Interactions of light with light mesons

Stefan Leupold

Uppsala University

Light Meson Dynamics, Mainz, Feb. 2014

Collaborators

- Uppsala: Per Engström, Bruno Strandberg (now Glasgow), Hazhar Ghaderi, Carla Terschlüsen
- GSI: Igor Danilkin (now JLAB), Matthias Lutz
- Bonn: Franz Niecknig, Martin Hoferichter (now Bern),
 Sebastian Schneider, Bastian Kubis

Table of Contents

What we are after

- Transition form factors and two-gamma physics
- 3 Lagrangian approach
- 4 Dispersive approach to pion transition form factor

Challenges of hadron (+nuclear) physics

- structure of matter
 - understand masses of hadrons (also, e.g., mass ordering: $m_\sigma < m_
 ho$, 1440 < 1520)
 - life times, branching ratios of hadron resonances
 - form factors and intrinsic structure
 - nature of hadrons (how much quark-antiquark? how much hadron-hadron? ...)
 - (nuclei, neutron stars)
- new forms of matter
- high-precision frontier of standard model

Challenges of hadron (+nuclear) physics

- structure of matter
- new forms of matter
 - non- $q\bar{q}$ mesons (exotic quantum numbers, exotic decomposition, X/Y/Z states, glueballs, meson molecules, ...)
 - non-3q baryons, di-baryons ($\Delta \Delta$ by WASA?), ...
 - (quark-gluon plasma, color superconductors, early universe, core of neutron stars)
- high-precision frontier of standard model

Challenges of hadron (+nuclear) physics

- structure of matter
- new forms of matter
- high-precision frontier of standard model
 - determine parameters of standard model (light quark masses, CKM matrix, ...)
 - traces of physics beyond standard model (rare decays, g - 2 of muon, ...)

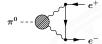
Challenges of hadron (+nuclear) theory

- structure of matter
- new forms of matter
- high-precision frontier of standard model
- from phenomenological models to real quantum field theories
 - physical form factors instead of ad-hoc cutoff form factors
 - do not neglect loops just because they are complicated
 - assign degrees of importance to processes, diagrams (e.g. power counting, separation of relevant from irrelevant degrees of freedom)
- reliable uncertainty estimates
- treat unitarity/rescattering, analyticity serious

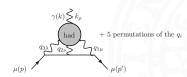
We are not there yet!

Reactions of hadrons with (virtual) photons

Why is it interesting?

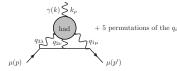

- explore intrinsic structure of hadrons
 - → form factors
 - → to which extent does vector meson dominance hold?

Reactions of hadrons with (virtual) photons


Why is it interesting?

- explore intrinsic structure of hadrons
 - → form factors
 - → to which extent does vector meson dominance hold?
- background for physics beyond standard model

$$\rightsquigarrow$$
 rare pion decay $\pi^0 \rightarrow e^+e^-$

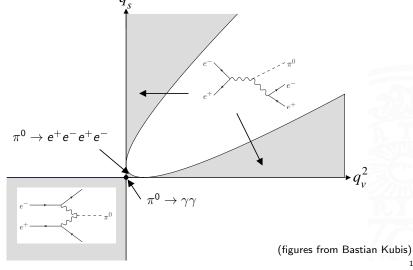


 $\rightsquigarrow g - 2$ of muon

Hadronic contribution to g-2 of the muon

light-by-light scattering

- $\gamma^* \gamma^* \leftrightarrow \text{hadron(s)}$ is not directly accessible by experiment
- need good theory with reasonable estimate of uncertainty (ideally an effective field theory)
- → need experiments to constrain such hadronic theories


true for all hadronic contributions:

- the lighter the hadronic system, the more important (though high-energy contributions not unimportant for light-by-light)
- $\gamma^{(*)}\gamma^{(*)}\leftrightarrow\pi^0$ (you've seen this before for rare pion decay), $\gamma^{(*)}\gamma^{(*)}\leftrightarrow2\pi$, ...

Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)}\leftrightarrow P$ with $P=\pi^0,\eta,\eta',\ldots$
- → several interesting kinematical regions → next slide (for pion)

$\pi^0 o \gamma^*(q_{\scriptscriptstyle V}^2) \gamma^*(q_{\scriptscriptstyle S}^2)$ transition form factor

Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)}\leftrightarrow P$ with $P=\pi^0,\eta,\eta',\ldots$
- if invariant mass of dilepton around mass of a vector meson:
- ightharpoonup relation to transition form factors of vector to pseudoscalar mesons $V\leftrightarrow P\gamma^{(*)}$ with $V=\rho^0,\omega,\phi,\ldots$

Shopping list for hadron theory and experiment

- transition form factors of pseudoscalars $\gamma^{(*)}\gamma^{(*)}\leftrightarrow P$ with $P=\pi^0,\eta,\eta',\ldots$
- if invariant mass of dilepton around mass of a vector meson:
- relation to transition form factors of vector to pseudoscalar mesons $V\leftrightarrow P\gamma^{(*)}$ with $V=\rho^0,\omega,\phi,\ldots$
 - "two-gamma physics" $\gamma\gamma\to\pi^+\pi^-,\pi^0\pi^0,\pi^0\eta,K\bar{K},\dots$ (cross relation to polarizability of the pion)

→ has triggered a lot of experimental activity, in particular MesonNet (WASA, KLOE, MAMI, HADES, ...)

Two complementary approaches

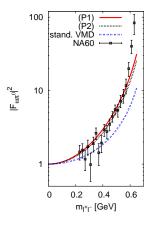
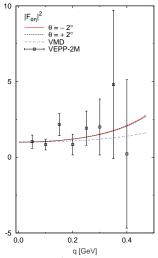

- Lagrangian approach
 - use only hadrons which are definitely needed (here: lowest nonets of pseudoscalar and vector mesons)
 - sort interaction terms concerning importance, essentially based on large-N_c
 - include causal rescattering/unitarization for reactions
 (I. Danilkin, L. Gil, M. Lutz, Phys.Lett. B703, 504 (2011))
 - long-term goal: obtain sensible estimates of uncertainties
- dispersive approach
 - include most important hadronic inelasticities
 - use measured (and dispersively improved) phase shifts (2-body)
 - use Breit-Wigner plus background for narrow resonances (n-body, n > 2)
 - error estimates from more vs. less subtracted dispersion relations

Table of Contents

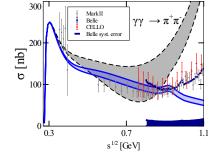
What we are after

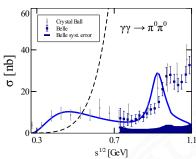
- 2 Transition form factors and two-gamma physics
- 3 Lagrangian approach
- 4 Dispersive approach to pion transition form factor


Transition form factor $\omega \to \pi^0 + \text{dilepton}$

- data and our Lagrangian approach show strong deviations from vector-meson dominance (VMD)
- our approach describes data fairly well except for large invariant masses close to phase-space limit (log plot!)
- second experimental confirmation desirable

C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)


Transition form factor $\phi \rightarrow \eta + \text{dilepton}$



- our Lagrangian approach deviates from VMD
- new data from KLOE will come soon

C. Terschlüsen, S.L., M.F.M. Lutz, Eur. Phys. J. A48, 190 (2012)

$$\gamma\gamma \to \pi^+\pi^-, \pi^0\pi^0$$

- dashed black lines: tree level,
 blue lines: with coupled-channel rescattering of two pseudoscalar mesons
- overall good description, room for improvement concerning $f_0(980)$
- at high energies spin-2 mesons are missing

I.V. Danilkin, M.F.M. Lutz, S.L., C. Terschlüsen,

Eur.Phys.J. C73, 2358 (2013)

$\gamma\gamma$ to other meson pairs

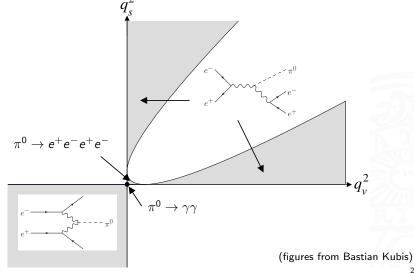
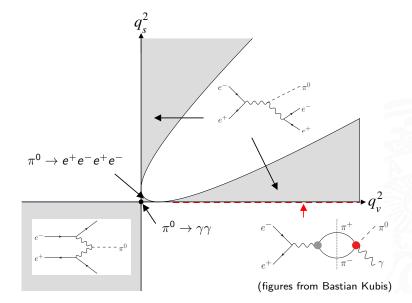
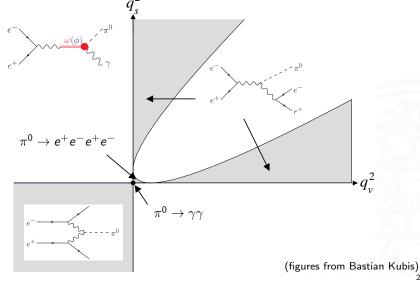

 \hookrightarrow stay tuned for Matthias' talk

Table of Contents

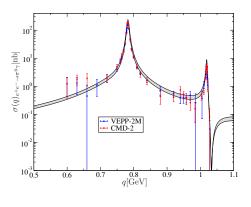

1 What we are after

- 2 Transition form factors and two-gamma physics
- 3 Lagrangian approach
- 4 Dispersive approach to pion transition form factor


$\pi^0 o \gamma^*(q_{\scriptscriptstyle V}^2) \gamma^*(q_{\scriptscriptstyle S}^2)$ transition form factor

$\pi^0 o \gamma^*(q_{\scriptscriptstyle V}^2)_{\scriptscriptstyle m \gamma}$ transition form factor

$\pi^0 ightarrow \gamma \gamma^*(q_s^2)$ transition form factor



Pion transition form factor — dispersive approach

- ullet want prediction for $e^+e^- o\pi^0\gamma$ (up to $pprox 1\,{
 m GeV})$
- → dominant inelasticities:
 - $I = 1: e^+e^- \to \pi^+\pi^- \to \pi^0\gamma$
 - I = 0: $e^+e^- \to \pi^0\pi^+\pi^- \to \pi^0\gamma$
 - required input for l = 1:
 - pion phase shift and pion form factor \leadsto measured
 - strength of amplitude $\pi^+\pi^- \to \pi^0 \gamma \rightsquigarrow$ chiral anomaly (M. Hoferichter, B. Kubis, D. Sakkas, Phys.Rev. D86 (2012) 116009)
 - input for I = 0 (three-body!):
 - dominated by narrow resonances ω , ϕ

 - \hookrightarrow fit to $e^+e^- \to \pi^+\pi^-\pi^0$ and decay widths $\omega/\phi \to \pi^0\gamma$

Pion transition form factor $(e^+e^- o \pi^0\gamma)$

- height between peaks is not a fit!
- can be extended to decay region $\pi^0 \to \gamma \; e^+ e^-$ and to spacelike region
- final aim: double virtual transition form factor
- \hookrightarrow relevant for g-2 and $\pi^0 \to e^+e^-$

M. Hoferichter, B. Kubis, S.L., F. Niecknig and S. P. Schneider, in preparation

Summary

- meson (transition) form factors and two-photon reactions allow access to intrinsic structure of hadrons
- → quark structure, polarizabilities, ...
 - in addition input for standard-model baseline calculations for rare decays (π^0) and high-precision determinations (muon's g-2)
- → we are sharpening our theory tools to improve the accuracy of predictions

Instead of an outlook

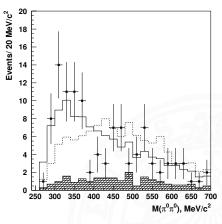
From two- to three-gamma physics

• yet another contribution to light-by-light scattering:

$$\gamma^* \to \omega \to 3\gamma^{(*)}$$

→ related to scattering amplitude (dispersion theory)

$$\gamma \omega \to \pi \pi \to \gamma \gamma$$


i.e. to decays

$$\omega \to \gamma \pi^+ \pi^-, \qquad \omega \to \gamma \pi^0 \pi^0$$

- more (differential) data needed
- and also ϕ instead of ω (better data situation)

Rare ω decays into $2\pi \gamma$

- $\omega \to \pi^+\pi^-\gamma$: only upper limit
- $\omega \to \pi^0 \pi^0 \gamma$:
- \hookrightarrow branching ratio: $6.6 \cdot 10^{-5}$
- → differential data from CMD2 (Akhmetshin et al., Phys.Lett.B580, 119 (2004))

histograms are simulations with an intermediate rho (full) or sigma meson (dotted)

backup slides

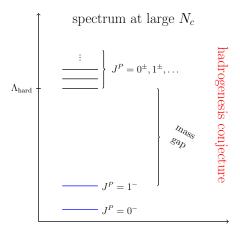
How we sort interactions/diagrams

- without assigning importance to anything:
 - infinitely many interaction terms (with more and more derivatives)
 - infinitely many loop diagrams
- large- N_c framework (N_c = number of colors)
 - \hookrightarrow loops are suppressed
 - note: we resum loops from rescattering, s-channel
 - sorting scheme applies to scattering kernel (potential), not to scattering amplitude
- for interaction terms:
 - ensure appropriate N_c scaling by dimensionful decay constant $f \sim \sqrt{N_c}$
 - to ensure pertinent dimension of interaction term in Lagrangian:
 - \hookrightarrow assume large scale $\Lambda_{\rm hard} \gg m_V$ in denominator
 - \hookrightarrow expansion in derivatives/momenta over $\Lambda_{\rm hard}$
 - depends on chosen representation

Examples for interaction terms

- relevant, e.g., for $\omega \to 3\pi$ and $\omega \to \pi\gamma^*$
- both can proceed directly or via $\pi \rho^*$
- some unsuppressed interaction terms

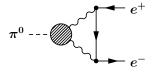
$$\varepsilon_{\mu\nu\alpha\beta}\operatorname{tr}\left(\left\{V^{\mu\nu},\nabla_{\lambda}V^{\lambda\alpha}\right\}u^{\beta}\right),$$


$$if\operatorname{tr}\left(V_{\mu\nu}\left[u^{\mu},u^{\nu}\right]\right),\qquad f\operatorname{tr}\left(V^{\mu\nu}f_{\mu\nu}^{+}\right)$$

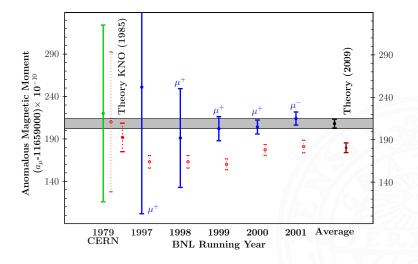
some suppressed interaction terms (the direct ones)

$$rac{f}{\Lambda_{
m hard}^2} \, arepsilon^{\mu
ulphaeta} \, {
m tr}ig(
abla^\lambda V_{\lambda\mu} \, u_
u \, u_lpha \, u_etaig) \,, \ rac{f}{\Lambda_{
m hard}^2} \, arepsilon^{\mu
ulphaeta} \, {
m tr}ig(
abla^\lambda V_{\lambda\mu}, f_{
ulpha}^+
abla u_etaig) \,.$$

 Λ_{hard}: hadrogenesis gap or (here also O.K.) mass of excited vector mesons

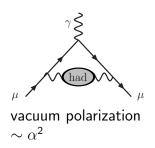

hadrogenesis conjecture

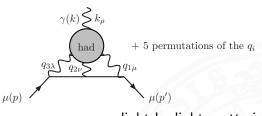
other observed mesons below $\Lambda_{\rm hard}$ are supposed to be dynamically generated, i.e. meson molecules


C. Terschlüsen, S.L., M.F.M. Lutz, Eur. Phys. J. A48, 190 (2012)

Rare pion decay — status

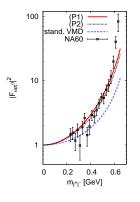
- $B(\pi^0 \to e^+e^-) = (6.46 \pm 0.33) \cdot 10^{-8}$ (KTeV, 2007)
- 3 σ deviation between experiment and standard model Dorokhov/Ivanov, Phys. Rev. D75, 114007 (2007) (but controversial among theorists!)
- for point-like pion QED loop is divergent
- \hookrightarrow process is sensitive to hadronic transition form factor of pion $\pi^0 \leftrightarrow \gamma^{(*)} \gamma^{(*)}$

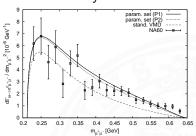

g-2 of the muon — status



Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

g-2 of the muon — theory


Largest uncertainty of standard model: hadronic contributions



 $\sim \alpha^3$

Transition form factor $\omega \to \pi^0 + \mu^+ \mu^-$

corresponding differential decay rate:

theory: C. Terschlüsen, S.L., Phys. Lett. B691, 191 (2010)

data: NA60, Phys. Lett. B 677, 260 (2009)