

Confronting EPOS-LHC predictions on the charged particle and muon attenuation lengths of EAS with KASCADE-Grande data

J.C. Arteaga Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics, Universidad Michoacana Morelia, Michoacan, Mexico

Structure of the talk:

- 1) Introduction
- 2) KASCADE experiment
- 3) KASCADE-Grande experiment
- 4) Analyses
- 5) Results
- 6) Summary

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

1) Introduction

- 1. What is the origin of features in spectrum?
- 2. Where do they come from?
- 3. What is their nature?
- 4. How do they get accelerated?
- 5. Are there nearby sources?

6. Where is the galactic to extragalactic transition?

Karlsruhe Shower Core and Array Detector

arlsrube, Germany

- Origin of the knee
 - Composition
 - Energy spectrum
 - Arrival direction

Karlsruhe Shower Core and Array Detector

- Components:
 - Ground array (200 x 200 m²)
 - + 252 e/ γ scintillator detectors
 - + 192 μ detectors
 - Central detector
 - + Calorimeter
 - + μ detectors
 - Muon tracking detector
- Observables:
- E = $10^{14} 10^{17} \text{ eV}$

- e/γ detector (liquid scintillator)
- lead/iron absorber
- -muon detector (plastic scintillator)

Grande

2) KASCADE experiment

Unfolding of energy spectra from KASCADE data

KASCADE-Grande detector (December 2003 – November 2012)

 $E = 10^{16} - 10^{18} eV$

KASCADE-Grande detector (December 2003 – November 2012)

 $E = 10^{16} - 10^{18} eV$

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

KASCADE-Grande detector (December 2003 – November 2012)

 $E = 10^{16} - 10^{18} eV$

W. D. Apel, NIMA620, 202 (2010)

Energy spectrum: K-method

- Composition independent
- Performed for different zenith angle bins independently of each other

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

ISVHECRI 2014

QGSJETII-02

8.5

 $\log_{10}(N_{cb})$

7.5

Energy spectrum: K-method

W.D.Apel, Astrop. Phys. 36 (2012) 183

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

All-particle energy spectrum

Heavy mass group spectrum

KASCADE Grande Coll., Nucl. Phys. B (Proc. Suppl.), to be published

KASCADE Grande Coll., Adv. in Space R. (2013)

Main results are independent of both the method and the model: -) Shape of individual spectra is retained

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

Work in progress

- 1. Combined KASCADE/KASCADE-Grande energy spectrum $E = 10^{14}-10^{18}$ eV.
- 2. Test of hadronic interaction models.
- 3. Anisotropy studies.
- 4. Limits of gamma-ray flux.
- 5. Radio analysis with LOPES & CROME.
- 6. KASCADE Cosmic Ray Data Center.

Goal:

To test hadronic interaction models: QGSJETII-02/04, EPOS 1.99/LHC, SIBYLL 2.1 at very high energies with KASCADE-Grande.

→ Employ EAS data on muons & charged particles

Strategy:

***** Analyze zenith angle dependence of N_{μ} and N_{ch} in the atmosphere.

 \rightarrow Attenuation lengths

Compare predictions of hadronic interaction models against experimental estimations.

→ Use MC predictions for Protons and Iron nuclei

Sandana some tet

Data sample:

- December 2003 November 2012
- Effective observation time: 1434 days

Selection cuts:

- ✤ Central area: 370 x 520 m².
- ✤No experimental problems.
- Stable DAQ.
- ✤ All muon clusters working.

Exposure: $1.3 \times 10^{13} \,\mathrm{m^2 \cdot s \cdot sr}$

MC sample:

QGSJETII-02/04
 EPOS 1.99/LHC
 SIBYLL 2.1

Simulated spectra:

- Pure composition:H, He, C, Si, Fe
- Mixed composition

 (primary elements on equal abundances)
- ✤ E^γ, γ= -2

reweighted to have

 $\gamma = -2.8, -3, -3.2$

*Bands take into account variation among different models

Mean accuracy (in region of full efficiency)

- $\cdot \delta N_{\mu} < 20\%$
- δN_{ch} < 20%
- δθ ~ 0.4°

*Bands take into account variation among different models

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

All muon data is corrected for systematic errors (using a correction function derived from QGSJETII-02)

*Bands take into account variation among different models

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

 $\bullet \bullet \bullet \bullet \bullet \bullet$

5) Results

J.C.Arteaga – Attenuation lengths/KASCADE-Grande

What we know up to now:	Statistical and systematic uncertainties do not explain the difference
Main contribution	ons to systematic error of measured value:
Reconstruction m	ethod: +9%/-2%
Correction function	on: +6%/-9%
EAS core position:	+12%/-11%
Muon Systematics	+13%/-10%

What we know up to now:	Statistical and systematic uncer the difference	tainties do not explain
Other system	atic errors derived from MC	studies
Fluctuations at	the shower front:	< 15 %
Lateral distribu	tion function of muons:	+5%/-4%
Misreconstruct number of muc	ed core, arrival direction and ons per detector:	< 3%
Systematics in a according to dia and KASCADE-0	core and arrival direction fferences between KASCADE Grande:	< 7%

5) Results

 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet$

A. Yushkov j.EPJ W. of Conf. 53, PAO 2013 30 (1 - Ν^{MC}/Ν^{Exp})(%) $N_{\mu}^{
m rel}$ 2.6 Mixed composition ($\gamma = -3$) Universality, EPOS 1.99 QGSJETII-2 Universality, QGSJET II 2.4 25 **EPOS 1.99** SIBYLL 2.1 Iultivariate counter 2.2 **QGSJETII 04** nclined showers [62º- 80º] 20 EPOS LHC 2.0 15 1.8 1.6 10 1.4 5 iron, QGSJET II 1.2 **ASCADE-Grande** Auger 1.0 20 25 40 15 30 35 20 25 30 35 40 45 50 55 60 65 Zenith angle [deg] θ (deg)

* Observed differences between observed and predicted Λ_{μ} may imply more muons in experimental data at high zenith angles than in simulations.

That may be correlated with Auger's muon deficit problem at higher energies.

5) Results

KASCADE-Grande results on N_u and N_{ch} attenuation lengths:

• At E=10¹⁶-10¹⁸ eV, none of the hadronic interaction models (QGSJET II, EPOS 1.99, SIBYLL 2.1, QGSJETII-04, EPOS-LHC) is able to describe the $N_{\mu}(\theta)$ data of KASCADE-Grande consistently.

•The measured Λ_{u} is bigger than the MC values.

•At high zenith angles more muons are observed in the experiment than in MC simulations.

•The measured Λ_{ch} is in better agreement with MC predictions.

• Results from EPOS-LHC for Λ_{μ} and Λ_{ch} are closer to the experimental observations than the ones from other hadronic interaction models.

Thank you!

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik C.Grupen Institut für Kernphysik & Institut für Experimentelle Kernphysik KIT - Karlsruhe Institute of Technology

W.D.Apel, K.Bekk, J.Blümer, H.Bozdog, F.Cossavella, K.Daumiller, P.Doll, R.Engel, J.Engler, B.Fuchs, H.J.Gils, A.Haungs, D.Heck, D.Huber, T.Huege, D.Kang, H.O.Klages, K.Link, H.-J.Mathes, H.J.Mayer, J.Milke, J.Oehlschläger, N.Palmieri, T.Pierog, H.Rebel, M.Roth, H.Schieler, S.Schoo, F.G.Schröder, H.Ulrich, A.Weindl, J.Wochele

