

Dispersion theory and chiral dynamics: from light- to heavy-meson decays

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics Universität Bonn, Germany

> Workshop on Light-Meson Dynamics Mainz, February 10th 2014

Outline

Heavy-meson Dalitz plots — why, and how (not)?

Dispersion relations for three-body decays

- an ideal test case: $\phi \rightarrow 3\pi$
- vector-meson transition form factors
- status report: $D^+ \rightarrow \pi^+ \pi^+ K^-$

- Niecknig, BK, Schneider 2012
- Schneider, BK, Niecknig 2012
 - Niecknig, BK in progress

Heavy-meson semileptonic decays

• $B \to \pi \pi \ell \nu$ and $|V_{ub}|$

- Kang et al. 2013
- outlook: $D \to \pi K \ell \nu$ and πK phase shifts Daub et al. in progress

Summary / Outlook

Heavy-meson Dalitz plots: hunting for CP violation

CP violation in partial widths $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- at least two interfering decay amplitudes
- different weak (CKM) phases
- different strong (final-state-interaction) phases

Heavy-meson Dalitz plots: hunting for CP violation

CP violation in partial widths $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- at least two interfering decay amplitudes
- different weak (CKM) phases
- different strong (final-state-interaction) phases

two-body decays: $D \to \pi \pi, \, K \bar{K}$

 decay at fixed total energy → fixed strong phase

Heavy-meson Dalitz plots: hunting for CP violation

CP violation in partial widths $\Gamma(P \to f) \neq \Gamma(\bar{P} \to \bar{f})$

- at least two interfering decay amplitudes
- different weak (CKM) phases
- different strong (final-state-interaction) phases

two-body decays: $D \rightarrow \pi \pi, \ K \bar{K}$

 decay at fixed total energy —> fixed strong phase

three-body decays: $D \rightarrow 3\pi, \pi\pi K$

- Dalitz plot

 density distribution in two kinematical variables
- resonances —> rapid phase variation enhances CP-violation in parts of the decay region

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

Amplitude analyses in Dalitz plots

The traditional picture: isobar model / Breit–Wigner resonances

1400

A simple Dalitz plot: $\phi ightarrow 3\pi$

- 2×10^6 events in 1834 bins KLOE 2003
- analyzed in terms of:

3 Breit–Wigners (ρ^{\pm} , ρ^{0})

+ constant background term

Problem:

- \rightarrow unitarity fixes Im/Re parts
- \longrightarrow adding a contact term destroys this relation

A simple Dalitz plot: $\phi ightarrow 3\pi$

Problem:

- \rightarrow unitarity fixes Im/Re parts
- \rightarrow adding a contact term destroys this relation

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial \Omega} \frac{T(z)dz}{z-s}$$

$$T(s) = \frac{1}{2\pi i} \oint_{\partial\Omega} \frac{T(z)dz}{z-s}$$
$$\longrightarrow \frac{1}{2\pi i} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{disc} T(z)dz}{z-s}$$
$$= \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} T(z)dz}{z-s}$$

• disc $T(s) = 2i \operatorname{Im} T(s)$ calculable by "cutting rules":

inelastic intermediate states ($K\bar{K}$, 4π) suppressed at low energies \longrightarrow will be neglected in the following

Two-body decays: form factors

• just two hadrons: form factor, e.g. $e^+e^- \rightarrow \pi^+\pi^-$ C. Hanhart's talk

 ${\sf Im}\,F(s)\,\propto\,F(s) imes$ phase space $imes\,T^*_{\pi\pi}(s)$

 \rightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

Two-body decays: form factors

• just two hadrons: form factor, e.g. $e^+e^- \rightarrow \pi^+\pi^-$ C. Hanhart's talk

 ${\sf Im}\,F(s)\,\propto\,F(s) imes$ phase space $imes\,T^*_{\pi\pi}(s)$

 \rightarrow final-state theorem: phase of F(s) is scattering phase $\delta(s)$ Watson 1954

• dispersion relations allow to reconstruct form factor from imaginary part \rightarrow elastic scattering phase $\delta(s)$:

$$F(s) \propto \exp\left\{rac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} ds' rac{\delta(s')}{s'(s'-s)}
ight\}$$
 Omnès 1958

• today: high-accuracy $\pi\pi$ (and πK) phase shifts available Ananthanarayan et al. 2001, García-Martín et al. 2011; Büttiker et al. 2004

Decay amplitude can be decomposed into single-variable functions $\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}n^{\mu}p^{\nu}_{\pi^{+}}p^{\alpha}_{\pi^{-}}p^{\beta}_{\pi^{0}}\left\{\mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)\right\}$

→ based on partial-wave expansion: only odd partial waves; neglect discontinuities/phases of F-waves and higher

Unitarity relation for $\mathcal{F}(s)$:

$$\operatorname{disc} \mathcal{F}(s) = 2i \left\{ \underbrace{\mathcal{F}(s)}_{\text{right hand out}} + \underbrace{\hat{\mathcal{F}}(s)}_{\text{lot hand out}} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

right-hand cut

left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc
$$\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

• right-hand cut only $\longrightarrow Omnès problem$

$$\mathcal{F}(s) = a \,\Omega(s) \,, \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

$$\hat{\mathcal{F}}(s) = rac{3}{2} \int_{-1}^{1} dz \left(1 - z^2\right) \mathcal{F}(t(s, z))$$
 Anis

Anisovich, Leutwyler 1998

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = a \,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)|} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^1 dz \,(1-z^2) \mathcal{F}(t(s,z)) \qquad \text{Anisovich, Leutwyler 1998}$$

 \rightarrow crossed-channel scattering between s-, t-, and u-channel Khuri, Treiman 1960

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{a}{\pi} + \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')| (s'-s)} \right\}$$

• one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{a}{\pi} + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')|(s'-s)} \right\}$$

- one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction
- $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

$$\mathcal{F}(s) = \Omega(s) \left\{ a + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1(s') \hat{\mathcal{F}}(s')}{|\Omega_1(s')|(s'-s)} \right\}$$

- one subtraction $a \longrightarrow$ fix to partial width, Dalitz plot prediction
- $\omega \rightarrow 3\pi$ vs. $\phi \rightarrow 3\pi$: crossed-channel effects depend on decay mass!

Niecknig, BK, Schneider 2012

$$\mathcal{F}(s) = \Omega(s) \left\{ a + b \, s + \frac{s^2}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

- number of necessary subtractions guessed from high-energy behaviour —> not very reliable
- increase precision by oversubtraction:
 - suppress high-energies / inelastic effects more efficiently
 - \triangleright gain some flexibility in the Dalitz plot description (one more complex constant b)
- important observation: $\mathcal{F}(s)$ linear in a, b

 $\mathcal{F}(s) = a \,\mathcal{F}_a(s) + b \,\mathcal{F}_b(s)$

 \longrightarrow basis functions $\mathcal{F}_{a,b}(s)$ calculated independently of a, b

 \longrightarrow subtraction constants a, b = experimental fit parameters

\rightarrow pairwise interaction only (with correct $\pi\pi$ scattering phase)

 \rightarrow full 3-particle rescattering, only overall normalization adjustable

- successive slices through Dalitz plot: Niecknig, BK, Schneider 2012 bin number χ^2 /ndof 1.7...2.1 1.2...1.5 1.0
 - full 3-particle rescattering, 2 adjustable parameters
 (additional "subtraction constant" to suppress inelastic effects)

- perfect fit respecting analyticity and unitarity possible
- contact term emulates neglected rescattering effects
- no need for "background" inseparable from "resonance"

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

• dispersion relations link hadronic to radiative decays:

• ω transition form factor related to

pion vector form factor $\times \omega \rightarrow 3\pi$ decay amplitude

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

dispersion relations link hadronic to radiative decays:

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

• dispersion relations link hadronic to radiative decays:

$$f_{\omega\pi^{0}}(0) = \frac{1}{12\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{q_{\pi}^{3}(s')}{s'^{3/2}} F_{\pi}^{V*}(s') f_{1}(s') , \quad \Gamma_{\omega \to \pi^{0}\gamma} \propto |f_{V\pi^{0}}(0)|^{2}$$

Schneider, BK, Niecknig 2012

• comparison to $\omega \to \pi^0 \mu^+ \mu^-$ mysterious NA60 2009, 2011 experiments for $\phi \to \pi^0 \ell^+ \ell^-$ would be highly welcome KLOE?

 Cabibbo-favoured decay, good statistics E791 2006, CLEO 2008, FOCUS 2009

- Cabibbo-favoured decay, good statistics E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \pi^+ \pi^0 \bar{K}^0$ BESIII 2014

- Cabibbo-favoured decay, good statistics E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \pi^+ \pi^0 \bar{K}^0$ BESIII 2014

Partial waves:

- Cabibbo-favoured decay, good statistics E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \pi^+ \pi^0 \bar{K}^0$ BESIII 2014

Partial waves:

- partial waves, weak, repuisive

- Cabibbo-favoured decay, good statistics E791 2006, CLEO 2008, FOCUS 2009
- coupled to $D^+ \to \pi^+ \pi^0 \bar{K}^0$ BESIII 2014

Partial waves:

pion-pion $S_{\pi\pi}^2$ **2** $P_{\pi\pi}^1$ **2** \rightarrow **0**

pion-kaon $S_{\pi K}^{1/2}$ **4** $P_{\pi K}^{1/2}$ **1**

$$S_{\pi K}^{3/2}$$
 2 \rightarrow **0** $P_{\pi K}^{3/2}$ **(**

number of subtraction constants \rightarrow using s + t + u = const.

 \longrightarrow 7 altogether

Dalitz plot $D^+ o \pi^+ \pi^+ K^-$

Dalitz plot $D^+ o \pi^+ \pi^+ K^-$

Breakdown of the elastic approximation?

- phase space limit: $\sqrt{s}, \sqrt{t} \le M_D M_\pi \approx 1.73 \,\mathrm{GeV}$
- onset of inelasticity in $S_{\pi K}^{1/2}$ for $\sqrt{s} \ge M_{\eta'} + M_K \approx 1.45 \,\text{GeV}$
 - \longrightarrow fit deteriorates beyond; exclude this region for now

(Slices through) Dalitz plot $D^+ o \pi^+ \pi^+ K^-$

• Omnès fit: $\chi^2/\text{ndof} \approx 1.42$

("isobar model" + non-resonant background waves)

• full dispersive solution: $\chi^2/\text{ndof} \approx 1.11$

 \longrightarrow visible improvement similar to $\phi \rightarrow 3\pi$

 full fit in terms of 7 complex subtraction constants (-1 phase, -1 overall normalisation)
 Niecknig, BK in progress

Heavy semileptonics: $B ightarrow \pi \pi \ell u$

- $B \rightarrow "\rho" \, \ell \nu$ exclusive decay to access $|V_{ub}|$
- " ρ " spectral function? S-wave background?
 - \longrightarrow control both by using dispersion relations for $\pi\pi$ rescattering

Heavy semileptonics: $B ightarrow \pi \pi \ell u$

- $B \rightarrow "\rho" \, \ell \nu$ exclusive decay to access $|V_{ub}|$
- " ρ " spectral function? S-wave background?
 - \longrightarrow control both by using dispersion relations for $\pi\pi$ rescattering

• idea: match to heavy-meson ChPT at large s_{ℓ} , soft-pion limit

- heavy-meson ChPT: similtaneous chiral and $1/m_B$ expansion
- at leading order: B → ππℓν given by B* pole terms
 determined by g_{B*Bπ} and f_B Burdman, Donoghue 1992; Wise et al. 1992

- heavy-meson ChPT: similtaneous chiral and $1/m_B$ expansion
- at leading order: $B \to \pi \pi \ell \nu$ given by B^* pole terms determined by $g_{B^*B\pi}$ and f_B Burdman, Donoghue 1992; Wise et al. 1992
- dispersive representation for partial waves at fixed s_{ℓ} :

$$f(s) = \hat{M}(s) + \Omega(s) \left\{ a_0 + a_1 s + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta(s') \hat{M}(s')}{|\Omega(s')|(s'-s)} \right\}$$

 $\hat{M}(s)$: partial-wave-projected B^* -pole terms Kang et al. 2013 \longrightarrow left-hand cut / square-root singularity at s = 0 \longrightarrow match $a_{0,1}$ at s = 0 (and to high-energy asymptotics)

- heavy-meson ChPT: similtaneous chiral and $1/m_B$ expansion
- at leading order: B → ππℓν given by B* pole terms
 determined by g_{B*Bπ} and f_B Burdman, Donoghue 1992; Wise et al. 1992
- dispersive representation for partial waves at fixed s_{ℓ} :

- heavy-meson ChPT: similtaneous chiral and $1/m_B$ expansion
- at leading order: B → ππℓν given by B* pole terms determined by g_{B*Bπ} and f_B Burdman, Donoghue 1992; Wise et al. 1992
- dispersive representation for partial waves at fixed s_{ℓ} :

- heavy-meson ChPT: similtaneous chiral and $1/m_B$ expansion
- at leading order: B → ππℓν given by B* pole terms
 determined by g_{B*Bπ} and f_B Burdman, Donoghue 1992; Wise et al. 1992
- dispersive representation for partial waves at fixed s_{ℓ} :

Heavy semileptonics: $D o \pi K \ell u$

Pais–Treiman method

- $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (K_{e4}): model-independent method to access $\pi\pi$ scattering phases $\delta_{0}^{0} - \delta_{1}^{1}$ E865 2001, NA48/2 2008
- $D \to \pi K \ell \nu$: analogous measurement of πK scattering phases $\delta_0^{1/2} \delta_1^{1/2}$

Heavy semileptonics: $D o \pi K \ell u$

Pais–Treiman method

- $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ (K_{e4}): model-independent method to access $\pi\pi$ scattering phases $\delta_{0}^{0} - \delta_{1}^{1}$ E865 2001, NA48/2 2008
- $D \to \pi K \ell \nu$: analogous measurement of πK scattering phases $\delta_0^{1/2} \delta_1^{1/2}$

Heavy-meson ChPT + dispersion relations

- $1/m_c \gg 1/m_b$, $M_K^2 \gg M_\pi^2 \longrightarrow$ convergence worse than $B_{\ell 4}$
- aim: provide reasonable parametrisations of moduli of decay form factors
 Daub, Descotes-Genon, BK... in progress
- dependence on dilepton invariant mass s_ℓ still given by heavy-meson ChPT: D_s, D^{*}_s pole terms
 - ▷ how to extend this to lower s_{ℓ} ?
 - ▷ use soft-pion (soft-kaon) theorems to relate to $D \to K(\pi) \ell \nu$

Summary / > Outlook

Dalitz plot analyses

- rigorous using modern phase shift input
- allow to understand ad-hoc "background"
- ideal demonstration case: $\phi \rightarrow 3\pi$ (elastic, one partial wave)
- work in progress: $D \to \pi \pi K$
 - combination of inelastic effects with Khuri–Treiman method
 - \triangleright extraction of πK phase shifts from three-body decays?

Summary / > Outlook

Dalitz plot analyses

- rigorous using modern phase shift input
- allow to understand ad-hoc "background"
- ideal demonstration case: $\phi \rightarrow 3\pi$ (elastic, one partial wave)
- work in progress: $D \to \pi \pi K$
 - combination of inelastic effects with Khuri–Treiman method
 - ▷ extraction of πK phase shifts from three-body decays?

Dispersive link hadronic \leftrightarrow radiative decays

 \triangleright towards a dispersive analysis of $\pi^0 \to \gamma^* \gamma^*$ S. Leupold's talk

Summary / > Outlook

Dalitz plot analyses

- rigorous using modern phase shift input
- allow to understand ad-hoc "background"
- ideal demonstration case: $\phi \rightarrow 3\pi$ (elastic, one partial wave)
- work in progress: $D \to \pi \pi K$
 - combination of inelastic effects with Khuri–Treiman method
 - ▷ extraction of πK phase shifts from three-body decays?

Dispersive link hadronic \leftrightarrow radiative decays

 \triangleright towards a dispersive analysis of $\pi^0 \to \gamma^* \gamma^*$ S. Leupold's talk

Heavy semileptonics

- dispersion theory \longrightarrow good form-factor parametrisations

$$\triangleright \ B \to \pi \pi \ell \nu \quad \longrightarrow \quad |V_{ub}|$$

 $\triangleright D \rightarrow \pi K \ell \nu \longrightarrow \pi K$ scattering phases

Numerical results: $\omega ightarrow \pi^0 \mu^+ \mu^-$

- unable to account for steep rise in data (from heavy-ion collisions) NA60 2009, 2011
- more "exclusive" data?!
- $\omega \rightarrow 3\pi$ Dalitz plot?

KLOE, WASA-at-COSY, CLAS?

Numerical results: $\phi ightarrow \pi^0 \ell^+ \ell^-$

- measurement would be extremely helpful: ρ in physical region!
- partial-wave amplitude backed up by experiment