

New title:

Minijets for cosmic rays

interactions

Giulia Pancheri- INFN - Frascati

A minijet model *cum* soft gluon k-t resummation applied to

- 1. Photoproduction models for total cross section and shower development [old title] with/on behalf of F. Cornet, C. Garcia Canal, A. Grau and S. Sciutto
- 2. p-air production cross-section and uncorrelated processes in pp scattering [poster]

with/on behalf of D.A. Fagundes, A. Grau, Y.N. Srivastava and O. Shekhovtsova

Total cross-sections: outline

 Our model for pp : called Bloch Nordsieck (BN) model because of resummation down to zero momenta [PLB 1996, PRD 1999, PRD 2005]

• Photoproduction and showers [under completion]

• pp and p-air cross-section model [arXiv:1408.2921]

All total cross-sections rise... but not too much (Froissart dixit)

Soft gluon emission introduces acollinearity

Acollinearity reduces the collision cross-section as partons do not scatter head-on any more, also explained as the gluon cloud Becoming too thick for partons to see each other : gluon saturation We model the impact parameter distribution as the Fouriertransform of ISR soft k_t distribution and thus obtain a cut-off at large distances : Froissart bound?

r various LO densitie

. =1.15 GeV

1. Calculate mini-jet cross-section Choosing densities and ptmin

> $\sigma_{mini-jet} \simeq s^{\epsilon}$ $\epsilon \simeq 0.3 - 0.4$

2. Calculate qmax: single soft gluon upper scale, for given PDF, ptmin $q_{max} \simeq p_{tmin}$ $\leq 2 - 3 \ GeV$

3. Calculate impact parameter distribution for given qmax and given infrared parameter p

 $\chi(b,s) = \chi_{low\ energy} +$ $+ A(b,qmax)\sigma_{jet}$

4. Eikonalize

Major traits of our model

• Energy rise from mini-jets (to be obtained from DGLAP evoluted PDF and parton-parton x-sections)

$$\sigma_{jet}^{PDF} \sim s^{\epsilon_{PDF}} \sim s^{0.3 - 0.4}$$

• Saturation comes as a large distance effect: at large distances, soft gluon emission leads to a cut-off

$$A(b,s) \sim e^{-[b\bar{\Lambda}(s)]^{2p}}$$

• Embedded into eikonal formulation

1. Extension of the mini-jet model to photoproduction Eur.Phys.J. C63 (2009) 69-85

$$\sigma_{tot}^{\gamma p} = 2P_{had} \int d^2 b \left[1 - e^{-n^{\gamma p}(b,s)/2} \right]$$

$$n^{\gamma p}(b,s) = n^{\gamma p}_{soft}(b,s) + n^{\gamma p}_{hard}(b,s)$$

 $P_{had} = \sum_{V=\rho,\omega,\phi} \frac{4\pi\alpha}{f_V^2}$

Mimics details of photon fluctuation into a hadron

Fletcher, Gaisser, Halzen, Phys. Rev. D45 (1992) 377

$$n_{hard}^{\gamma p}(b,s) = A_{BN}(b,s)\sigma_{jet}^{\gamma p}(s)/P_{had}$$
resummation
$$IO \text{ current}_{PDFs}$$
Input from our BN model
$$ISVHECRI 2014$$

Shapes of shower observables

With F. Cornet, C.A. Garcia Canal , A. Grau and S. Sciutto

Photon-proton

Photon-air

Longitudinal development from 10¹⁹ eV photon showers

standard cross sections implemented in AIRES **Electrons and positrons** muons N_{elec} (x 10⁹) N_{muons} (x 10⁶) X [g/cm²] ISVHECRI 2014 8/20/14 $X [g/cm^2]$

Longitudinal shower development of hadrons from BN-γ model input

--- standard cross sections implemented in AIRES

2. p-air production with or without diffraction?

• Usually
$$\sigma_{p-air}^{prod} = \sigma_{p-air}^{tot} - (\sigma_{p-air}^{el} + \sigma_{p-air}^{q-el})$$

we need to model three terms in p-air + model diffraction in pp as well

BUT

There is no unique definition of diffraction (Khoze-ISVHECRI 2014)

– And then we need to take it away!

How can you take away something you do not see? (Katkov-ISVHECRI 2014)

Our proposal:

• In one-eikonal formalism

$$\sigma_{p-air}^{prod} = \int d^2 \mathbf{b} [1 - e^{-2\chi_I^{p-air}}]$$
$$2\chi_I^{p-air} = n^{p-air} (b, E_{Lab})$$

~~ ~~

Where only uncorrelated (Poisson distributed) p-air collisions are summed up in the integral

$$n^{p-air} \equiv n^{p-air}_{ind-coll} \qquad \longleftrightarrow \qquad \sigma^{pp}_{inel}$$

ISVHECRI 2014

This quantity σ^{pp}_{inel} should be the non-diffractive part and can be obtained

 from multichannel formalism, subtracting elastic and diffraction from the total, thus further modeling (KMR, GLM, Ostapchenko, ... see Khoze's talk)

Or

 from one-channel eikonal formulations where a fit to the total gives the uncorrelated nondiffractive inelastic cross-section for free

$$\sigma_{inel}^{pp} = \int d^2 \mathbf{b} [1 - e^{-2\chi_I(b,s)}]$$

Achilli,Godbole, Grau,GP, Shekhovtsova, Srivastava Phys.Rev. D84 (2011) 094009,

pp : Updated (after LHC) modeling of total and central inelastic collisions with one-channel eikonal, mini-jet with soft gluon resummation model arXiv:1408.2921

MSTW LO densities for mini-jet cross-sections

Now ... to p-air $n_{p-air}(b,s) = T_N(\mathbf{b})\sigma_{\mathbf{inel}}^{\mathbf{pp}}(\mathbf{s})$ $T_N(b) = \frac{A}{\pi R_N^2} \mathrm{e}^{-b^2/R_N^2}$ $\int d^2 \mathbf{b} T_N(b) = A$ $\sigma_{inel}^{pp} = \int d^2 \mathbf{b} [1 - e^{-2\chi_I(b,s)}]$ $\sigma_{tot}^{pp} = 2 \int d^2 \mathbf{b} [1 - \Re e^{i\chi(b,s)}]$

p-air = Glauber+inelastic pp

ISVHECRI 2014

From pp total to p-air production: estimating the uncertainty due to PDFs

- 2. MRST72
- 3. MSTW

Band = uncertainty in PDFs low-x parametrization in GRV or MSTW

ISVHECRI 2014

Final comment (before conclusion)

Major differences with most other mini-jet models=>pQCD +explicit NPQCD

Mini-jet cross-sections

- We use LO parton-parton cross-sections and current DGLAP evoluted LO parton densities
 - GRV (various versions)
 - MRST72
 - MSTW (new)
- LO because model already includes all order gluon resummation (may be modified in the future)

Zero k_t gluons resummed

- Large distance cut-off (Froissart limit-FL) is obtained from resumming very small momentum gluons
- Direct connection to confinement : FL is a manifestation of confinement
 - Need to extend resummation below pQCD cut-off
 - Ansatz for $\alpha_{\rm s}$ (k_t) with link to confining potential

Conclusions

- The BN model can be extrapolated up to Vs = 50-100 TeV with uncertainty past LHC due to to low-x behaviour of PDFs
 pp and γp can be explored at CR energies
- The one-channel eikonal gives an inelastic cross-section without the remnants of the proton

If you have a single eikonal that fits the total pp crosssection, that eikonal would give the uncorrelated, non diffractive inelastic cross-section which is what is needed for cosmic rays (Bloch, Kopeliovich, etc) without having to break up the total into pieces and then reassemble.

All total cross-sections rise

Update of EPJC 2009, GP + R.M.Godbole, A. Grau, Y. Srivastava

All total cross-sections rise... but not too much (Froissart dixit)

Rise

Saturation

Rise driven by low-x gluon-gluon collisions minijets $\longrightarrow p_{+} > 1 \text{ GeV}$ Acollinearity from ISR soft gluons, k_t resummed, reduces the mini-jet x-section and can lead to saturation

Lesson from p-air: a defense of one channel eikonal formalism

- In p-air one need the non-diffractive inelastic pp cross-section
- One channel eikonals (OCE) for pp give sigtot <->siginel-nondiff

Namely they directly give the non-diffractive inelastic input to a Glauber formalism

- Sigtot pp <-> siginel non diffractive without added parameters
- Extrapolation to full phase space is model dependent, but we dpo not need to do it for p-air calculations

Ansatz:

 The multichannel, GW or LL, eikonal formalism is needed for diffraction but at t=0 the amplitude must reduce to just one term, i.e. one-channel formalism

Our proposal for running
$$\alpha_s(k_t)$$

in the infrared region
 $V_{one \ gluon \ exchange} \sim r^{2p-1}$
 $\propto k_t^{-2p} \quad k_t << \Lambda$
To reconcile with asymptotic
Freedom $\propto \frac{1}{\log k_t^2/\Lambda^2} \qquad k_t >> \Lambda$
A phenomenological
interpolation
 $\alpha_{eff}(k_t) = \frac{12\pi}{11N_c - 2N_f} \frac{p}{\log[1 + p(k_t/\Lambda_{QCD})^{2p}]}$

About our ansatz for $\alpha_{\rm s}$ in the infrared

In our model, the emission of singular infrared gluons tames low-x gluon-gluon scattering (mini-jets) and restores the Froissart bound

$$\sigma_{tot}(s) \approx 2\pi \int_0^\infty db^2 [1 - e^{-C(s)e^{-(b\bar{\Lambda})^{2p}}}]$$

$$\sigma_{tot}(s) \rightarrow [\varepsilon \ln(s)]^{(1/p)} \qquad \frac{1}{2}$$

Grau, Godbole, GP, Srivastava, PLB682 2009

 $s^arepsilon$

The actual calculation

Our QCD model for the total cross-section R. Godbole, A. Grau, GP, YN Srivastava

$$\sigma_{total} \simeq 2 \int d^2 \vec{b} [1 - e^{-\chi_I(b,s)}]$$
$$2\chi_I(b,s) = \sigma_{soft} + A(b,s)\sigma_{jet}$$

- Minijets to drive the rise
- Soft kt-resummation to tame the rise and introduce the cut-off needed to satisfy theFroissart bound
- Phenomenological singular but integrable soft gluon coupling to relate confinement with the rise
- Interpolation between soft and asymptotic freedom region

Update of PRD2012 analysis

With Olga Shekhovtsova

Why the uncertainty in the inelastic? Models for diffraction 28

$\sigma_{tot} = \sigma_{elastic} + \sigma_{inelastic}$

- Elastic cross-section: pp amplitude $-t \neq 0$ well defined both theoretically and experimentally $\int_{0}^{\infty} dt \{ [\Im m \mathcal{A}(s,t)]^{2} + [\Re e \mathcal{A}(s,t)]^{2} \}$
- Inelastic : what is not elastic!!! Yes, but not so simple, diffractive, central, large mass, small mass

The one eikonal does not work

- Optical point : total cross-section
- Forward slope? Regge?
- The dip? ??
- The tail? 3 gluons perhaps

Resort to an EMPIRICAL MODEL to try to understand the building blocks

BP model with Proton Form Factor

TOTEM LHC7 for pp

ISR for pp

Fagundes, Grau, GP, Srivastava PRD 2013

A lesson from the empirical model

The black disk limit is very far away

State-of-the-art of total cross-section : before LHC and AUGER

а

h

UA5

CDF

10

1973 Barger

FIG. 1. Typical high-energy model extrapolations of the proton-proton total cross section to the energy range accessible to extensive-air-shower experiments.

About the inelastic

- Inelastic=central+diffraction
- One-channel eikonals which describe sigmatotal fail to give the full contribution including diffraction
- GW mechanism-> multichannel eikonals, continuous distributions, etc. -> diffraction can be included through more parametrs and various modeling
- For sigma p-air we do not need diffraction