Measurements of Kaon Decays

Rainer Wanke Physics Institute, University of Mainz

Workshop on Light Meson Dynamics Mainz, Feb 10, 2014

Federal Ministry of Education and Research

Kaon Physics

Kaons have long time driven advances in physics:

- Discovery of CP violation in $K_L \rightarrow \pi^+ \pi^-$.
- Suppression of $K_L \rightarrow \mu^+\mu^-$ leading to the GIM mechanism.
- Search for new physics in forbidden decays (e.g. $K^+ \rightarrow \pi^- e^+ e^+$).

Since 1990's heavy flavours (B, D mesons) mostly took over...

- Precise determination of CKM matrix elements.
- Measurements of CP violation.

...but in the new century: the return of the Kaons

- First discovery of direct CP violation.
- Precision determination of $|V_{us}|$.
- Precision measurements of Chiral Perturbation Theory.
- Measurement of rare, very rare, and ultra-rare decays.

Kaon Experiments

Running from ~1997 - ~2007, all finished by now.

The NA48 and NA62 Experiments Earlier: NA31

- NA48/62: 48th/62nd experiment in the CERN North Area.
- Fixed-target experiments with 400 GeV/c proton beams from the SPS.

The NA48 and NA62 Experiments nts

NA48/2 Beam Line

Simultaneous K^+ and K^- beams with $p_K = (60 \pm 1.8)$ GeV/c.

The NA48/2 Detector

Hadron calorimeter, photon vetos, muon counters

Outline

Several new and upcoming measurements to present:

- $K^{\pm} \rightarrow \pi^0 I^{\pm} v$, $K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} v$ form factors.
- New measurements of $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$.
- First observation of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$.
- Future measurement of $K^+ \rightarrow \pi^+ vv$.
- Future prospects for rare and forbidden K⁺ decays.

Outline

Several new and upcoming measurements to present:

- $K^{\pm} \rightarrow \pi^0 I^{\pm} v, K^{\pm} \rightarrow \pi^0 \pi^0 e^{\pm} v$ form factors
- New measuremetrics of $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$.
- First observation of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$.
- Future measurement of $K^+ \rightarrow \pi^+ vv$.
- Future prospects for rare and forbidden K⁺ decays.

This talk

$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - ChPT Description The double differential rate in $K \rightarrow \pi \gamma \gamma$ decays is

$$\frac{\partial^2 \Gamma}{\partial y \partial z} = \frac{M_K}{2^9 \pi^3} \left\{ z^2 \left(|A + B|^2 + |C|^2 \right) + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[y^2 \right]^{1/2} \left(\frac{1}{2^2 (|A + B|^2 + |C|^2)} + \left[\frac{1}{2^2 (|A + B|$$$$

Lorentz invariant variables:

$$z = \frac{\left(P_{\gamma_1} + P_{\gamma_2}\right)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2$$

$$y = \frac{P_{K} \left(P_{\gamma_{1}} - P_{\gamma_{2}} \right)}{m_{K}^{2}}$$

A, B, C, and D are functions of z and y. Rate and spectrum depend on a single unknown parameter \hat{c} of $\mathcal{O}(1)$.

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - ChPT$ Description

O(p⁴):

B and *D* amplitudes are still 0. [Ecker, Pich, de Rafael, NPB 303 (1988) 665] *O*(*p*⁶):

Unitary corrections result in a non-zero rate at $m_{\gamma\gamma} \rightarrow 0$. [D'Ambrosio, Portolés, PLB 386 (1996) 403, Gerard, Smith, Trine, NPB 730 (2005) 1]

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - Experimental Status$

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ – Data Samples

Problem:

- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ very similar to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$.
- heavily trigger-suppressed!

(was problem in preliminary measurement.)

Special runs with minimum bias trigger conditions:

NA48/2:

12 hours (2003), 3 days (2004)

ΝΑ62-Rκ:

~ 90 days with 5 downscaled control trigger chains (2007).

Example of some minimum bias condition

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - \text{Signal}$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - z$ Distribution

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ – Model Independent Measurement

Model-independent branching fraction for z > 0.2:

Sum up all partial branching fractions of 8 bins with z > 0.2

 $\mathcal{B}(K^{\pm} \rightarrow \pi^{\pm}\gamma\gamma, z > 0.2) = (0.877 \pm 0.087_{stat} \pm 0.017_{syst}) \times 10^{-6}$

(final NA48/2 result [Batley et al. (2014)], NA62 to be published soon.)

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ – Measurement of \hat{c}

Data support the ChPT prediction of a cusp at the $\pi\pi$ threshold

→ Fit to the *z* distributions to extract \hat{c} in ChPT $\mathcal{O}(p^4)$ and ChPT $\mathcal{O}(p^6)$.

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ – Measurement of \hat{c}

Ζ

 $\mathbf{K}^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ (γ)

 K^{\pm} → $\pi^{\pm}\gamma\gamma$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ – Measurement of \hat{c}

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ and $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$

■ $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ proceeds mainly via inner bremsstrahlung (IB), but may also undergo direct photon emission (DE).

■ $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ similar with internal conversion $\gamma \rightarrow e^{+}e^{-}$.

IB is a leading $O(p^2)$ effect while DE is a sub-leading $O(p^4)$ effect. [Pichl, EPJC 20 (2001) 371; Cappiello, Catà, D'Ambrosio, Gao, EPJC 72 (2012) 1872]

$$\frac{d^{3}\Gamma}{dE_{\gamma}^{*} dT_{c}^{*} dq^{2}} = \frac{d^{3}\Gamma_{B}}{dE_{\gamma}^{*} dT_{c}^{*} dq^{2}} + \frac{d^{3}\Gamma_{E}}{dE_{\gamma}^{*} dT_{c}^{*} dq^{2}} + \frac{d^{3}\Gamma_{M}}{dE_{\gamma}^{*} dT_{c}^{*} dq^{2}} + \frac{d^{3}\Gamma_{Int}}{dE_{\gamma}^{*} dT_{c}^{*} dT$$

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma, K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ Exp. Status

■ Measurement of $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma$ by NA48/2 with ~ 1 million events. [Batley et al., EPJC 68 (2010) 75]

- Precise measurement of Direct Emission and interference term.
- No access to mass of photon or polarization (→CP violation).

■ $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$ never been observed so far.

Expectation: $\mathcal{B}(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}) \sim \alpha \times \mathcal{B}(K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\gamma) \sim 10^{-8}$

$K^{\pm} \rightarrow \pi^{\pm}\pi^{0}e^{+}e^{-}$

- First observation using the 2003 NA48/2 data sample (about 40% of all NA48/2 data).
- Main background contributions from:
 - $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}_{D} \text{ with } \pi^{0}_{D} \rightarrow e^{+} e^{-} \gamma_{\text{lost.}}$
 - $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}_{D}$ with $\pi^{0}_{D} \rightarrow e^{+}e^{-}\gamma + \gamma_{acc}$.

About 2500 events in the signal region, with 280 estimated bkg events.

ts. Analysis in progress

Why
$$K^+ \rightarrow \pi^+ v \overline{v}$$
?

Kaon physics usually:

Exact predictions difficult because of hadronic contributions.

Exception: $\mathbf{K} \to \pi \nu \overline{\nu}$

Decay $K \to \pi \nu \overline{\nu}$ proceeds only via box and penguin diagrams.

- Hadronic matrix element from $K \rightarrow \pi e \nu$ and isospin rotation.
- Uncertainties only from charm contributions ($K^+ \rightarrow \pi^+ \nu \overline{\nu}$ only).

Errors on Theory Prediction

Improve by lattice QCD [Isidori et al. '05]

Experimental Result

[E787, E949 '08]

 $Br = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

NA62 (CERN) aims at 10% measurement!

(Courtesy of Joachim Brod)

The NA62 Detector

Total Length 270m

The NA62 Detector

Layout of NA62:

Estimated signal and background rates:

K⁺→π⁺ν⊽ (signal)	45 events/year
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^+ \rightarrow \mu^+ \nu$	1
$K^+ \rightarrow \pi^+ \pi^- e \nu$	<1
3 tracks	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma$	0.5
others	negligible
Expected bkg	<10

~10% measurement in two years of data-taking.

Estimated signal and background rates:

K ⁺ → $π^+ν\overline{ν}$ (signal)	45 events/year
$K^+ \rightarrow \pi^+ \pi^0$	5
$K^{+} \rightarrow \mu^{+} \nu$	1
$K^+ \rightarrow \pi^+ \pi^- e \nu$	<1
3 tracks	<1
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	1.5
$K^+ \rightarrow \mu^+ \nu \gamma$	0.5
others	negligible
Expected bkg	<10

~10% measurement in two years of data-taking.

NA62 Plans & Timeline:

- End of 2014:
 - Two months of data-taking → Hope for SM sensitivity

2015/2016:

Two run periods for ~ 90 SM events

≥ 2017:

Other rare K⁺ decays, K_L decays (?)

With 3 SM events for $K_L \rightarrow \pi^0 v \overline{v}$ and 100 for $K^+ \rightarrow \pi^+ v \overline{v}$ by 2015/16:

With 3 SM events for $K_L \rightarrow \pi^0 v \overline{v}$ and 100 for $K^+ \rightarrow \pi^+ v \overline{v}$ by 2015/16:

NA62 Reach for rare K^+ and π^0 Decays

NA62 will collect an unprecedented amount of K^+ decays giving the possibility to measure rare decays properties and look for forbidden and exotic decays.

- NA62 will collect ~10¹³ K^+ decays and ~2.5 × 10¹² π^0 decays in two years of data taking
- Single event sensitivity: $\sim 10^{-12}$ for K^+ , $\sim 10^{-11}$ for π^0
- The clean environment allows to study tiny effects.
- The NA62 trigger system is flexible and fully reconfigurable (based on FPGAs).
 - Possibility to have special run periods for e.g. $K^+ \rightarrow \pi^+ \gamma \gamma$.

Lepton-Flavour Violating Decays

Channel	Violation	90% CL Limit	Experiment	NA62 Reach
$K^+ o \pi^+ \mu^+ \mathrm{e}^-$	LFV	< 1.3 × 10 ⁻¹¹	E865	~ 10 ⁻¹²
$K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -} e^{\scriptscriptstyle +}$	LFV	< 5.2 × 10 ⁻¹⁰	E865	~ 10 ⁻¹²
$K^{+} ightarrow \pi^{-} \mu^{+} e^{+}$	LFV, LNV	< 5.0 × 10 ⁻¹⁰	E865	~ 10 ⁻¹²
$K^+ \rightarrow \pi^- e^+ e^+$	LNV	< 6.4 × 10 ⁻¹⁰	E865	~ 2 × 10 ⁻¹²
$K^{+} ightarrow \pi^{-} \mu^{+} \mu^{+}$	LNV	< 1.1 × 10 ⁻⁹	NA48/2	≲ 10 ⁻¹²
$K^+ \rightarrow \mu^- v e^+ e^+$	LNV	< 2.0 × 10 ⁻⁸	Geneva/Saclay	~ 5 × 10 ⁻¹²
$\pi^0 ightarrow \mu^- e^+$	LFV	< 3.4 × 10 ⁻⁹	KTeV	≲ 10 ⁻¹⁰
$\pi^0 o \mu^+ e^-$	LFV	< 3.8 × 10 ⁻¹⁰	KTeV	≲ 10 ⁻¹⁰
$\pi^0 \rightarrow \mu^- \nu \ e^+ e^+$	LFV	< 1.6 × 10 ⁻⁶	JINR-Spec	≲ 10 ⁻¹⁰

Non-LFV K^+ and π^0 Decays

Channel	Motivation	90% CL Limit	Experiment
$K^+ ightarrow \pi^+ X^0$	new particle	< 5.9 × 10 ⁻¹¹ (m _x =0)	E787, E949
$K^{+} \rightarrow \pi^{+} \chi \chi$	new particles		E949
$K^+ ightarrow \pi^+ \pi^+ e^- v$	ΔS ≠ ΔQ	< 1.2 × 10 ⁻⁸	Geneva/Saclay
$K^+ ightarrow \pi^+ \pi^+ \mu^- v$	ΔS ≠ ΔQ	< 3.0 × 10 ⁻⁶	Geneva/Saclay
$\pi^0 ightarrow \mathrm{e}^+ \mathrm{e}^-(\gamma)$	dark photon		
$\pi^0 ightarrow e^+ e^- e^+ e^-$	T violation	$C = -0.77 \pm 0.53$	Samios <i>et al.</i>
$\pi^0 \rightarrow \gamma \gamma \gamma$	C violation	< 3.1 × 10 ⁻⁸	Crystal Box
$\pi^0 \rightarrow \gamma \gamma \gamma \gamma \gamma$	light scalar	< 2 × 10 ⁻⁸	Crystal Box
$\pi^0 ightarrow v v$	RH neutrino	< 2.7 × 10 ⁻⁷	E949

Search for Dark Photons

Search for the *U* **boson** ("dark photon") interesting as possible explanation of several SM anomalies:

- PAMELA e⁺ excess
- Dama/Libra dark matter signals
- **3.6** σ anomalies in (g-2)_µ
- → Several dedicated experiments.

NA48/2 / NA62:

Search in $\pi^0 \rightarrow U \gamma$ decays (with $U \rightarrow e^+ e^-$)

- NA48/2: already $2 \times 10^7 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- NA62: expect $10^8 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- mee resolution of 1 MeV

→ Sensitive to $m_U < 100$ MeV with $\varepsilon \sim 10^{-3}$

Search for Dark Photons

ε²

Search for the **U** boson ("dark photon") interesting as possible explanation of several SM anomalies:

- PAMELA e⁺ excess
- Dama/Libra dark matter signals
- 3.6 σ anomalies in (g-2)_µ
- → Several dedicated experiments.

NA48/2 / NA62:

Search in $\pi^0 \rightarrow U \gamma$ decays (with $U \rightarrow e^+ e^-$)

- NA48/2: already $2 \times 10^7 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- NA62: expect $10^8 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- m_{ee} resolution of 1 MeV

→ Sensitive to $m_U < 100$ MeV with $\varepsilon \sim 10^{-3}$

Rainer Wanke, Light Meson Workshop, Mainz, Feb 10, 2014

 ϵ^2

Search for Dark Photons

ε²

Search for the **U** boson ("dark photon") interesting as possible explanation of several SM anomalies:

- PAMELA e⁺ excess
- Dama/Libra dark matter signals
- 3.6 σ anomalies in (g-2)_µ
- → Several dedicated experiments.

NA48/2 / NA62:

Search in $\pi^0 \rightarrow U \gamma$ decays (with $U \rightarrow e^+ e^-$)

- NA48/2: already $2 \times 10^7 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- NA62: expect $10^8 \pi^0 \rightarrow e^+ e^- \gamma$ decays
- m_{ee} resolution of 1 MeV

→ Sensitive to $m_U < 100$ MeV with $\varepsilon \sim 10^{-3}$

Rainer Wanke, Light Meson Workshop, Mainz, Feb 10, 2014

 ϵ^2

Conclusions

Kaon physics still a major player in particle physics.

→ very high sensitivity to many observables and new physics.

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$: new measurement with ~200 events and low background.

 $K^{\pm} \rightarrow \pi^{\pm} e^{+}e^{-}\gamma$: first observation with ~2500 events, expect result soon.

 $K^+ \rightarrow \pi^+ v \bar{v}$: one of the golden channels in flavour physics.

- Directly measures $V_{ts} V_{td}^*$ with small theoretical uncertainties.
- Very high sensitivity to new physics beyond the SM.

NA62 at CERN designed for measurement of very rare kaon decays.

- Under construction, first data-taking after LHC shutdown (end 2014)
- Goal: ~100 $K^+ \rightarrow \pi^+ v \bar{v}$ events in 2 years of data taking.
- In addition: Huge samples of practically all K⁺ decays

→ Precise measurements on virtually all rare decays!

Many thanks for the attention!

