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Purpose: to learn a few things on the η-η’ system:!
the mixing angle(s), the gluonic content of the η’ !
and the extraction of the mixing parameters from 
the η and η’ transition form factors

Outline:

because of its relevance for present and future experimental analyses 
involving η and/or η’ mesons: WASA, KLOE, MAMI, BES III, ...

Why?

● Notations for the mixing angle(s) and the gluonic content

● J/ψ→VP analysis

●

Mixing parameters from the η and η’ transition form factors●
● Conclusions and Outlook

V→Pγ analysis



●Notation for the mixing angle: old scheme

mixing of mass eigenstates

octet-singlet basis quark-flavour basis

with and

1 mixing angle

Assumptions: ● no energy dependence!
● !
● no mixing with other pseudoscalars (π0, ηc, glueballs)



mixing of decay constants

octet-singlet basis

quark-flavour basis
2 decay constants

2 mixing angles

with

and

with

●Notation for the mixing angles of the decay constants



● Are all these mixing angles related?

IN PARTICULAR OUR PROCESS, ETA’ WITH ONLY SCALARS (TEST OF BOTH
THEORIES)

FROM THE POINT OF VIEW OF EXPERIMENT, VES, FUTURE EXP.: KLOE,
WASA, MAMI, BESIII...

THIS PAPER IS DIVIDED AS FOLLOW

2. Dalitz plot representation

For the Dalitz plot representation we use the following definition of the Mandelstam vari-
ables:

s ⇥ (p⇥+ + p⇥�)2 , t ⇥ (p�⇥ � p⇥+) , t ⇥ (p�⇥ � p⇥�) . (2.1)

These variable

3. Large Nc Chiral Peturbation Theory prediction

4. Resonance Chiral Theory prediction

5. Linear Sigma Model prediction

Finally, the amplitude in the L⇥M is found to be
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where the couplings g⇤��⇥ and gf0��⇥ are chosen to be

g⇤��⇥ = cos ⇤S
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respectively.

6. Discussion and conclusions

A. �-�⇥ mixing

Let us consider the two-dimensional space of isoscalar pseudoscalar mesons. We collect
the SU(3) octet and singlet fields in the doublet �T

B ⇥ (�8, �1). The quadratic tem in the
Lagrangian takes the form

L =
1
2
⌅µ�T

BK⌅µ�B �
1
2
�T

BM2�B , (A.1)
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where M2
0 denotes the U(1)A anomaly contribution to the ⇥1 mass,
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values of the mass-matrix elements.
To first order in �8, �1 and �81, the kinetic matrix K can be diagonalised through the
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In the ⇥̂ basis the mass matrix takes the form
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to first order in �M2 (and products � ⇥�M2).
The physical mass eigenstates are obtained after diagonalising the matrix ⇤M2 with an

orthogonal transformation

⇤M2 = RT · M2
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2In general Z1/2 · K · Z1/2† = I2 but in the case of Large-Nc ChPT the matrix Z1/2 is real since chiral

loops start at O(�2) and are not considered.
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to first order in �M2 (and products � ⇥�M2).
The physical mass eigenstates are obtained after diagonalising the matrix ⇤M2 with an
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loops start at O(�2) and are not considered.
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next-to-leading order corrections



● Are all these mixing angles related?
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B. Decay constants

The decay constants in the ⇤-⇤⇥ system are defined as matrix elements of axial currents (at
the quark level Aa

µ ⇤ q̄�µ�5
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Each of the two mesons has both, octet and singlet components. Consequently, Eq. (B.1)
defines four independent decay constants, fa
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In the chiral Lagrangian formalism, the physical masses and decay constants are ob-
tained from the part of the e�ective action quadratic in the nonet fields by means of the
correlator of two axial currents, the former from the location of the poles, the latter from
their residues. Following the procedure outlined in Ref. [2], the decay constants are given
by fa

P = f [(F †)�1K]aP , where f = f⇤ = 92.2 MeV at O(⇥0) and F is the matrix which
simultaneously diagonalises the kinetic and mass matrices of the Lagrangian in Eq. (A.1)

K = F †I2F , M2 = F †M2
DF . (B.3)

From Eqs. (A.6,A.8), we get F = R·(Z1/2T )�1 and then fa
P = f [R·(Z1/2T )�1]aP . The matrix

F is exactly the same that relates the physical and the bare fields, ⇤P = R · (Z1/2T )�1 · ⇤B.
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lesson 1: @leading order in Large Nc ChPT only 1 mixing angle must be used

lesson 2: @next-to-leading order the mixing structure is more complicated...
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lesson 3: the mixing structure of the decay constants and of the fields is the same!



● Are all these mixing angles related?

To first order in δ:To first order in �8, �1 and �81, the fa
P are written as

f8
� /f = cos ⇥P (1 + �8/2)� sin ⇥P �81/2 ,
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� /f = � sin ⇥P (1 + �1/2) + cos ⇥P �81/2 ,
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��/f = sin ⇥P (1 + �8/2) + cos ⇥P �81/2 ,

f0
��/f = cos ⇥P (1 + �1/2) + sin ⇥P �81/2 ,

(B.4)

and the two basic decay constants and two angles as f8 = f(1 + �8/2), f0 = f(1 + �1/2),
⇥8 = ⇥P + arctan(�81/2), and ⇥0 = ⇥P � arctan(�81/2), respectively.
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to compare with
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lesson 4: @next-to-leading order in Large Nc ChPT 2 mixing angles must be used!

lesson 5: fη and fη’ do not exist!



●Notation for the mixing angle(s): new scheme

In Large Nc ChPT:

where M2
0 denotes the U(1)A anomaly contribution to the ⇥1 mass,

�
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i (i = 8, 1) the
O(�0) quark-mass contributions to the octet and singlet isoscalar masses,
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⇥ the kaon and pion masses at O(�0) in
the combined chiral and 1/Nc expansion. �M2
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81 modify the lowest order
values of the mass-matrix elements.

Then, in terms of the Large-Nc chiral lagrangian parameters (3.6),
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The next-to-leading order values of the mass-matrix elements are:
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.

From the large–NC perspective, it is very convenient to express the amplitude in terms
of OZI–allowed and OZI–suppressed components:

M�⇥⇥�⇥⇥ = cqqM�q�q⇥⇥ + csqM�s�q⇥⇥ + cssM�s�s⇥⇥ . (3.14)

This decomposition contains two types of elements. On one hand, the factors cqq, csq, css,
which are universal and are determined just by the ⇥–⇥⇤ mixing:
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On the other hand, the piecesM�a⇥�b⇥⇥ are characteristic of this process. They define the
dynamics of the decay and are a priori independent of the ⇥–⇥⇤ mixing.
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octet-singlet basis: quark-flavour basis:
OZI rule violating parameter

Approximate relations valid for

SU(3) breaking effect

lesson 6: in experimental analyses always use the quark-flavour basis



● Study of the η-η’ system in the two mixing angle scheme

η,η’→γγ decays

VPγ decays

R. E., J.-M. Frère, JHEP 06, 029 (2005)



● Study of the η-η’ system in the two mixing angle scheme



●
We work in a basis consisting of the states!

|ηq⟩ ≡
1√
2
|uū + dd̄⟩ |ηs⟩ = |ss̄⟩ |G⟩ ≡ |gluonium⟩

|η⟩ = Xη|ηq⟩ + Yη|ηs⟩ + Zη|G⟩ ,

|η′⟩ = Xη′ |ηq⟩ + Yη′ |ηs⟩ + Zη′ |G⟩ ,

The physical states η and η’ are assumed to be the linear combinations 

with! X
2
η(η′) + Y

2
η(η′) + Z

2
η(η′) = 1 and thus! X

2
η(η′) + Y

2
η(η′) ≤ 1

A significant gluonic admixture in a state is possible only if!

Z
2
η(η′) = 1 − X

2
η(η′) − Y

2
η(η′) > 0

Assumptions: ● no mixing with π0 (isospin symmetry)

● no mixing with ηc states

● no mixing with radial excitations

Notation for the gluonic content: phenomenological parametrization



●Notation for the gluonic content

In absence of gluonium (standard picture)

Zη(η′) ≡ 0
|η⟩ = cos φP |ηq⟩ − sinφP |ηs⟩

|η′⟩ = sinφP |ηq⟩ + cos φP |ηs⟩

with! Xη = Yη′ ≡ cos φP

Xη′ = −Yη ≡ sinφP

and! X
2
η(η′) + Y

2
η(η′) = 1

where ϕP is the η-η’ mixing angle in the quark-flavour basis related to its octet-singlet!
analog through!

θP = φP − arctan
√

2 ≃ φP − 54.7◦

Similarly, for the vector states ω and ϕ the mixing is given by !

|ω⟩ = cos φV |ωq⟩ − sinφV |φs⟩

|φ⟩ = sinφV |ωq⟩ + cos φV |φs⟩

where ωq and ϕs are the analog non-strange and strange states of ηq and ηs, respectively.!



● Euler angles

|η⟩ = Xη|ηq⟩ + Yη|ηs⟩ + Zη|G⟩

|η′⟩ = Xη′ |ηq⟩ + Yη′ |ηs⟩ + Zη′ |G⟩

|ι⟩ = Xι|ηq⟩ + Yι|ηs⟩ + Zι|G⟩

In presence of gluonium,

glueball-like state!
η(1440)?

X2
η + Y 2

η + Z2
η = 1

X2

η′ + Y 2

η′ + Z2

η′ = 1

X2
ι + Y 2

ι + Z2
ι = 1

XηXη′ + YηYη′ + ZηZη′ = 0

XηXι + YηYι + ZηZι = 0

Xη′Xι + Yη′Yι + Zη′Zι = 0

Normalization: Orthogonality:

3 independent parameters: ϕP, ϕηG and ϕη’G

(

η
η′

ι

)

=

(

cφηη′cφηG −sφηη′cφηG −sφηG

sφηη′cφη′G − cφηη′sφη′GsφηG cφηη′cφη′G + sφηη′sφη′GsφηG −sφη′GcφηG

sφηη′sφη′G + cφηη′cφη′GsφηG cφηη′sφη′G − sφηη′cφη′GsφηG cφη′GcφηG

) (

ηq

ηs

G

)



● Euler angles

Xη = cos φP , Yη = − sinφP , Zη = 0 ,

Xη′ = sinφP cos φη′G , Yη′ = cos φP cos φη′G , Zη′ = − sinφη′G .

In the limit ϕηG=0:

J
H
E
P
0
5
(
2
0
0
7
)
0
0
6

as

|Zη,(η′)| =
√

1 − X2
η,(η′) − Y 2

η,(η′) ,

Yη = −
XηXη′Yη′ +

√

(1 − X2
η′ − Y 2

η′)(1 − X2
η − X2

η′)

1 − X2
η′

. (4.1)

The mixing parameters can also be expressed in terms of three angles, φP , φηG and φη′G,

the two latter weighting the gluonic admixture in the η and η′, respectively. Using this

angular parametrization one gets

Xη = cos φP cos φηG , Xη′ = sin φP cos φη′G − cos φP sin φηG sin φη′G ,

Yη = − sin φP cos φηG , Yη′ = cos φP cos φη′G + sin φP sinφηG sinφη′G ,

Zη = − sinφηG , Zη′ = − sin φη′G cos φηG . (4.2)

Fits to experimental data are performed imposing the constraints in eq. (4.1) or, equiva-

lently, using the decomposition in eq. (4.2).

We start considering the first of the possibilities noted before. Thus, we assume that

the overlap of the P and V wave functions is flavour-independent, i.e. Cq = Cs = CK = Cπ

and hence zq = zs = zK = 1. The fit in this case is very poor, χ2/d.o.f.=31.2/6. The

quality of the fit gets worse when φηG and φη′G are set to zero, χ2/d.o.f.=45.9/8 with

φP = (41.1 ± 1.1)◦.

Clearly, in order to obtain a good fit one has to relax the constraint imposed on the

overlapping parameters. Hence, we begin to discuss the second of the possibilities, that is

to say, to leave the z’s free and restrict the gluon content of the η or η′ meson. However,

as a matter of comparison, we first consider the absence of gluonium in both mesons,

i.e. φηG = φη′G = 0. In addition, we also fix the vector mixing angle φV to its measured

value tan φV = +0.059± 0.004 or φV = (3.4± 0.2)◦ [12] and the ratio of constituent quark

masses to m̄/ms ≃ 1/1.45. The fit in this case is not yet satisfactory, χ2/d.o.f.=14.0/7.

The quality of the fit improves when the ratio m̄/ms is left free, χ2/d.o.f.=7.6/6 with

ms/m̄ = 1.24 ± 0.07. If φV is also left free, the final result of the fit gives χ2/d.o.f.=4.4/5

with

g = 0.72 ± 0.01 GeV−1 , φP = (41.5 ± 1.2)◦ , φV = (3.2 ± 0.1)◦ , (4.3)
ms
m̄ = 1.24 ± 0.07 , zq = 0.86 ± 0.03 , zs = 0.78 ± 0.05 , zK = 0.89 ± 0.03 .

The fitted values for the two mixing angles φP and φV are in good agreement with most

results coming from other analyses using complementary information (see, for instance,

ref. [13] and references therein). Our value for the pseudoscalar mixing angle also agrees

with the latest measurement from KLOE, φP = (41.4 ± 1.0)◦ [1]. The free parameters z’s

are specific of our approach and are not fixed to one as in previous analyses [10, 11]. As

mentioned, if we fix the z’s to unity, the fit gets much worse (χ2/d.o.f.=45.9/8). This shows

that allowing for different overlaps of quark-antiquark wave functions and, in particular,

for those coming from the gluon anomaly affecting only the η and η′ singlet component, is

indeed relevant.
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●Motivation
KLOE Collaboration, Phys. Lett. B648 (2007) 267

φP = (39.7 ± 0.7)◦

Z
2

η′ = 0.14 ± 0.04

Rϕ with Z2=0

Y1=η’→γγ/π0→γγ!
Y2=η’→ργ/ω→π0γ!
Y3=ϕ→η’γ/ϕ→ηγ!

Y4=η’→ωγ/ω→π0γ



● V→Pγ analysis: a model for VPγ M1 transitions

We will work in a conventional quark model context: P and V are simple 
quark-antiquark S-wave bound states

all these hadrons are thus extended objects with characteristics 
spatial extensions fixed by their respective P and V wave functions

SU(2) limit identical spatial extension within each isomultiplet

SU(3) broken constituent quark masses with ms>m and!
different spatial extensions for each isomultiplet

Ingredients of the model:

i) a VPγ magnetic dipole transition proceeding via quark or antiquark 
spin flip amplitude ∝ μq=eq/2mq

ii) spin-flip V→P conversion amplitude corrected by the relative overlap 
between the P and V wave functions

iii) OZI-rule reduces considerably the possible transitions and overlaps

Cπ ≡ ⟨π|ωq⟩ = ⟨π|ρ⟩ CK ≡ ⟨K|K∗⟩

Cq ≡ ⟨ηq|ωq⟩ = ⟨ηq|ρ⟩ Cs ≡ ⟨ηs|φs⟩
U(1)A anomaly



● A model for VPγ M1 transitions

gρ0π0γ = gρ+π+γ = 1

3
g , gωπγ = g cos φV , gφπγ = g sinφV ,

gK∗0K0γ = −

1

3
g zK

(

1 + m̄
ms

)

, gK∗+K+γ = 1

3
g zK

(

2 −

m̄
ms

)

,

gρηγ = g zq Xη , gρη′γ = g zq Xη′ ,

gωηγ = 1

3
g

(

zq Xη cos φV + 2 m̄
ms

zs Yη sinφV

)

,

gωη′γ = 1

3
g

(

zq Xη′ cos φV + 2 m̄
ms

zs Yη′ sinφV

)

,

gφηγ = 1

3
g

(

zq Xη sinφV − 2 m̄
ms

zs Yη cos φV

)

,

gφη′γ = 1

3
g

(

zq Xη′ sinφV − 2 m̄
ms

zs Yη′ cos φV

)

,

Amplitudes:

with gωπγ = g cos φV = e Cπ cos φV /m̄

and zq ≡ Cq/Cπ , zs ≡ Cs/Cπ , zK ≡ CK/Cπ

Γ(V → Pγ) =
1

3

g2
V Pγ

4π
|pγ |

3 =
1

3
Γ(P → V γ)



g = 0.72 ± 0.01 GeV−1 , φP = (41.5 ± 1.2)◦ , φV = (3.2 ± 0.1)◦ ,

ms

m̄
= 1.24 ± 0.07 , zK = 0.89 ± 0.03 , zq = 0.86 ± 0.03 , zs = 0.78 ± 0.05 .

χ2/d.o.f.=4.4/5

Three possibilities:

i) assuming Zη=Zη’=0 from the beginning, we get from χ2/d.o.f.=14.0/7 to

ii) Zη=0

iii) Zη’=0

i) Zη=Zη’=0 gluonium not allowed for η or η’

gluonium allowed only for η’

gluonium allowed only for η

●Data fitting R. E. and J. Nadal, JHEP 05 (2007) 6

Accepting the absence of gluonium for the η meson, the gluonic content of 
the η’ wave function amounts to |ϕη’G|=(12±13)� or (Zη’)2=0.04±0.09 and the 
η-η’ mixing angle is found to be ϕP=(41.4±1.3)�

ii) assuming Zη=0 from the beginning, we get

g = 0.72 ± 0.01 GeV−1 , ms

m̄
= 1.24 ± 0.07 , φV = (3.2 ± 0.1)◦ ,

φP = (41.4 ± 1.3)◦ , |φη′G| = (12 ± 13)◦ ,

zK = 0.89 ± 0.03 , zq = 0.86 ± 0.03 , zs = 0.79 ± 0.05 ,

χ2/d.o.f.=4.2/4



●Data fitting
iii) assuming Zη’ =0 from the beginning, we get

χ2/d.o.f.=4.4/4

The current experimental data on VPγ transitions indicate within our model!
a negligible gluonic content for the η and η’ mesons

Accepting the absence of gluonium for the η’ meson, the gluonic content of 
the η wave function amounts to |ϕηG|≃0� or (Zη)2=0.00±0.12 and the η-η’ 

mixing angle is found to be ϕP=(41.5±1.3)�

J
H
E
P
0
5
(
2
0
0
7
)
0
0
6

with χ2/d.o.f.=4.2/4. The quality of the fit is similar to the one obtained assuming a

vanishing gluonic admixture for both mesons (χ2/d.o.f.=4.4/5). The fitted values for zq

and zs are compatible with those of eq. (4.3). The result obtained for φη′G suggests a very

small amount of gluonium in the η′ wave function, in fact compatible with zero within 1σ.

Using eq. (A.6) to calculate Zη′ from φη′G gives |Zη′ | = 0.2 ± 0.2. This is one of the main

results of our analysis. Accepting the absence of gluonium for the η meson, the gluonic

content of the η′ wave function amounts to |φη′G| = (12 ± 13)◦ or Z2
η′ = 0.04 ± 0.09.

In other words, our values for φP and φη′G (or Zη′) contrast with those reported by

KLOE recently, φP = (39.7±0.7)◦ and |φη′G| = (22±3)◦ — or Z2
η′ = 0.14±0.04 — [1]. As

indicated in section 1, a possible explanation of this discrepancy could be the use in ref. [1]

of old values for the overlapping parameters that the present analysis tries to update. In

table 1, we also include the theoretical predictions for the various transitions involving η

or η′ calculated from the fitted values in eq. (4.4). As expected, there is no significant

difference between the values obtained allowing for gluonium (Fit 2) or not (Fit 1) in the

η′ wave function. Likewise, we predict the value of the ratio

Rφ ≡
Γ(φ → η′γ)

Γ(φ → ηγ)
= cot2 φP cos2 φη′G

(

1 −
ms

m̄

zq

zs

tan φV

sin 2φP

)2 (

pη′

pη

)3

, (4.5)

to be (4.7±0.6)×10−3, in agreement with the experimental value in ref. [4], (4.8±0.5)×10−3,

and the most recent measurement by KLOE [1], (4.77 ± 0.09stat ± 0.19syst) × 10−3.

For completeness, we perform another fit assuming from the beginning a null gluonic

content for the η′ meson. Consequently, we fix φη′G = 0 and leave φηG free. The results

obtained are the following:

g = 0.72 ± 0.01 GeV−1 , ms
m̄ = 1.24 ± 0.07 , φV = (3.2 ± 0.1)◦ , (4.6)

φP = (41.5 ± 1.3)◦ , |φηG| ≃ 0◦ ,

zq = 0.86 ± 0.04 , zs = 0.78 ± 0.06 , zK = 0.89 ± 0.03 ,

with χ2/d.o.f.=4.4/4. The fitted value for φηG is very close to zero. For that reason, it

is better to express this value in terms of the more common Zη parameter. As a result,

one gets Z2
η = 0.00 ± 0.12, thus showing a vanishing gluonium contribution in the η wave

function. This is a second important result of our analysis which complements the one

discussed after eq. (4.4). To sum up, the current experimental data on V Pγ transitions

seem to indicate within our model a negligible gluonic content for the η and η′ mesons.

A final exercise we have done is to check whether the very recent measurements (not

included in ref. [4]) on ρ,ω,φ → ηγ from the SND Coll. [14] and φ → η′γ from KLOE [1]

modify the results of our analysis. The values of the couplings associated to these new data

are displayed in table 2. As shown, the central values are nearly the same as those from

ref. [4], except for ρ → ηγ, whereas the errors for ρ,ω,φ → ηγ are comparable to the world

averages and the error for φ → η′γ is reduced by a factor of three. Assuming absence of

gluonium in the η and η′ wave functions the results of the fit are

φP = (42.7 ± 0.7)◦ , zq = 0.83 ± 0.03 , zs = 0.79 ± 0.05 , (4.7)

– 7 –

φP = (42.7 ± 0.7)◦ , zq = 0.83 ± 0.03 , zs = 0.79 ± 0.05 ,

φP = (42.6±1.1)◦ , |φη′G| = (5±21)◦ , zq = 0.83±0.03 , zs = 0.79±0.05 ,

Using the latest experimental data on (ρ,ω,ϕ)→ηγ (SND) and ϕ→η’γ (KLOE), we get

χ2/d.o.f.=4.0/5

χ2/d.o.f.=4.0/4

confirmation of the null gluonic content of the η and η’ wave functions



ω → ηγ⎞φP

φ → ηγ

ρ → ηγ

Xη

−Yη

42.7
◦

0 0.2 0.4 0.6 0.8 1
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0.8
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◦68% CL bands

X
2

η + Y
2

η ≤ 1

Xη = −

1
√

2
Yη =

1
√

3
η=η8

Xη = Yη =
1
√

2

democratic solution

importance of ϕ→ηγ
importance of the slopes (ϕV)

✔

✔

R. E. and J. Nadal, JHEP 05 (2007) 6● Results



Xη′

⎞

φP

Yη′

φ → η
′
γ

η
′
→ ωγ

η
′
→ ργ

42.7
◦

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
40.3

◦

● Results

Xη′ =
√

2Yη′ =
1
√

3

η=η0

importance of constraining even more ϕ→η’γ✔

More refined data for this channel will contribute decisively to clarify this issue



● Results

PDG’06 data latest data

(φP , Z2

η′) = (42.6◦, 0.01)(φP , Z2

η′) = (41.4◦, 0.04)

ϕ→ηγ

ϕ→η’γ



● Summary of the V→Pγ analysis and conclusions

We have performed a phenomenological analysis of radiative V→Pγ and P→Vγ 
decays with the purpose of determining the gluon content of the η and η’ mesons

The use of these different overlapping parameters (a specific feature of our analysis) 
is shown to be of primary importance in order to reach a good agreement

Accepting the absence of gluonium for the η meson, the gluonic content of 
the η’ wave function amounts to |ϕη’G|=(12±13)� or (Zη’)2=0.04±0.09 and the 
η-η’ mixing angle is found to be ϕP=(41.4±1.3)�

The current experimental data on VPγ transitions indicate within our model a 
negligible gluonic content for the η and η’ mesons,

1)

2)

andZ2
� = 0.00± 0.12 Z2

�� = 0.04± 0.09

The latest experimental data on (ρ,ω,ϕ)→ηγ and ϕ→η’γ decays confirm the 
null gluonic content of the η and η’ wave functions

4)

More refined experimental data, particularly for the ϕ→η’γ channel, 
will contribute decisively to clarify this issue

5)

3)



● Reason for the discrepancy?
KLOE Collaboration, JHEP 07 (2009) 105

JHEP07(2009)105

ZG free ZG = 0

χ2/ndf (CL) 5/3 (17%) 13/4 (1.1%)

Z2
G 0.105 ± 0.037 0 fixed

ψP (40.7 ± 0.7)◦ (41.6 ± 0.5)◦

Zq 0.866 ± 0.025 0.863 ± 0.024

Zs 0.79 ± 0.05 0.78 ± 0.05

ψV (3.15 ± 0.10)◦ (3.17 ± 0.10)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

ψP -0.513

Zq 0.003 0.041

Zs 0.088 -0.188 0.050

ψV -0.068 -0.019 0.150 0.077

ms/m̄ 0 0 0 0.935 0

Z2
G ψP Zq Zs ψV

Table 2. Fit results using the PDG-2006 data [9] and their correlation matrix.

Γ(η'→γγ)/Γ(π0→γγ)

Γ(η'→ργ)/Γ(ω→π0γ)

Γ(φ→η'γ)/Γ(φ→ηγ)

Γ(η'→ωγ)/Γ(ω→π0γ)

Γ(ω→ηγ)/Γ(ω→π0γ)

Γ(ρ→ηγ)/Γ(ω→π0γ)

Γ(φ→ηγ)/Γ(ω→π0γ)

Γ(φ→π0γ)/Γ(ω→π0γ)

Γ(K*+→K+γ)/Γ(K*0→K0γ)

-3 -2 -1 0 1 2 3

Γ(η'→γγ)/Γ(π0→γγ)

Γ(η'→ργ)/Γ(ω→π0γ)

Γ(φ→η'γ)/Γ(φ→ηγ)

Γ(η'→ωγ)/Γ(ω→π0γ)

Γ(ω→ηγ)/Γ(ω→π0γ)

Γ(ρ→ηγ)/Γ(ω→π0γ)

Γ(φ→ηγ)/Γ(ω→π0γ)

Γ(φ→π0γ)/Γ(ω→π0γ)

Γ(K*+→K+γ)/Γ(K*0→K0γ)

-3 -2 -1 0 1 2 3

Figure 1. Pulls of the fit shown in table 2, left: ZG free, right: ZG = 0 (fixed).

in place of the width ratio. The couplings are related to the partial decay width by the

following formulae:

Γ(V → Pγ) =
1

3

g2
V Pγ

4π
|p⃗γ |3, Γ(P → V γ) =

g2
V Pγ

4π
|p⃗γ |3

In order to make a full comparison between the two methods we have performed the fit

also using the couplings and we have obtain the same results [12].
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● Reason for the discrepancy?
KLOE Collaboration, JHEP 07 (2009) 105

JHEP07(2009)105
Fit with PDG-2006 Fit of

ref. [4]

χ2/ndf (CL) 1.8/2 (41%) 4.2/4 (38%)

Z2
G 0.03 ± 0.06 0.04 ± 0.09

ψG (10 ± 10)◦ (12 ± 13)◦

ψP (41.6 ± 0.8)◦ (41.4 ± 1.3)◦

Zq 0.85 ± 0.03 0.86 ± 0.03

Zs 0.78 ± 0.05 0.79 ± 0.05

ψV (3.16 ± 0.10)◦ (3.2 ± 0.1)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

Table 3. Comparison among the fit results without the η′ → γγ/π0 → γγ measurements and the
results of ref. [4]. PDG-2006 data [9] have been used in both fits.

ZG free ZG = 0 fixed

χ2/ndf (CL) 7.9/3 (5%) 15/4 (5 × 10−3)

Z2
G 0.097 ± 0.037 0 fixed

ψP (41.0 ± 0.7)◦ (41.7 ± 0.5)◦

Zq 0.86 ± 0.02 0.86 ± 0.02

Zs 0.79 ± 0.05 0.78 ± 0.05

ψV (3.17 ± 0.09)◦ (3.19 ± 0.09)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

Table 4. Fit results using the PDG-2008 data.

ψP -0.502

Zq -0.072 0.161

Zs 0.081 -0.180 0.028

ψV -0.082 0.013 0.169 0.078

ms/m̄ 0 0 0 0.940 0

Z2
G ψP Zq Zs ψV

Table 5. Correlation matrix from the fit shown in table 4.

3 Update with the recent PDG results

In the Review of Particle Physics [13] new measurements of the ρ, ω, η and η′ mesons have

been included, which change slightly the partial decay widths used in the fit. Therefore

we repeat the fit using these updated values together with our Rφ measurement. All the

correlation coefficients among the measurements are taken into account in the fit. The

results of the fit are shown in table 4 and the correlation matrix in table 5; the pulls of the

fit are shown in figure 2.

The results in table 4 show that the gluonium hypothesis is still highly favoured with

respect to the null gluonium hypothesis. Nevertheless the fit probability is quite low also

in the gluonium hypothesis: it goes from 17% using PDG06 data to 5% using PDG08 data.

– 6 –

JHEP07(2009)105

The ratio Rφ = BR(φ→ η′γ)/BR(φ→ ηγ) is related to the ψP and ψG parameters by

the formula [6]:

Rφ = cot2ψP cos2ψG

(

1 −
ms

m̄

Zq

Zs

tanψV

sin2ψP

)2(pη′

pη

)3

(1.3)

where pη′ and pη are the momenta of the η′ and η meson respectively in the φ reference

frame, ms/m̄ = 2ms/(mu + md) is the constituent quark mass ratio and ψV is the φ-

ω mixing angle. Following ref. [3] we define the constant Cq = ⟨qq̄ρ|qq̄η⟩ as the overlap

between the spatial wave functions of the quark-antiquark pair in the ρ and the η meson.

Isospin symmetry is assumed exact, so that mu = md = m̄ and the following further

relations follow:

Cq = ⟨qq̄η| qq̄ω⟩ = ⟨qq̄η| qq̄ρ⟩ , Cs = ⟨ss̄η| ss̄φ⟩ , Cπ = ⟨qq̄π| qq̄ω⟩ = ⟨qq̄π| qq̄ρ⟩

where we indicate with |qq̄η⟩ and |qq̄ω⟩ the qq̄ spatial wave function in the η and ω mesons,

and with |ss̄η⟩ and |ss̄φ⟩ the s̄s spatial wave function in the η and φmesons. The parameters

Zq and Zs are the ratios: Zq = Cq/Cπ and Zs = Cs/Cπ. In this model SU(3)flavour

breaking effects are accounted for by the different values of the effective quark masses,

ms > mu = md = m̄, and by Zq ̸= Zs.

In our previous analysis [6] the parameters Zs, Zq, ψV and ms/m̄ were taken from

ref. [3] where BR(φ→ η′γ) and BR(φ→ ηγ) were fitted together with other V → Pγ decay

rates (V indicates the vector mesons ρ,ω,φ and P the pseudoscalars π0, η, η′) assuming no

η′ gluonium content. We fitted [6] our measurement

Rφ =
BR(φ→ η′γ)

BR(φ→ ηγ)
= (4.77 ± 0.09stat. ± 0.19syst.) × 10−3

together with the available data [9] on Γ(η′ → γγ)/Γ(π0 → γγ), Γ(η′ → ργ)/Γ(ω → π0γ)

and Γ(η′ → ωγ)/Γ(ω → π0γ). The dependence of these ratios on the mixing angle ψP and

the gluonium content ψG is given by the following equations:

Xη′ = sinψP cosψG, Yη′ = cosψP cosψG

Γ(η′ → γγ)

Γ(π0 → γγ)
=

1

9

(

mη′

mπ0

)3(

5
fπ

fq
cosψG sinψP +

√
2
fπ

fs
cosψG cosψP

)2

(1.4)

Γ(η′ → ργ)

Γ(ω → π0γ)
= 3

Z2
q

cos2(ψV )

(

m2
η′ − m2

ρ

m2
ω − m2

π

·
mω

mη′

)3

X2
η′ (1.5)

Γ(η′ → ωγ)

Γ(ω → π0γ)
=

1

3

(

m2
η′ − m2

ω

m2
ω − m2

π

·
mω

mη′

)3
[

ZqXη′ + 2
m̄

ms
Zs · tanψV Yη′

]2

. (1.6)

where fπ is the pion decay constant and fq and fs are the decay constants of the isospin

singlet states (mainly η, η′ mesons) in the no-anomaly limit [5]. The fit result was ψP =

(39.7 ± 0.7)◦ and Z2
G = sin2ψG = 0.14 ± 0.04, P (χ2) = 49%. Imposing ψG = 0 the χ2

probability of the fit decreased to 1%.
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Fit with PDG-2006 Fit of

ref. [4]

χ2/ndf (CL) 1.8/2 (41%) 4.2/4 (38%)

Z2
G 0.03 ± 0.06 0.04 ± 0.09

ψG (10 ± 10)◦ (12 ± 13)◦

ψP (41.6 ± 0.8)◦ (41.4 ± 1.3)◦

Zq 0.85 ± 0.03 0.86 ± 0.03

Zs 0.78 ± 0.05 0.79 ± 0.05

ψV (3.16 ± 0.10)◦ (3.2 ± 0.1)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

Table 3. Comparison among the fit results without the η′ → γγ/π0 → γγ measurements and the
results of ref. [4]. PDG-2006 data [9] have been used in both fits.

ZG free ZG = 0 fixed

χ2/ndf (CL) 7.9/3 (5%) 15/4 (5 × 10−3)

Z2
G 0.097 ± 0.037 0 fixed

ψP (41.0 ± 0.7)◦ (41.7 ± 0.5)◦

Zq 0.86 ± 0.02 0.86 ± 0.02

Zs 0.79 ± 0.05 0.78 ± 0.05

ψV (3.17 ± 0.09)◦ (3.19 ± 0.09)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

Table 4. Fit results using the PDG-2008 data.

ψP -0.502

Zq -0.072 0.161

Zs 0.081 -0.180 0.028

ψV -0.082 0.013 0.169 0.078

ms/m̄ 0 0 0 0.940 0

Z2
G ψP Zq Zs ψV

Table 5. Correlation matrix from the fit shown in table 4.

3 Update with the recent PDG results

In the Review of Particle Physics [13] new measurements of the ρ, ω, η and η′ mesons have

been included, which change slightly the partial decay widths used in the fit. Therefore

we repeat the fit using these updated values together with our Rφ measurement. All the

correlation coefficients among the measurements are taken into account in the fit. The

results of the fit are shown in table 4 and the correlation matrix in table 5; the pulls of the

fit are shown in figure 2.

The results in table 4 show that the gluonium hypothesis is still highly favoured with

respect to the null gluonium hypothesis. Nevertheless the fit probability is quite low also

in the gluonium hypothesis: it goes from 17% using PDG06 data to 5% using PDG08 data.
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ZG free ZG = 0 fixed

χ2/ndf (CL) 4.6/3 (20%) 14.7/4 (0.5%)

Z2
G 0.115 ± 0.036 0

ψP (40.4 ± 0.6)◦ (41.4 ± 0.5)◦

Zq 0.936 ± 0.025 0.927 ± 0.023

Zs 0.83 ± 0.05 0.82 ± 0.05

ψV (3.32 ± 0.09)◦ (3.34 ± 0.09)◦

ms/m̄ 1.24 ± 0.07 1.24 ± 0.07

Table 6. Fit results using PDG-2008 inputs, BR(ω → ηγ) from PDG direct measurement average
and the KLOE BR(ω → π0γ) and Rφ. The equations (4.1) have been used for the fq/fπ and fs/fπ

parameters.

ψP -0.507

Zq 0.063 -0.018

Zs 0.092 -0.189 0.013

ψV -0.059 -0.012 0.045 0.028

ms/m̄ -0.002 0.003 0.001 0.949 0.000

Z2
G ψP Zq Zs ψV

Table 7. Correlation matrix of the fit shown in table 6.

4 Update with the new KLOE measurement of BR(ω → π0γ)

The relations (1.5), (1.6) and (2.1)–(2.4) are dependent from the ω → π0γ decay rate.

Recently we have improved the measurement of this branching fraction BR(ω → π0γ) =

(8.09 ± 0.14)% [16]. This value is about 3σ different from the PDG 2008 value: BR(ω →
π0γ) = (8.92±0.24)%. We then performed the fit using our measurement of BR(ω → π0γ).

Moreover fq/fπ and fs/fπ have been fixed according to ref. [5]. In the exact isospin

symmetry approximation the relations

fq = fπ; fs =
√

2f2
K − f2

π

hold, where fπ and fK are the π and K decay constants. Therefore fs/fπ =
√

2f2
K/f2

π − 1.

Using fK/fπ from lattice calculation [18] we get:

fq

fπ
= 1

fs

fπ
= 1.352 ± 0.007. (4.1)

The results of the fit are shown in table 6 and the correlation matrix in table 7.

The η-η′ mixing angle and the η′ gluonium content are not substantially modified, but

the χ2 probability is improved with respect to the previous fits. The φ− ω mixing angle,

ψV , is also slightly changed from (3.17 ± 0.09)◦ to (3.32 ± 0.09)◦ by our new measurement

of BR(ω → π0γ), ψV being directly related to the ratio Γ(φ → π0γ)/Γ(ω → π0γ) (see

eq. (2.4)).
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Γ(η'→γγ)/Γ(π0→γγ)

Γ(η'→ργ)/Γ(ω→π0γ)

Γ(φ→η'γ)/Γ(φ→ηγ)

Γ(η'→ωγ)/Γ(ω→π0γ)

Γ(ω→ηγ)/Γ(ω→π0γ)

Γ(ρ→ηγ)/Γ(ω→π0γ)

Γ(φ→ηγ)/Γ(ω→π0γ)

Γ(φ→π0γ)/Γ(ω→π0γ)

Γ(K*+→K+γ)/Γ(K*0→K0γ)

-3 -2 -1 0 1 2 3

Γ(η'→γγ)/Γ(π0→γγ)

Γ(η'→ργ)/Γ(ω→π0γ)

Γ(φ→η'γ)/Γ(φ→ηγ)

Γ(η'→ωγ)/Γ(ω→π0γ)

Γ(ω→ηγ)/Γ(ω→π0γ)

Γ(ρ→ηγ)/Γ(ω→π0γ)

Γ(φ→ηγ)/Γ(ω→π0γ)

Γ(φ→π0γ)/Γ(ω→π0γ)

Γ(K*+→K+γ)/Γ(K*0→K0γ)

-3 -2 -1 0 1 2 3

Figure 2. Pulls of the fit using PDG-2008 data, left: ZG free, right: ZG = 0 (fixed).

The reason of the worsening of the fit is found comparing the pulls of the new fit (figure 2)

with the previous one (figure 1). In particular, the pull of the ratio Γ(ω → ηγ)/Γ(ω → π0γ)

goes from -0.93 using PDG-2006 data to -1.5 using PDG-2008 while the pull of the ratio

Γ(ρ→ ηγ)/Γ(ω → π0γ) goes from -0.14 to +0.39. This happens because the PDG estimate

of the BR(ω → ηγ) has changed from (4.9± 0.5)× 10−4 to (4.6± 0.4)× 10−4, lowering the

Γ’s ratio and worsening the pull.1

The BR(ω → ηγ) and BR(ρ→ ηγ) PDG values are dominated by the measurement of

the e+e− → ηγ cross section by SND [14] as a function of
√

s in the ρ,ω,φmass range. From

the measured cross section they extract the ρ, ω partial decay widths assuming the Vector

Meson Dominance model and a parametrisation for the ρ′ resonance. Some correlation is

therefore expected between the ρ and the ω partial decay widths which are not discussed

in ref. [14], moreover the decay widths are model dependent. The average value reported

by PDG-2008, BR(ω → ηγ) = (6.3 ± 1.3) × 10−4, is dominated by a model independent

measurement [15] and is 1.2σ away from the PDG fit. Using this value for BR(ω → ηγ) we

obtain a much better χ2 probability: P (χ2) = 28% in the gluonium hypothesis and 1.1%

fixing the gluonium at zero [12]. Both gluonium content and pseudoscalar mixing angle are

unchanged (Z2
G = 0.11 ± 0.04, ψP = (40.6 ± 0.7)◦ in the gluonium hypothesis). Therefore

we will use the average value for BR(ω → ηγ) in the following.

1A fit without the Γ(η′
→ γγ)/Γ(π0

→ γγ) ratio has been performed in order to check its effect on the

ω → ηγ and ρ → ηγ pulls. In this case the χ2/ndf of the fit is high also in the null gluonium hypothesis,

nevertheless the Γ(ω → ηγ)/Γ(ω → π0γ) pull is -0.68 while the Γ(ρ → ηγ)/Γ(ω → π0γ) pull is +1.1.

In other words the BR(ω → ηγ) fits better while the BR(ρ → ηγ) fits worse. The difference of the two

measurements from the best fit is still ∼ 2σ, therefore the poor χ2 with PDG-2008 data is not due to

η′
→ γγ but to the inconsistency between Γ(ω → ηγ) and Γ(ρ → ηγ) measurements.
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● Mixing parameters from the η and η’ transition form factors

Purpose:

Motivations:

●

●

To extract the slope and curvature parameters of the TFFs !
as well as their values at zero and infinity from experimental data

To discuss the impact of these results on the!
mixing parameters of the η and η’ system

In collab. with P. Masjuan and P. Sánchez-Puertas (Mainz) 

arXiv:1307.2061 [hep-ph] 

To present an analysis of the η and η’ !
transition form factors in the space-like region at !
low and intermediate energies in a model-independent way!
through the use of rational approximants

http://arxiv.org/abs/arXiv:1307.2061


● Pseudoscalar transition form factors

e± e±

e⌥ e⌥

�⇤

�⇤
TFF 

q1

q2

F (q21 , q
2
2) ⌘, ⌘0

strong interaction

Selection criteria!
- 1 e- detected!
- 1 e+ along beam axis!
- Meson full reconstructed

Momentum transfer!
- highly virtual photon ⇒ tagged!

- quasi-real photon ⇒ untagged

�⇤

�

e+e+

e�(p)

e�(p0)

q1

q2

⌘, ⌘0

Single Tag Method

not exp. accesible



● Pseudoscalar transition form factors

@ low-momentum transfer:
slope (related to charge radius)

curvature

or
axial anomaly!
(not for η and η’) exp. decay width

@ large-momentum transfer:

F (Q2) =

Z
TH(x,Q2)�P (x, µF )dx

convolution of perturbative and !
non-perturbative regimes

TH(�⇤� ! qq̄) �P (qq̄ ! P )

@ lowest order in pQCD



● Padé Approximants

Q2F⌘(0)�⇤�(Q
2, 0) = a0Q

2 + a1Q
4 + a2Q

6 + . . .

PN
M (Q2) =

TN (Q2)

RM (Q2)
= a0Q

2 + a1Q
4 + a2 +Q6 + · · ·+O((Q2)N+M+1)

simple, systematic and model-independent!
parametrization of experimental data in the 
whole energy range (better convergence)

Fitting method: use of different sequences of PAs

●How many sequences?
depends on the analytic structure of the exact function

●How many elements per sequence?
limited by exp. data points and statistical errors



● Application to η and η’ TFFs

To use the P[N,1](Q2) and P[N,N](Q2) sequences of PAs 

single resonance dominance

asymptotic behaviour

η TFF η’ TFF



● Results

Slope and curvature:

Comparison with other results:

ChPT: bη=0.51, bη’=1.47

VMD: bη=0.53, bη’=1.33

cQL: bη=0.51, bη’=1.30

BL: bη=0.36, bη’=2.11

CELLO: bη=0.428(89), bη’=1.46(23)

CLEO: bη=0.501(38), bη’=1.24(8)

Lepton-G: bη=0.57(12), bη’=1.6(4)

MAMI: bη=0.58(11), WASA: bη=0.68(26)

NA60: bη=0.585(51)

Disp: bη=0.61(+0.07)(-0.03), bη’=1.45(+0.17)(-0.12) η,η’→γ*γ



● Results

η,η’→γγ decay widths (TFFs @ Q2=0):

�pred
⌘!�� = (0.41± 0.18)keV

�PDG
⌘!�� = (0.51± 0.03)keV �PDG

⌘0!�� = (4.34± 0.14)keV

�pred
⌘0!�� = (4.21± 0.43)keV

Asymptotic values (TFFs @ Q2→∞):

determination of η-η’ mixing parameters

disagrees with BABAR!
@112 GeV (time-like)

agrees with BABAR!
@112 GeV (time-like)



● Impact on η-η’ mixing parameters 

Quark-flavour basis:

pseudoscalar decay constants

large-Nc limit:

Decay widths:

Asymptotic expressions:

7

lated from Eq. (2), allow for the analysis of ⌘-⌘0 mixing.
This study can be performed either in the octet-singlet
basis, where the physical states are constructed employ-
ing the octet and singlet states, or the quark-flavour ba-
sis, through the flavour states |⌘qi ⌘ (|uūi + |dd̄i)/p2
and |⌘si ⌘ |ss̄i. In both cases, the leading 1/Q2 coef-
ficients and the normalization of the TFFs at zero, are
written as functions of the di↵erent four pseudoscalar de-

cay constants, defined as h0|A(a,i)
µ |⌘(0)(p)i = i

p
2F (a,i)

⌘(0)
pµ,

where a = 8, 0 or i = q, s depending on the chosen basis3.
For the reason explained below, we analyze ⌘-⌘0 mixing
using the quark-flavour basis [48–60]. In this basis, the
⌘ and ⌘0 decay constants are parametrized as

 
F q
⌘ F s

⌘

F q
⌘0 F s

⌘0

!
=

 
Fq cos�q �Fs sin�s
Fq sin�s Fs cos�s

!
, (6)

where Fq,s are the light-quark and strange pseudoscalar
decay constants, respectively, and �q,s the related mixing
angles. Several phenomenological analyses find �q ' �s,
which is also supported by large-Nc ChPT calculations
where the di↵erence between these two angles is seen to
be proportional to an OZI-rule violating parameter and
hence small [48, 56]. This assumption, �q = �s ⌘ �, is
also a requirement of the FKS scheme [50, 52].

Within this approximation, the asymptotic limits of
the TFFs take the form

lim
Q2!1

Q2F⌘�⇤�(Q
2) = 2(ĉqF

q
⌘ + ĉsF

s
⌘ )

= 2(ĉqFq cos�� ĉsFs sin�) ,

lim
Q2!1

Q2F⌘0�⇤�(Q
2) = 2(ĉqF

q
⌘0 + ĉsF

s
⌘0)

= 2(ĉqFq sin�+ ĉsFs cos�) ,

(7)

and their normalization at zero

F⌘��(0) =
1

4⇡2

 
ĉqF s

⌘0 � ĉsF
q
⌘0

F s
⌘0F

q
⌘ � F q

⌘0F
s
⌘

!

=
1

4⇡2

✓
ĉq
Fq

cos�� ĉs
Fs

sin�

◆
,

F⌘0��(0) =
1

4⇡2

 
ĉqF s

⌘ � ĉsF q
⌘

F s
⌘F

q
⌘0 � F q

⌘F s
⌘0

!

=
1

4⇡2

✓
ĉq
Fq

sin�+
ĉs
Fs

cos�

◆
,

(8)

with ĉq = 5/3 and ĉs =
p
2/3.

Using Eqs. (7) and (8), one can attempt to predict the
mixing parameters in the quark-flavour basis, that is, the

3 The axial-vector currents are defined as Aa
µ = q̄�µ�5

�ap
2
q, with

Aq
µ = 1p

2
(ū�µ�5u + d̄�µ�5d) = 1p

3
(A8

µ +
p
2A0

µ) and As
µ =

s̄�µ�5s = 1p
3
(A0

µ �
p
2A8

µ).

two decay constants, Fq and Fs, and the single mixing
angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
of the ⌘0 TFF in Eq. (4), the following results are found

Fq/F⇡ = 1.01(2) , Fs/F⇡ = 0.95(4) ,

� = 33.2(0.7)� ,
(10)
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angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0
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N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
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cluded in the fits), where the stabilization is attained and
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ingly, we do not recommend to use the asymptotic limit
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same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2
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in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
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� = 33.2(0.7)� ,
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ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
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We start considering our best scenario in terms of con-
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with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
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and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.
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⌘ � ĉsF q
⌘

F s
⌘F

q
⌘0 � F q

⌘F s
⌘0

!

=
1

4⇡2

✓
ĉq
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angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0
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N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2
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s
⌘ )
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q
⌘0 + ĉsF
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angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
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on the precision achieved by the PAs. While for the ⌘0
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ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
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with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
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q
⌘0

F s
⌘0F

q
⌘ � F q

⌘0F
s
⌘

!

=
1

4⇡2

✓
ĉq
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two decay constants, Fq and Fs, and the single mixing
angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
decay widths �⌘!�� = 0.516(18) keV and �⌘0!�� =
4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
and ⌘(0) ! �� decays, and the ratio RJ/ ⌘ �(J/ !
⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
of the ⌘0 TFF in Eq. (4), the following results are found

Fq/F⇡ = 1.01(2) , Fs/F⇡ = 0.95(4) ,

� = 33.2(0.7)� ,
(10)
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s
⌘ )

= 2(ĉqFq cos�� ĉsFs sin�) ,

lim
Q2!1

Q2F⌘0�⇤�(Q
2) = 2(ĉqF
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Fs

sin�

◆
,

F⌘0��(0) =
1

4⇡2
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angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
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of the ⌘ TFF we take the value shown in Eq. (4),
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ues, the mixing parameters are predicted to be
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� = 40.2(1.6)� ,
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with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
analysis of V ! ⌘(0)�, ⌘(0) ! V �, with V = ⇢,!,�,
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⌘0�)/�(J/ ! ⌘�). An update of the former values tak-
ing into account the latest experimental measurements
of these decays gives Fq/F⇡ = 1.07(1), Fs/F⇡ = 1.63(3)
and � = 39.6(0.4)�. An older phenomenological analy-
sis based on the FKS scheme leads to Fq/F⇡ = 1.07(3),
Fs/F⇡ = 1.34(6) and � = 39.3(1.0)� [50] (see Ref. [52] for
a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
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In particular, we ascribe a 1% error to the P 2
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two decay constants, Fq and Fs, and the single mixing
angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
partial widths in the fits. Nevertheless, for the sake of
comparison, we will explore all the di↵erent possibilities
for extracting such parameters.
We start considering our best scenario in terms of con-

fidence and precision. For the normalization at zero
of both TFFs we use |F⌘��(0)|exp = 0.274(5) GeV�1

and |F⌘0��(0)|exp = 0.344(6) GeV�1 from the measured
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4.35(14) keV, respectively, and for the asymptotic value
of the ⌘ TFF we take the value shown in Eq. (4),
limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21) GeV. With these val-
ues, the mixing parameters are predicted to be

Fq/F⇡ = 1.07(1) , Fs/F⇡ = 1.53(23) ,

� = 40.2(1.6)� ,
(9)

with F⇡ = 92.21(14) MeV [32]. These values represent a
second important result of this work. They can be com-
pared, for instance, with the determination of the mix-
ing parameters obtained in Ref. [56], Fq/F⇡ = 1.10(3),
Fs/F⇡ = 1.66(6) and � = 40.6(0.9)�, after a careful
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a compendium of di↵erent results). The agreement be-
tween these determinations and the values in Eq. (10) is
quite impressive since we only use the information of the
TFFs to predict the mixing parameters. These predic-
tions include a systematic error from the fit procedure.
In particular, we ascribe a 1% error to the P 2

2

(Q2) used
in the fit.

If instead of using the asymptotic value of the ⌘ TFF
for the study of ⌘-⌘0 mixing, we use the asymptotic value
of the ⌘0 TFF in Eq. (4), the following results are found

Fq/F⇡ = 1.01(2) , Fs/F⇡ = 0.95(4) ,

� = 33.2(0.7)� ,
(10)

7

lated from Eq. (2), allow for the analysis of ⌘-⌘0 mixing.
This study can be performed either in the octet-singlet
basis, where the physical states are constructed employ-
ing the octet and singlet states, or the quark-flavour ba-
sis, through the flavour states |⌘qi ⌘ (|uūi + |dd̄i)/p2
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ĉq
Fq

sin�+
ĉs
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angle �, with the results obtained in our fits. However,
only three of the four equations are independent, so, we
have to choose the set of three equations that will be used
to get the three mixing parameters. Our choice is based
on the precision achieved by the PAs. While for the ⌘0

TFF the PN
N (Q2) sequence reaches only the N = 1 ele-

ment, with the consequent lack of stability checks and big
uncertainties discussed above, the ⌘ TFF reaches N = 2
(when the measured two-photon partial widths are in-
cluded in the fits), where the stabilization is attained and
the uncertainty of the fitted parameters reduced. Accord-
ingly, we do not recommend to use the asymptotic limit
of the ⌘0 TFF to extract the mixing parameters. For the
same reason, confident results for these parameters will
be only obtained in the case of including the two-photon
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pared, for instance, with the determination of the mix-
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in clear disagreement with all the values reported by the
phenomenological analyses mentioned above and the re-
sults in Eq. (10). This discrepancy may be an indica-
tion of the lack of stability of the P 1

1

(Q2) to predict
the asymptotic limit. However, the value we have ob-
tained, limQ2!1 Q2F⌘0�⇤�(Q2) = 0.254(4), is in accord
with the BABAR measurement in the timelike region
at q2 = 112 GeV2, q2|F⌘0�⇤�(q2)|

112GeV

2 = 0.251(21)
[30]. This contrasts with the situation for the ⌘ TFF.
Our fitted value, limQ2!1 Q2F⌘�⇤�(Q2) = 0.164(21),
which we have used to get a reasonable estimate of the
mixing parameters in Eq. (10), is not in line with the
value q2|F⌘�⇤�(q2)|

112GeV

2 = 0.229(31) reported by the
BABAR Coll. Given this situation, it might be the case
that the mixing scheme used here is not complete enough
to catch the physical features of the ⌘-⌘0 mixing (higher
order e↵ects of the chiral and large-Nc expansions or in-
cluding gluonium e↵ects could be of certain relevance).
Therefore, precise determinations of the mixing parame-
ters from Lattice QCD techniques will be very welcome4,
also for the implications of such mixing in the light-by-
light scattering contribution to the anomalous magnetic
moment of the muon, which are the subject of the next
section.

For completeness, we also provide a prediction of the
mixing parameters when the two-photon partial widths
measurements are not included in the fits. In this case,
we use the asymptotic value of the ⌘ TFF, obtained
now with a P 1

1

(Q2), as well as the predicted normal-
izations at zero, F⌘��(0)|fit = 0.244(55) GeV�1 and
F⌘0��(0)|fit = 0.338(17) GeV�1, from Table I. We find
Fq/F⇡ = 1.21(7), Fs/F⇡ = 1.5(2) and � = 45(3)�, in fair
agreement with the results in Eq. (10) but less precise.

IV. IMPLICATIONS ON THE HADRONIC
LIGHT-BY-LIGHT CONTRIBUTION TO THE

(g � 2)µ

The hadronic contributions to the anomalous magnetic
moment of the muon aµ consists on hadronic vacuum
polarization as well as hadronic light-by-light scattering
(HLBL). The latter cannot be directly related to any
measurable cross section and requires the knowledge of
QCD contributions at all energy scales. Since this is
not known yet, one relies on hadronic models to com-
pute it [61–75]. Indeed, the theoretical value of aµ is
currently limited by uncertainties from the HLBL scat-
tering contribution leading to an uncertainty in aµ of
(2.6�4)⇥10�10 [76–78] as well as the one from hadronic
vacuum polarization (4.2� 4.9)⇥ 10�10 [79, 80].

4 Recently, the ETM Collaboration has reported a value for the ⌘-
⌘0 mixing angle in the quark flavour basis of � = 46(1)stat(3)�sys
[95], in good agreement with other lattice determinations, � =
40.6(2.8)�, from the RBC and UKQCD Collaborations [96], and
� = 42(1)�, from the Hadron Spectrum Coll. [97].

The present world average experimental value is given
by aEXP

µ = 11659208.9(6.3)⇥ 10�10 [81, 82], still limited
by statistical errors, and a proposal to measure the muon
(g � 2)µ to a precision of 1.6 ⇥ 10�10 has recently been
submitted to FNAL [83]. In view of this proposal, it is
important to have better control on the HLBL contribu-
tion which as we will see may demand also better control
on the TFF studied so far.
A complete discussion of HLBL contributions in-

volves the full rank-four hadronic vacuum polarization
⇧µ⌫�⇢(q1, q2, q3). However, using the large-Nc limit of
QCD [84, 85] and also the chiral counting, it was pro-
posed in [86] to split the HLBL into a set of di↵erent
contributions where the numerically dominant one arises
from the pseudo-scalar exchange piece (see Ref. [77] for
details). Indeed, it was shown in [65] that this piece

accounts aHLBL;⇡0

µ ⇠ 7 ⇥ 10�10, followed by the ⌘ and

⌘0 contributions (aHLBL;⌘(0)

µ ⇠ 1.5 ⇥ 10�10). The main
ingredient on the determination of the pseudoscalar-
exchange process aHLBL,PS

µ is the double o↵-shell TFF
FP⇤�⇤�⇤((q

1

+q
2

)2, q2
1

, q2
2

) with a dominant piece when the
pseudoscalar is on-shell [65]. The TFF should be consid-
ered to be o↵-shell (see Refs. [67, 68, 71, 77, 78] where
this point is addressed). Since such e↵ects for the ⌘ and
⌘0 are not known, we should keep the pseudoscalar-pole
simplifications in our calculations.
In this section we plan to study the impact of the re-

sults obtained in the Section II to the HLBL with the
intuition that it is more important to have a good descrip-
tion at small and intermediate energies, e.g., by reproduc-
ing the slope and curvature of the TFFs, than a detailed
short-distance analysis since the angular integrals used
to compute aHLBL

µ do not seem to be very sensitive to
the correct asymptotic behavior for large momenta [65].
With our model-independent results for the LEPs on the
TFF collected in Table II we expect to have a reliable
account for the pseudoscalar contribution to aHLBL

µ . For
completeness, we also collect the results for the ⇡-TFF
obtained in Ref. [74] (i.e, aHLBL,⇡0

µ = 6.49(56) · 10�10

and aHLBL,⇡0

µ = 6.51(71) · 10�10 for the first and sec-
ond elements on the PA sequence, with the full o↵shell
TFF obtained with the same method used in this work)
in order to provide aHLBL,PS

µ , i.e., the pseudoscalar ex-
change contributions to the hadronic light-by-light scat-
tering part of the anomalous magnetic moment aµ .
In the Large-Nc limit, QCD Green’s functions consist

of infinitely many non-interacting sharp mesons states
whose masses and decay constants are in principle un-
known. As such sum is not known in practice, one ends
up truncating the spectral function in a resonance satura-
tion scheme, the so-called Minimal Hadronic Approxima-
tion [87]. The resonance masses used in each calculation
are then taken as the physical ones from PDG instead
of the corresponding masses in the large-Nc limit. The
e↵ect of the spectrum truncation should be taken into
account on the final systematic error [41, 88].
A way of evade these caveats comes from the Padé The-



● Further applications of this method
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FIG. 7: Results of this work (solid squares) for the η TFF, |Fη(mll)|
2, compared to other recent measurements and theoretical

predictions: former data of the A2 Collaboration [6] (open circles in (a)) and the NA60 in peripheral In–In data [7] (open
squares in (b)), calculations of Refs. [24] (dash-dotted line in (a)), Refs. [27] (dashed line with an error band in (a)), and
Ref. [31] (dotted line with an error band in (b)). The solid line is the fit from Fig. 6(b) rescaled so that p0 = 1.

is

Λ−2 = (1.95± 0.15stat ± 0.10syst) GeV−2, (3)

which is in very good agreement within the errors with all
recent results reported in Refs. [6–8]. As seen in Fig. 7,
the |Fη(mll)|2 results of this work are in similar good
agreement within the error bars with the data points from
Refs. [6, 7].
The uncertainty reached for the Λ−2 value in the

present work is smaller than those of all previous mea-
surements based on the η → e+e−γ decay, is of a simi-
lar magnitude as the NA60 value from peripheral In–In
data [7], and still yields to the latest, preliminary result
of the NA60 from p–A collisions [8].
In Fig. 7, the results of this work for |Fη(mll)|2 are also

compared to three different theoretical predictions. Since
all models assume that |Fη(mll = 0)|2 = 1, for a better
comparison, the fit to the data points from Fig. 6(b) is
rescaled by setting its normalization parameter to p0 = 1
and leaving its second parameter p1, reflecting the slope
parameter Λ−2, unchanged. The calculation by Ter-
schlüsen and Leupold (TL) combines the vector-meson
Lagrangian proposed in Ref. [22] and recently extended
in Ref. [23], with the Wess-Zumino-Witten contact inter-
action [24] (see also Ref. [25] for the corresponding case
of the π0 TFF). Their calculation agrees very well with
the standard VMD form factor. As seen, the TL cal-
culation (shown in Fig. 7(a) by a dash-dotted line) goes
slightly lower than the pole-approximation (Eq. (2)) fit
to the present data, whereas it fully describes the data
points within the error bars.

The second calculation is based on a model-
independent method using Padé approximants that was
developed for the π0 TFF in Ref. [26]. Using space-
like data (CELLO [28], CLEO [29], BABAR [30]), this
method provides a parametrization that is also suited
to describe data in the range mll = (0.−

√
0.4) GeV/c2,

and thus provides a model-independent prediction for the
timelike TFF [27]. Over the full mll range, this calcula-
tion (shown in Fig. 7(a) by a dashed line with an error
band) practically overlaps with the pole-approximation
fit to the present data points.
In another recent calculation [31] by the Jülich group,

the connection between the radiative decay η → π+π−γ
and the isovector contributions of the η → γγ∗ TFF is
exploited in a model-independent way, using dispersion
theory (DT). This calculation (shown in Fig. 7(b) by a
dotted line with an error band) goes slightly above the
fit to the present data.

V. SUMMARY AND CONCLUSIONS

A new determination of the electromagnetic transi-
tion form factor from the η → e+e−γ Dalitz decay
was presented in this paper. The statistical accuracy
achieved in this work surpasses all previous measure-
ments of η → e+e−γ and matches the NA60 result based
on η → µ+µ−γ decays from peripheral In-In collisions.
Compared to the former determination of the η TFF by
the A2 Collaboration, an increase by more than one or-
der of magnitude in statistic has been achieved. This was
accomplished by an analysis of three times more data

M. Unverzagt et al. (A2 Coll. @MAMI), arXiv:1309.5648 [hep-ex]

Our prediction is behind 
the experimental fit!

The Transition Form Factor
Results for the ⌘ & ⌘0 TFF with Space-like data

Update with MAMI Time-like data (PRELIMINARY)
Applications

• Our method may be extended to low q

2 time-like data.
• Alternatively, we can use the data from MAMI in our fitting procedure.
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Adding MAMI data!
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Analysis of π0, η and η’ contributions to HLbL of (g-2)μ
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● Summary and Conclusions

We have analyzed the experimental data on the !
η and η’ TFF at low and intermediate energies with a !
model independent approach based on Padé approximants!
(extending the analysis for the π0-TFF)

We have obtained accurate values of the corresponding !
slope and curvature parameters as well as the !
values of the TFFs at zero and infinity

We have quantified the impact of these results on the !
η and η’ mixing parameters

P. Masjuan, PRD 86 (2012) 094021

More experimental data would be desirable (BELLE?)!
to further improve this method

We have foreseen further applications of the method 
of Padé approximants (time-like processes, muon g-2)
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Table 1 

Experimental J/I,// -+ VP branching ratios from PDG [6] and results of our fits. BR’s for all VP channels are in 10W3 

PT 

K*+K- f C.C. 

K*OK” + C.C. 

@rl 

011’ 

:; 

Prl 

Prl’ 

6J7r” 

+-O 

g 

s 

e 

0, 

Y 

XV 

Exp. (Ref. [6]) 

12.8 f 1.0 

5.0 z!z 0.4 

4.2 i 0.4 

1.58 f 0.16 

0.167 f 0.025 

0.65 0.33 f f 0.07 0.04 

0.193 f 0.023 

0.105 f 0.018 

0.42 f 0.06 

< 0.0068 

Fit (Ref. [3]) Fit (Ref. [4]) 

11.1 f 0.8 11.2 f 0.8 

5.17 zt 0.51 5.05 & 0.48 

4.41 + 0.56 4.48 rt 0.55 

1.71 f 0.14 1.69 f 0.14 

0.173 f 0.030 0.177 f 0.031 

0.665 0.305 f f 0.086 0.122 0.671 0.278 f f 0.115 0.074 

0.212 f 0.019 0.209 f 0.019 

0.0963 f 0.0079 0.0996 f 0.0081 

0.373 f 0.031 0.374 f 0.031 

0.0011 f 0.0001 0.0011 f 0.0001 

1.065 f 0.036 1.075 f 0.038 

0.097 f 0.031 0.112 f 0.027 

0.117 zt 0.005 0.117 + 0.005 

1.29 k 0.16 1.35 zt 0.16 

-0.148 f 0.009 -0.151 It 0.009 

0.794 f 0.014 0.786 f 0.014 

listed in [ 61; the upper limit for BR( qk) has been 

established by [ 31; and the nine remaining BR’s, 

with relative experimental errors ranging from about 

8 to 17 %, come from Refs. [ 31 and [4]. Altogether 

they constitute an excellent and exhaustive set of data 

which remains unchanged in the recent editions of the 

PDG compilations. Part of these data were already 

used in the analyses of Refs. [ 3-51; our purpose here 

consists also in improving these analyses by using the 

complete set. 

Attempts to understand these decays in a phe- 

nomenological context started immediately after the 

appearance of the data and all these attempts were 

based on the same essential model with slight varia- 

tions [ 3-5,7]. The dominant piece of the amplitude 

is unanimously assumed to proceed through the anni- 

hilation of the initial CC pair into the SU( 3) -flavorless 

part of the final VP system via three (or more) glu- 

ons; we will denote this strong interaction piece of the 

amplitude by g. The non-vanishing of the BR( cm) 

and the differences between the BR’s into charged 

or neutral K*z + KI? systems, clearly requires an 

electromagnetic piece in the amplitude coupling to 

both the isoscalar and isovector parts of the final VP; 

this correction to the dominant part of the amplitude 

will be denoted by e (the phase of e relative to g is 

defined to be 8,). Apart from these two contributions, 

associated to “connected” diagrams, a good fit is 

achieved only if “disconnected” (Ref. [ 31) or, equiv- 

alently, “doubly-OZI-violating” (Ref. [ 41) diagrams 

are introduced too; their contribution to the amplitude 

will be denoted by rg, with Y < 1 being the ratio 

between this latter correction and the dominant piece 

g. The explicit amplitudes of Ref. [4] are then easily 

obtained (with our gs terms called h in Ref. [ 41) , 

Ah-) =g+e, 

A(K**KF)=g(l-s)+e(2-x), 

A(K*‘f?) = g( 1 - S) - 2e( 1 +x)/2, 

A(morl) = (g+ e)X, + h-g(hX, + Y,> , 

A(wod = (g + e>X,, + firgCl/zX,, + Y,,> , 

A(40rl) = Ml - 2s) - 2exlY, 

+rg(l-s)(JZX,+Y,), 

A(+070 = [g( 1 - 2s) - 2exlY,, 

+ rg( 1 - s> <Jzx,, + Y,,> , 

A(m) = 3eX,, 

At PBQ = 3eX,, , 

A( won-‘) = 3e, 

PDG’97* PDG’08

=
=

1.74±0.20
0.182±0.021
0.75±0.08
0.40±0.07

=
=

0.45±0.05
<0.0064 C.L. 90%

BR×10-3

*MARK III Coll., Phys. Rev. D38 (88) 2695!
DM2 Coll., Phys. Rev. D41 (90) 1389

BABAR Coll., Phys. Rev. D70 (04) 072004!
BES Coll., Phys. Rev. D70 (04) 012005

BABAR Coll., Phys. Rev. D73 (06) 052003
BES Coll., Phys. Rev. D73 (06) 052007

BES Coll., Phys. Rev. D71 (05) 032003

BES Coll., Phys. Rev. D71 (05) 032003
BES Coll., Phys. Rev. D73 (06) 052007
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● A model for J/ψ→VP transitions

Amplitudes:

strong singly disconnected (SOZI) ≡ g

strong doubly disconnected (DOZI) ≡ rg DOZI for J/ψ→V+Glueball ≡ r’g 

electromagnetic singly disconnected (eSOZI) ≡ e



● A model for J/ψ→VP transitions

Amplitudes:

A. Seiden et al., Phys. Rev. D38 (1988) 824

+
�

2r�gZ��

+
�

2r�gZ�

+r�g(1� sv)Z�

+r�g(1� sv)Z��

s, se, sp and sv are SU(3)-breaking parameters

Simplifications of our analysis:

second order SU(3)-breaking contributions sp and sv are neglectedi)

x≡1-se=m/ms with ms/m=1.24±0.07 and ϕV=(3.2±0.1)�ii)
Zη=0 from V→Pγ and P→Vγ decays!
R. E. and J. Nadal, JHEP 05 (2007) 6

iii)



 χ2/d.o.f.=3.0/2 with ϕP=(44.5±4.3)� and (Zη’)2=0.28+0.16-0.44

 χ2/d.o.f.=1.9/2 with ϕP=(45.0±4.3)� and (Zη’)2=0.30+0.15-0.38

 χ2/d.o.f.=3.4/4 with ϕP=(40.2±2.4)�

 χ2/d.o.f.=4.2/4 with ϕP=(40.5±2.4)�

a) gluonium not allowed for η’ Zη’=0

i) 

x=0.81±0.05 and ϕV=(3.2±0.1)�ii) 

x=1 and ϕV=0�

with s=(29±3)% and |r|=(37±1)% in i)

● Results

b) gluonium allowed for η’ Zη’≠0

i) 

ii) 

with s=(27±3)%, |r|=(36±8)% and |r’|=(12±22)% in i)

x=1 and ϕV=0�

as before

Remarks:

● the effect of second order SU(3)-breaking contributions sp and sv is negligible

● the same fits with the pion modes removed are slightly better

● the same fits with the old data are worse, χ2/d.o.f.=7.3/4 vs. χ2/d.o.f.=3.4/4 for instance

R. E., Eur. Phys. J. C65 (2010) 467



The values found for (Zη’)2=0.30+0.15-0.38 or ϕη’G=(33+10-24)� suggest 
within the model some small gluonic component of the η’ 

● Summary of the J/ψ→VP analysis and conclusions

We have performed an updated phenomenological analysis of an accurate and 
exhaustive set of J/ψ→VP decays with the purpose of determining the quark 
and gluon content of the η and η’ mesons

2)

3)

4) The inclusion of the vector mixing angle (not included in previous analyses)!
is irrelevant

5) The recent values of BR(J/ψ→ρπ) by BABAR and BES Coll. are 
crucial in order to get a consistent description of data

The current experimental data on J/ψ→VP decays are described in terms of 
one mixing angle in a consistent way

1)

Accepting the absence of gluonium for the η’ meson, the η-η’ mixing angle!
is found to be ϕP=(40.2±2.4)� or θP=(-14.5±2.4)�, in agreement with recent 
phenomenological estimates
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