

Charm production in Sibyll

Felix Riehn, R. Engel, A. Fedynitch, T.K. Gaisser and T. Stanev ISVHECRI 2014, CERN, 21.08.2014

Institut für Kernphysik

Motivation

- Charmed particles short lived compared to pions/kaons
 - very unlikely to interact after production \rightarrow No energy loss
 - Form so-called "prompt" component in muon and neutrino flux
- Similar to signal expected from astrophysical neutrinos!
 - Need to determine contribution to neutrino flux at high energy
- Charm quark mass scale in transition region between hard and soft processes
 - \rightarrow behaviour of model reasonable?

Special case of soft interaction: valence scattering 21.08.14 Charm production in Sibyll | F. Riehn

The hadronic event generator Sibyll

Includes:

3

- Multiple parton interactions
- Soft and hard scattering
- Diffraction dissociation
- Lund fragmentation $P_{N_s,N_h}(s) = \int d^2 b \frac{n_s(b,s)^{N_s}}{N_s!} \times \frac{n_h(b,s)^{N_h}}{N_h!} e^{-n_h(b,s) - n_s(b,s)}$

$$\sigma_{QCD}(s, p_T^{min}) = \int_{p_T^{min}}^{\inf} dp_T \int dx_1 \int dx_2 \sum_{i,j,k,l} f_i(x_1, Q^2) f_j(x_2, Q^2) \frac{d\hat{\sigma}^{i,j \to k,l}}{dp_T}(\hat{s}, \hat{t})$$

 $n_i(b,s) = A(b)\sigma_i(s)$

ы $\hat{\sigma}$

How to include charm quarks?

- Large contribution from QCD processes (many NLO calculations available)
 - \rightarrow add charm to hard scattering
- Non-perturbative component seen in data (leading charmed particles, asymmetries)
 - \rightarrow add charm to valence scattering
- effective partons only → no need to add charm diagrams
 - → Add charm quarks in fragmentation step

Charm rate relative to strange:

$$P_{c/s} = P_0 e^{-\frac{m_{eff}^c}{\hat{s}}}$$

Peterson fragmentation:

$$D(x) = \frac{A}{x(1 - 1/x - \epsilon/(1 - x))}$$

How to adjust the parameters?

- Low energy: fixed target data
 Full phase space coverage
 Mostly non-perturbative
- High energy: collider data
 - Mostly perturbative
 - Limited coverage

5

$$y = \frac{1}{2} ln \left(\frac{E + p_z}{E - p_z} \right) \le ln \left(\frac{\sqrt{s}}{m_p} \right)$$

$$y_{max}^{7TeV} \sim 9$$

ALICE Region of interest
Rapidity 0 ymax

12 Sibyll 2.3rc1 n_{hard} Sibyll 2.1 n_{soft} 10 avg. number of interactions 8 6 10^{6} 10^{2} 10^{3} 10^{4} 10⁵ 10⁷ 10^1 c.m. energy \sqrt{s} (GeV)

> ALICE: |y| < 0.5 LHCb: 2.5 < |y| < 4.5

^{21.08.14} Charm production in Sibyll | F. Riehn

Interlude: Spectrum weighted moments

Institut für Kernphysik (IKP)

Charm production in Sibyll | F. Riehn

6 21.08.14

^{21.08.14} Charm production in Sibyll | F. Riehn

LHCb phasespace, how limiting is limited?

7TeV c.m energy well beyond the knee

$$\sqrt{s} = 7TeV \rightarrow E_{lab} = 26PeV$$

 $\gamma_{CR} \approx 3$

How much does LHCb phasespace contribute to integrated spectrum?

	%
LHCb	7
perturbative	37
Non-perturbative	59

 \rightarrow LHC data **not** restrictive

Low energy: E769 xF spectrum

 $\sqrt{s} = 22 GeV$

Close to lowenergy threshold of the model

very limited by kinematics

^{21.08.14} Charm production in Sibyll | F. Riehn

8

^{21.08.14} Charm production in Sibyll | F. Riehn

9

High energy: ALICE – central D-mesons

Central production almost entirely due to perturbative process

Charm production in Sibyll | F. Riehn

10

21.08.14

LHCb all D-meson spectra most central and forward rapidity region

11 21.08.14

Charm production in Sibyll | F. Riehn

LHCb charged D-meson spectrum

LHCb charmed Lambda spectrum

^{21.08.14} Charm production in Sibyll | F. Riehn

Inclusive charm production

Charm production in Sibyll | F. Riehn

14

21.08.14

Inclusive charm production, by process

15

21.08.14

Inclusive charm production, compared to NLO QCD

16

21.08.14

Charmed Sibyll compared to the MRS model

- perturbative QCD
- Extrapolating to low x
- Inlcuding saturation effects (Martin, Ryskin, Stasto: MRS Acta Phys.Polon. B34 (2003) 3273-3304)
- Overall charm scale very different
- Component due to perturbative QCD in Sibyll similar

Charmed Sibyll compared to the MRS model

- perturbative QCD
- Extrapolating to low x
- Inlcuding saturation effects

(Acta Phys.Polon. B34 (2003) 3273-3304)

- Overall charm scale very different
- Component due to perturbative QCD in Sibyll similar

Summary

- Charm production included in Sibyll event generator
 - Charm model phenomenologic
 - Perturbative component similar to NLO QCD predictions
 - Essential non-perturbative component that dominates forward production
- Phasespace covered by LHC experiments is **not** sufficient to determine the prompt atmospheric component due to charm

Todo:

- Detailed look at charm in nuclear interactions
- Charmed interactions (?)

SELEX charmed hyperon asymmetry

^{21.08.14} Charm production in Sibyll | F. Riehn