

Recent results from the LHCf experiment

Hiroaki MENJO (Nagoya University, Japan) on behalf of the LHCf collaboration

-ISVECRI 2014, 18-22 Aug. 2014, CERN Switzerland -

Measurement of HECR

X_{max}

the depth of air shower maximum. An indicator of CR composition

Uncertainty of hadron interaction models Error of <X_{max}> measurement

Extensive air shower observation

- Iongitudinal distribution
- lateral distribution
- Arrival direction

Air shower development

Astrophysical parameters

- Spectrum
- Composition
- Source distribution

The Large Hadron Collider (LHC)

LHC

Key parameters for Air Showers

Key Parameters

- \circ Forward Energy Spectrum → LHCf, ZDC and etc.
- Inelasticity k= 1- p_{lead}/p_{beam} \rightarrow LHCf, ZDC and etc.

Or Multiplicity →Central detectors

+Nuclear Effect @ CR-Air

The LHCf collaboration

The LHCf collaboration involves ~30 members at 10 institutions.

LHCf Experiment

CHOP The LHCf detectors

Sampling and Positioning Calorimeters

- W (44 r.l $\ , \ 1.7\lambda_{I}$) and Plastic Scintillator x 16 Layers
- 4 positioning layers XY-SciFi (Arm1) and XY-Silicon strip(Arm#2)
- Each detector has two calorimeter towers, which allow to reconstruct π^0

Expected Performance Energy resolution (> 100GeV) < 5% for Photons 40% for Neutrons Position resolution < 200µm for Photons a few mm for Neutrons

Front Counter

- thin scintillators with 80x80mm²
- To monitor beam condition.
- For background rejection of beam-residual gas collisions by coincidence analysis

Arm1

Arm2

Operations and Results

<u>p-p, $\sqrt{s} = 0.9$ TeV (Dec. 2009 and May 2010)</u>

D Photon spectra (PLB 715 (2012) 298)

- <u>p-p, √s = 7.0 TeV (Apr.-July 2010)</u>
- D Photon spectra (PLB 703 (2011) 128)

- Neutral pion spectra (PRD 86 (2012) 092001) -
- □ Neutron spectra (submit quite soon) → Forward baryons relating to "Inelasticity"
- <u>p-Pb, √s_{NN}=5TeV (Jan.-Feb. 2013)</u>
- □ Neutral pion spectra (PRC 89 (2014) 065209) → Nuclear effect at the very forward region.

Photons at 7TeV p-p

- No model can reproduce the LHCf data perfectly.
- EPOS 1.99 provides the best agreement with LHCf data.

Neutral Pions at 7TeV p-p

Detector thickness is EM : 44 radiation length \rightarrow Thick enough to contain all showers. Hadron : 1.7 interaction length \rightarrow Thin. Showers develop at deeper part

Neutron results at p-p 7TeV

In η >10.76 huge amount of neutron exists. Only QGSJET2 reproduces the LHCf result.

.HC

- In other rapidity regions, the LHCf results are enclosed by the variation of models.

π^0 event analysis in p-Pb collisions

Momentum distribution of the UPC induced $s \leq 1$ in a ynartic is in estimated a 1. energy distribution of virtual photons is estimated by the view of the Williams approximation of virtual photons is estimated by the SOHIA model (E > pionathaesa add). 2. photon-proton collisions are simulated by the SOHIA model (E > pionathaesa add). 3. produced mesons and baryons by γ -p collisions are boosted along the proton beam.

Dominant channel to forward π^0 is $\gamma + p \rightarrow \Delta(1232) \rightarrow p + \pi^0$

About half of the observed π^0 may originate in UPC, another half is from soft-QCD.

π⁰ pτ spectra at p-Pb

.HC

- The LHCf results in p-Pb (filled circles) show good agreement with MC predictions.
 The LHCf results in p-Pb are clearly barder than the LHCf results in p-p at 5.02TeV.
- The LHCf results in p-Pb are clearly harder than the LHCf results in p-p at 5.02TeV (shaded area) which are interpolated from the results at 2.76TeV and 7TeV.

Nuclear modification factor

Future Operations

■ LHC p-p √s = 13 TeV

Operation for about 1 week in May 2015 with low luminosity collisions.

- Test of Energy scaling
- Enlarge the LHCf acceptance

Future Operations

■ LHC p-p √s = 13 TeV

 Operation for about 1 week in May 2015 with low luminosity collisions.

- Test of Energy scaling
 - Enlarge the LHCf acceptance
- Measurement with Event Categorization thank to the common operation with ATLS

Summary

- LHCf is a forward experiment at LHC and had operations at p-p with $\sqrt{s=0.9,7}$ TeV and with p-Pb at $\sqrt{s_{NN}=5}$ TeV.
- The data of EM components (photon and neutral pions) at the forward region at p-p collisions seems to be reproduced by EPOS model well however Neutron data was well consistent with the prediction of QGSJET II-03.
- LHCf measured the nuclear factor of 0.1 at for forward neutral pions. The small factor is well reproduced by the interaction models.

Backup

Energy Scan at LHC and RHIC

HC

Photons at 900GeV p-p

Good agreement of X_F spectrum shape between 900 GeV and 7TeV. →weak dependence of <p_T> on E_{CMS} Note : No systematic error is considered in both collision energies yet. 21% of the luminosity determination error allows vertical shift.

Diffraction @ CR-AS

- Cross section fraction differs largely in models (~10^11eV → 10^20eV)
 - Sibyll: $12\% \rightarrow 1\%$

HC

- $\quad \text{QGSJet } 13\% \rightarrow 16\%$
- DPMJet $1\% \rightarrow 5\%$ (but rising at mid energies)

C.Baus @ Seminar in Nagoya

LHCf can measure

Front view of calorimeters @ 100µrad crossing angle

C

