towards integration of CCs in MPS 

• Determine realistic worst-case failure scenarios and time-scales 
of (chosen) crab-cavity design during SM18 and SPS tests 
 

• SPS test as first occasion to validate (new) failure detection 
mechanisms? 
 

Courtesy: A.Macpherson 
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Beam Issues: Compatibility with other SPS user cycles  

Courtesy: A.Macpherson 
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Beam issues: Machine protection 

Courtesy: A.Macpherson 
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Schedule 

Courtesy: A.Macpherson 
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Conclusion 
• New ultra-fast failure modes expected due to crab cavities  

• In combination with overpopulated tails this cannot be safely protected by 

todays LHC MPS architecture 

• Mitigation methods (halo depletion) may have knock on effect for detection of 

other failures via beam losses 

• (Urgently) need experimental confirmation of CC’s worst case 

failure scenarios for development of functional requirements to 

machine protection backbone 

• Active protection will require complex combination of LLRF, 

redundant failure detection, halo depletion + interlocking               

-> Profit from SPS tests to do so 

• Next: Put in place document with Alick for interlocking strategy  
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LHC Failure scenarios and their mitigation 

• Three classes of failures considered for LHC protection 
 

• Ultra Fast failures (single beam passage during e.g. 

beam transfer, injection,…): passive protection with 

collimators and absorbers 

• Fast failures (few LHC turns following beam losses, 

certain fast powering failures,…): active protection 

with BLMs and dedicated protection systems  

• ‘Slow’ failures (powering failures, feedback, RF,..): 

Protection through equipment monitoring, … 
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Machine Protection Architecture 

Power
Interlock

Controllers

Beam
Interlock
System

Beam 
Dumping 
System

Quench Protection System

Power Converters

Cryogenics Auxiliary Controllers

Warm Magnets

Experiments

Access System

Beam Loss Monitors (Arc)

Collimation System

Radio Frequency System

Injection Systems

Vacuum System

Access System

Beam Interlock System

Control System

Essential Controllers

General Emergency Stop

Uninterruptible Supplies

Discharge Circuits

Beam Loss Monitors (Aperture)

Beam Position Monitor

Beam Lifetime Monitor

Fast Magnet Current Changes
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Timing
System

Post Mortem

Safe Machine Parameters
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Failure detection time @ LHC today 
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best failure detection time = 40μs = half LHC turn 



Machine Protection Response time 

User System Process Beam Interlock System process Beam Dump System process 

• Current MPS architecture cannot protect against failures 

where damage potential is reached within <= 3 turns 

• Todays fastest failure is powering failure of nc separation 

dipole D1 (>10 turns before damage) 
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Protection Challenges for HL-LHC 

• Re-visit damage studies in view of HL-LHC beam parameters. 
• New failure scenarios: due to proposed optics changes and new 

equipment e.g. crab cavities. 

HL-LHC will have a 
factor two more 
stored beam energy 
than the nominal 
LHC and about a 
factor five more 
than experienced so 
far. 
 

LHC-CC13, 6th LHC Crab Cavity Workshop                                     09 December 2013                          M. Zerlauth                                                 
23  



24 

• Horizontal aperture: Crab Cavity = 42mm (radius) Extraction 
septa = 44.7 mm 

• • But 35% gain in margin due to βCC => CC in ~shadow of 
MSE 

• • To consider: Feasibility an upstream absorber. (~1.5m 
space @ BA4) 

• • Crab cavities with SPS beams 

• • LHC beams: CC cannot be in when LHC beam extracted 

• • Fixed Target: beams larger at injection and debunching at 
slow extraction 

• • To consider: Can CC stay in during SPS Fixed target cycle 

• • Implications to the crab cavity MD request 

14 November 2013   D. Wollmann 
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• Wit bump ON : Problem with beam loaded power in 

tetrodes, hence crabs cannot be IN with bump ON 

• BIS until beam is dumped? 100us?! 

• LLRF as mitigator of CC faults -> FMCM? 

 

• Max time is 30 min (done with LHC rampdown to get 

crab cavities out), should not move faster than 15 min 

• Potential loss of 20min to move back IN, tetrode to 

move on support table (for filaments and tetrode 5 min 

cooldown)   

14 November 2013   D. Wollmann 
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• What happens in case of bad extractions -> not protected by 
absorber 

 

• Problem of injected beam from PS (closed orbit variations) 

 

• Flux of luminosity debris in IR1&5 -> How to make this study, 
maybe possible to use FT halo? 

 

• 2 CC in cryostat, could be used to compensate but also fail 
simultaneously 

• Quenches realistically probably on ms range 
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Closed Orbit 
• LHC beam: 450 GeV, Cavity Voltage: 3 MV 
• Observe: Closed orbit transverse position at 
90o phase advance from CC 
• Global scheme in deflecting mode: ~1mm 
offset, no amplitude growth. 
• Head Tail 
• LHC beam: 450 GeV, Cavity Voltage: 3 MV. 
• Observe: transverse beam centroids at SPS 
HeadTail monitor 
• Crabbing Mode: Expect broadening of 
head-tail centroids 
• Deflecting Mode: No significant change in 
head-tail centroids 

MADX thin track simulations 

Head Tail: see R. Steinhagen 4th LHC CC 
workshop 



Machine Protection during SPS test 
• To avoid LHC extraction (firing of 

kicker) CC out position must be 
interlocked with TT40 extraction 

• Beam position vs beam loaded 
power (extraction bump, orbit 
oscillations after injection,…) 

• Interlocking in SIS only at end of 
cycle 

• Requires CC internal protection 
(+ current measurement on 
correctors?) connected to SPS BIS 

• Detailed loss studies as for LHC 
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CCs in the SPS 

14 November 2013   D. Wollmann 

Closed Orbit 
• LHC beam: 450 GeV, Cavity Voltage: 3 MV 
• Observe: Closed orbit transverse position at 
90o phase advance from CC 
• Global scheme in deflecting mode: ~1mm 
offset, no amplitude growth. 
 
• Head Tail 
• LHC beam: 450 GeV, Cavity Voltage: 3 MV. 
• Observe: transverse beam centroids at SPS 
HeadTail monitor 
• Crabbing Mode: Expect broadening of 
head-tail centroids 
• Deflecting Mode: No significant change in 
head-tail centroids 

MADX thin track simulations 

Head Tail: see R. Steinhagen 4th LHC CC workshop 
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SPS Extraction Interlock  

14 November 2013   D. Wollmann 
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SPS Extraction Interlock - BIS 

14 November 2013   D. Wollmann 



12/13/2013 
PLC Workshop @ ESS 
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Example for Beam 2 
(Duplicated for Beam 1) 

Manager (CIBM) 

Generator (CIBG) 

TSU 

Beam Interlock System 


