

International Symposium on Very High Energy Cosmic Ray Interactions ISVHECRI 2014, CERN, Geneva, Switzerland, August 18-22, 2014

Multiple Shell Shower fronts in EAS with ARGO-YBJ

G.Marsella for the ARGO-YBJ Collaboration

Università del Salento and INFN Lecce, Italy

Shower reconstruction

Fired pads on the carpet

Arrival time vs position

7 yrs operation

- duty cycle>85%
- event rate ±5%

Arrival direction measurement:

- Core reconstruction: Maximum Likelihood Method applied to the lateral density profile of the shower
- Fit of the shower front with a conical shape

Full coverage, high time and space resolution provide a detailed view of shower front

$$S^{2} = \frac{1}{W} \sum_{i=1}^{N_{hit}} w_{i} \left(t_{i} - t_{0} - \frac{x_{i}}{c} l - \frac{y_{i}}{c} m - \frac{R_{i}}{c} \alpha \right)^{2}$$

Energy Calibration

PRD 84 (2011) 022003

A natural tool to evaluate the performance of the detector

The energy scale uncertainty is estimated to be smaller than 13% in the range 1 – 30 (TeV/Z).

Time profile

7.9 10⁸ events

zenith < 15°

Average Thickness: the RMS of time residuals $\sigma(\mathbf{R})$ with respect to a

conical fit

Average Curvature: the mean of time residuals $\Delta t(\mathbf{R})$ with respect to a plane fit

10 ns from 10m to 60 m from the core.

4 ns to 6ns from 10m to 60 m from the core.

Large RMS Shower fronts

- In order to exploit at maximum space-time information, we started a detailed study on the longitudinal time structures in data
- The idea is to study more in detail the shower structures to define selection criteria for particular analysis (gamma/hadron separation, composition, exotic physics)
- In particular we studied showers with large time residual with respect to the shower front
- Two Categories have been observed

Wide showers

Multiple Shell Front showers

Multiple Shell Shower Fronts

- What are these showers?
 accidental coincidences and possible delayed showers
- How many events?
- How many are compatible with accidental coincidences?
 - Angular difference distribution
 - Nhit Distribution
 - Time delay
 - Observed vs Expected events

Double Shell Shower fronts

Short (not complete) list of references....

.

- G. Damgaard et al., Phys. Lett. 17 (1965) 152.
- B.K. Chatterjee et al., Proc. 9th ICRC (1965).
- L. W. Jones et al., Phys. Rev. 164 (1967) 1584.
- G. Feinberg, Phys. Rev. 159 (1967) 1089.
- L. W. Jones et al., Rev. of Mod. Phys. 49 (1977) 717.
- N. Sakuyama et al., Il Nuovo Cimento vol. 6 C (1983) 371
- M. Yoshida et al., J. of the Phys. Soc. of Jap. 53 (1984) 1983.
- M. Ambrosio et al., Astrop. Phys. 11 (1999) 437
- V. I. Yakovlev et al., Yadernaya Fizika 73 (2010) 816...

Double Shell Shower fronts

Long story of observation of delayed events associated to EAS
 A possible origin is the production of heavy particles. Assuming a production distance (or decay length) L from the detector the expected delay is:

$$\Delta t = L(1/v - 1/c) \approx L/2c\gamma^2$$

Assuming L~ 20 km, with a useful time window 50 ns - 1400 ns, we can probe γ ranging from 5 to 26

- Define constraint on Heavy Mass particle $\gamma = E/M$
- Evaluate lifetime

$$f(\Delta t) = C \times exp[-\Delta t/\Delta t_0]$$

$$\Delta t_0 = \tau/2\gamma$$
. $\tau = 2\gamma \Delta t_0$

Multiple Shell Shower Fronts

Selection

- Hit Number >100 (10% of Ev.)
- Fit on time distribution
 - Used TSpectrum class of root

Reconstruction

- Separation of subshowers
- Planar Fit on subshowers
 - Quality cuts on reconstructed subshowers

Distance of two peaks > $\sigma1+\sigma2$

Angular difference Distribution

Angular difference between the reconstructed subshower directions

In agreement with CR distribution of consecutive events

Multiplicity Distribution

Multiplicity distribution of the reconstructed subshowers

Shower 1 (red) is the one which triggers the detector!

Shower2 (black) is expected to have a lower multiplicity distribution because no more trigger condition is required

Shower 1 Nhit >100

Shower2 Nhit >50

Time Distance

How to define time distance between

two subshowers?

At least 2 variables:

- Peak mean value
- •T₀ from the shower plane Fit

Analysis

Simulated double events

- "Artificial" double Events have been generated from real data
- Merged two consecutive events shifting the time of each hit of the second event by a randomly extracted ΔT by poissonian distribution compatible with the 2µs trigger window
- Verified the random double shower distributions (Angle, Multiplicity, relative time distribution)

Multiplicity Distribution

Time Distance

Correlation between the reconstructed time distance and the generated time dt distance in "artificial" double shell shower fronts

Time Peak distance is the good time distance observable

Peak Time vs dt Correlation

Selection Efficiency

Selection efficiency of the algorithm in function of the generated time dt distance in "artificial" double shell shower front has been tested

The total efficiency η is 10.94±0.05%

Analysis

Expected rates

- DAQ rate = 3266.03±0.03 Hz (multiplicity of Events Nhit > 20 in a time window τ = 2.048±0.001 μs)
- Rate of observed showers with S² < 100 ns²:
 - 1) Nhit >100 $\lambda_1 = 419 \pm 1 \text{ Hz}$
 - 2) Nhit > 50 λ_2 = 1152±2 Hz

Observed rates

- 3.05 x10⁹ events have been processed
- 2.1 x10⁶ events selected as double coincidences
- 99 x10³ events selected as double coincidences with quality cuts on subshowers (no angular aperture selection)
- Taking in account the efficiency of the selection algorithm the observed rate is:

 $\lambda_{\text{exp}} = (0.957 \pm 0.003) \text{ Hz}$

 $\lambda_{obs} = (0.974 \pm 0.008) \text{ Hz}$

Summary

- ARGO-YBJ allows detailed studies of EAS space-time features. Multiple Shell Shower fronts have been detected quite efficiently. They are mainly accidental coincidences due to the very high trigger rate.
- An upper limit on the fraction of double shell shower fronts, as a flag of possible 'exotic' physic events in CR, is on the way.
- Small angular aperture (< 10 deg) between the two subshowers events and more geometrical parameters are under study in order to reduce the "accidental" coincidences.