Physics with relativistic heavy-ion collisions (ALICE, ATLAS, CMS, HADES, LHCb, PHENIX, STAR)

ISVHECRI 2014

19.08.2014

Benjamin Dönigus

Institut für Kernphysik
Goethe Universität Frankfurt

Content

- Collectivity and approach to equilibrium
- High p_T and jets
- Heavy flavour and electroweak bosons
- Search for exotic objects

AA and pA/dA

- Trying to summarise the physics done in the relativistic heavy-ion community in a talk of 30 minutes itself seems difficult
- Choosing mainly topics of the field which might be interesting for the high-energy cosmic ray community is still quite challenging
- → Mainly focus here on recent results in p-Pb/d-Au collisions since it seems to have the largest overlap with the heavy-ion and the high-energy cosmic ray communities

Why do we investigate p-Pb collisions?

- Traditional idea: reference for Pb-Pb collisions in order to investigate cold nuclear matter (initial state) effects.
- However, the data turned out to be very interesting in itself:
 - Do we observe collective effects in a small system such as p-Pb collisions? Is there hot matter in local thermal equilibrium created?
 - Do we observe an enhancement of high-p_T particles with respect to pp collisions while we see a suppression in Pb-Pb collisions?
 - What can we learn from heavy flavour and electroweak bosons?

Collectivity and approach to equilibrium

- It is important to distinguish between
 - a system of individual particles and
 - a medium in which individual degrees of freedom do not matter anymore and we can apply thermodynamic concepts.
- Thermodynamic concepts are typically used for systems with large number of particles (> 10⁴) particles in *local thermal equilibrium*.
 - central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$
 - high mult. (0-5%) p-Pb collisions (LHC): $dN_{ch}/d\eta \approx 45$
 - min. bias pp collisions (LHC): $dN_{ch}/d\eta \approx 6$
- Lifetime of the system must be long enough and mean free path must be short enough so that equilibrium can be established by several (simulations indicate about 3-6) interactions between its constituents.

- It is important to distinguish between
 - a system of individual particles and
 - a medium in which individual degrees of freedom do not matter anymore and we can apply thermodynamic concepts.
- Thermodynamic concepts are typically used for systems with large number of particles (> 10⁴) particles in *local* thermal equilibrium.
 - central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$
 - high mult. (0-5%) p-Pb collisions (LHC): $dN_{ch}/d\eta \approx 45$
 - − min. bias pp collisions (LHC): $dN_{ch}/dη \approx 6$
- Lifetime of the system must be long enough and mean free path must be short enough so that equilibrium can be established by several (simulations indicate about 3-6) interactions between its constituents.

- It is important to distinguish between
 - a system of individual particles and
 - a medium in which individual degrees of freedom do not matter anymore and we can apply thermodynamic concepts.
- Thermodynamic concepts are typically used for systems with large number of particles (> 10⁴) particles in *local* thermal equilibrium.
 - central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$
 - high mult. (0-5%) p-Pb collisions (LHC): $dN_{ch}/d\eta \approx 45$
 - min. bias pp collisions (LHC): dN_{ch}/dη ≈ 6
- Lifetime of the system must be long enough and mean free path must be short enough so that equilibrium can be established by several (simulations indicate about 3-6) interactions between its constituents.

gg

Success of hydro models describing flow effects in Pb-Pb supports idea of matter in local thermal (kinetic) equilibrium.

Success of thermal models describing hadron yields in Pb-Pb supports idea of matter in local thermal (chemical) equilibrium.

- It is important to distinguish between
 - a system of individual particles and
 - a medium in which individual degrees of freedom do not matter anymore and we can apply thermodynamic concepts.
- Thermodynamic concepts are typically used for systems with large number of particles (> 10⁴) particles in *local* thermal equilibrium.
 - central (0-5%) Pb-Pb collisions (LHC): $dN_{ch}/d\eta \approx 1600$
 - high mult. (0-5%) p-Pb collisions (LHC): $dN_{ch}/d\eta \approx 45$
 - min. bias pp collisions (LHC): $dN_{ch}/d\eta \approx 6$
- Lifetime of the system must be long enough and mean free path must be short enough so that equilibrium can be established by several (simulations indicate about 3-6) interactions between its constituents.

pp

Success of hydro models describing flow effects in Pb-Pb supports idea of matter in local thermal (kinetic) equilibrium.

Success of thermal models describing hadron yields in Pb-Pb supports idea of matter in local thermal (chemical) equilibrium.

→ Equilibrium in smaller systems such as p-Pb?

Radial and elliptic flow

Isotropic (radial) flow

Anisotropic (elliptic) flow

Azimuthal (φ) pressure gradients

[hep-ph/0407360]

Anisotropic particle density

 $\frac{dN}{d\varphi} \propto 1 + 2v_1 \cos[\varphi - \Psi_1] + 2v_2 \cos[2(\varphi - \Psi_2)] + 2v_3 \cos[3(\varphi - \Psi_3)] + \dots$

Angular correlations and double ridge (1)

- Di-hadron correlations study anisotropies in the particle production on event-by-event basis.
- In Pb-Pb collisions, they are associated with elliptic flow resulting from the hydrodynamical expansion of the system and the initial collision geometry.

Angular correlations and double ridge (2)

- Triggered further measurements from ATLAS, CMS, ALICE...
- From the high-multiplicity yield subtract the jet yield obtained in low-multiplicity events (no ridge) → double ridge.
- Correlations of non-identified and also identified particles.

Azimuthal projection is decomposed into Fourier components: v₂

Angular correlations and double ridge (3)

- Mass ordering observed by ALICE and CMS → reminiscent of Pb-Pb phenomenology
- as expected from hydrodynamic behavior: $p = \beta \gamma \cdot m$

CMS: no subtraction of peripheral events!

Angular correlations and double ridge (3)

- Mass ordering observed by ALICE and CMS → reminiscent of Pb-Pb phenomenology
- as expected from hydrodynamic behavior: $p = \beta \gamma \cdot m$

CMS: no subtraction of peripheral events!

Flow from initial hotspots

- Same behaviour observed at RHIC
- Geometrical engeneering
- Triangular flow patterns (?)
- → RHIC is running ³He + Au right now!

Phys. Lett. B 728 (2014) 25

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

A combined blast-wave fit to the data (simplified hydro **model** \rightarrow T_{kin}, β) gives a reasonable description.

Phys. Lett. B 728 (2014) 25

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

A combined blast-wave fit to the data (**simplified hydro model** \rightarrow T_{kin}, β) gives a reasonable description.

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

A combined blast-wave fit to the data (**simplified hydro model** \rightarrow T_{kin}, β) gives a reasonable description.

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

p-Pb and Pb-Pb data follow the same trend → consistent with a collective expansion. A combined blast-wave fit to the data (**simplified hydro model** \rightarrow T_{kin}, β) gives a reasonable description.

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

p-Pb and Pb-Pb data follow the same trend → consistent with a collective expansion. A combined blast-wave fit to the data (**simplified hydro model** \rightarrow T_{kin}, β) gives a reasonable description.

PYTHIA 8 with color reconnection shows a similar trend (without hydrodynamic flow).

Hydrodynamic models (EPOS, Krakow) show a better agreement than QCD inspired models (DPMJET).

p-Pb and Pb-Pb data follow the same trend → consistent with a collective expansion. A combined blast-wave fit to the data (**simplified hydro model** \rightarrow T_{kin}, β) gives a reasonable description.

PYTHIA 8 with color reconnection shows a similar trend (without hydrodynamic flow).

Other effects can mimic flow-like patterns!

And also pp data shows a similar trend

Even nuclei show this behaviour

- Deuterons and anti-deuterons are produced nearly equally in p-Pb collisions at the LHC
- Their p_T shape is well described with a simple hydro model

Deuteron-to-proton ratio

Rise with multiplicity

No further increase in Pb-Pb collisions within errors

- Multi-strange particles are of particular interest as their production rate is sensitive to the system size.
- In high multiplicity p-Pb collisions similar values as in central Pb-Pb collisions are observed for Ξ (dss), not quite for Ω (sss).

In heavy-ion collisions, chemical equilibrium is typically verified with a *thermal fit* in which all particle yields are described with the same chemical freeze-out temperature $T_{ch} \approx 160$ MeV.

In heavy-ion collisions, chemical equilibrium is typically verified with a *thermal fit* in which all particle yields are described with the same chemical freeze-out temperature $T_{ch} \approx 160$ MeV.

In heavy-ion collisions, chemical equilibrium is typically verified with a *thermal fit* in which all particle yields are described with the same chemical freeze-out temperature $T_{ch} \approx 160$ MeV.

Works in 1st order also in p-Pb collisions, however, the χ^2 /ndof is slightly worse: ≈ 5 instead of ≈ 2 , mainly due to multi-strange particles.

Nuclei in Pb-Pb

- Thermal model: production yield dN/dy ~ exp(-m/T)
- Nuclei follow the exponential fall predicted by the model nicely
- Each added baryon gives a factor of ~300 less production yield

High p_T and jets

What is the R_{pA} ?

 Modification of the spectral shape due to nuclear effects is quantified based on the nuclear modification factor:

$$R_{pA} = \frac{dN_{pA}/dp_T}{\left\langle N_{coll} \right\rangle dN_{pp}/dp_T}$$

- Number of binary collisions is calculated in a Glauber model: $\langle N_{coll} \rangle = 6.9 \pm 0.6$
- For pQCD processes: if R_{pA} ≈ 1 → p-Pb collision is approximately a superposition of independent protonnucleon collisions and no nuclear effects are present.

R_{pA} — examples

[1405.3452]

R_{pA} — examples

[1405.3452]

In general, no significant modification observed in the 10-30 GeV/c region.

R_{pA} — examples

[1405.3452]

In general, no significant modification observed in the 10-30 GeV/c region.

The suppression effects seen in AA collisions are not due to cold nuclear matter effects. They are final state effects in AA (energy lost in the medium).

- Going to even higher p_T , CMS observed an enhancement in the charged particle R_{pA} . ATLAS now confirms this observation.
- No explanation yet for this phenomenon!
- PDFs are expected to be modified in the nucleus. However, antishadowing seems to be insufficient.
- Jet fragmentation needs to be checked, because the R_{pA} of jets is approximately equal to one in all three experiments.
- Different impression of CMS/ATLAS vs. ALICE data.

- Going to even higher p_T, CMS observed an enhancement in the charged particle R_{pA}. ATLAS now confirms this observation.
- No explanation yet for this phenomenon!
- PDFs are expected to be modified in the nucleus. However, antishadowing seems to be insufficient.
- Jet fragmentation needs to be checked, because the R_{pA} of jets is approximately equal to one in all three experiments.
- Different impression of CMS/ATLAS vs. ALICE data.

- Going to even higher p_T, CMS observed an enhancement in the charged particle R_{pA}. ATLAS now confirms this observation.
- No explanation yet for this phenomenon!
- PDFs are expected to be modified in the nucleus. However, antishadowing seems to be insufficient.
- Jet fragmentation needs to be checked, because the R_{pA} of jets is approximately equal to one in all three experiments.
- Different impression of CMS/ATLAS vs. ALICE data.

- Going to even higher p_T, CMS observed an enhancement in the charged particle R_{pA}. ATLAS now confirms this observation.
- No explanation yet for this phenomenon!
- PDFs are expected to be modified in the nucleus. However, antishadowing seems to be insufficient.
- Jet fragmentation needs to be checked, because the R_{pA} of jets is approximately equal to one in all three experiments.
- Different impression of CMS/ATLAS vs. ALICE data.

The need for 5 TeV pp reference data

• N.B.: There is no data at the reference energy! The proton spectrum is interpolated/extrapolated from 2.76 TeV and 7 TeV data...

Also needed for: 13 TeV * 82 / 208 = 5.125 TeV !

R_{pA} at intermediate p_T

- The second interesting region is around 3-6 GeV/c → Cronin peak
- Shows a strong dependence on particle type:
 - no peak for pions and kaons,
 - rather pronounced for protons..
- This could indicate that it is caused by the mass dependent hardening of the p_T -spectra as predicted by the radial flow picture.

R_{pA} at intermediate p_T

- The second interesting region is around 3-6 GeV/c → Cronin peak
- Shows a strong dependence on particle type:
 - no peak for pions and kaons,
 - rather pronounced for protons..
- This could indicate that it is caused by the mass dependent hardening of the p_T-spectra as predicted by the radial flow picture.

LHCf R_{pA} measurement

- R_{pA} measured at low p_T (< 0.6 GeV/c) and very forward (y < -8.9).
- Reproduced by models, helps to model nuclear effects in cosmic ray air showers.

RHICf and PHENIX

Proposal; Precise measurements of very forward particle production at RHIC

Y.Itow, H.Menjo, T.Sako, N.Sakurai

Solar-Terrestrial Environment Laboratoy / Kobayashi-Maskawa Institute for the Origin of Particles and the Universe / Graduate School of Science, Nagoya University, Japan

K.Kasahara, T.Suzuki, S.Torii
Waseda University, Japan

O.Adriani, L.Bonechi, G.Mitsuka, A.Tricomi INFN/University of Firenze/University of Catania, Italy

Y.Goto

RIKEN Nishina Center / RIKEN BNL Research Center, Japan

K.Tanida

Seoul National University

https://indico.bnl.gov/getFile.py/access?res Id=0&materialId=6&confld=764 LHCf experiment measures very forward particle production at the LHC for constraining cosmic shower models

Proposal for **RHICf** experiment to make comparable measurements in p+p and p+A collisions at RHIC

If approved, RHICf detector would be integrated with the PHENIX experiment providing key additional constraints

Heavy flavour and electroweak bosons

Quarkonia — Introduction

- A precise measurement of quarkonia is crucial for the understanding of regeneration effects in Pb-Pb collisions which probe de-confinement in Pb-Pb.
- In addition, these measurements can help to constrain nuclear PDFs.

Quarkonia (1)

- In general, nuclear absorption effects are small at the LHC. Precision of the data allows for quantitative comparison with theory.
- Theoretical predictions based on nuclear shadowing (EPS09 + NLO) are in fair agreement with the J/ψ and data. Similarly for models including also partonic energy loss.
- Same picture for Y production.
- While models predict identical behavior for J/ψ and ψ(2s), the data shows differences.
 - → hint at final state effects
 - → unexpected, because charmonia formation time is larger than cc crossing time in the nucleus
 - → Suppression due to interaction with the (hadronic) medium created in the collision?

Quarkonia (1)

- In general, nuclear absorption effects are small at the LHC. Precision of the data allows for quantitative comparison with theory.
- Theoretical predictions based on nuclear shadowing (EPS09 + NLO) are in fair agreement with the J/ψ and data. Similarly for models including also partonic energy loss.
- Same picture for Y production.
- While models predict identical behavior for J/ψ and ψ(2s), the data shows differences.
 - → hint at final state effects
 - → unexpected, because charmonia formation time is larger than cc crossing time in the nucleus
 - → Suppression due to interaction with the (hadronic) medium created in the collision?

Quarkonia (1)

- In general, nuclear absorption effects are small at the LHC. Precision of the data allows for quantitative comparison with theory.
- Theoretical predictions based on nuclear shadowing (EPS09 + NLO) are in fair agreement with the J/ψ and data. Similarly for models including also partonic energy loss.
- Same picture for Y production.
- While models predict identical behavior for J/ψ and ψ(2s), the data shows differences.
 - → hint at final state effects
 - → unexpected, because charmonia formation time is larger than cc crossing time in the nucleus
 - → Suppression due to interaction with the (hadronic) medium created in the collision?

Quarkonia (2)

- Excited Y states are less suppressed with respect to the ground states in min. bias p-Pb collisions than in Pb-Pb collisions.
- However, the suppression of excited states seems to vary with the event multiplicity (same in pp).
- It is an open question if excited states add multiplicity (event selection bias) or if the activity suppresses excited states (as in Pb-Pb collisions).

JHEP 04 (2014) 103

Z⁰ production in p-Pb collisions

- New in the LHC energy regime... ≈ 2200 Z seen by CMS in μ⁺μ⁻ (similar for ATLAS). Also results from LHCb, but with much smaller statistics (≈ 15 candidates).
- Similar studies for W⁺ and W⁻ (≈ 21000 W→µ⁺v, ≈ 16000 W→e⁺v).
- Hints of forward-backward asymmetry might help to constrain nuclear PDFs

PHENIX Direct Photons – QGP Shine

Photons emitted from high T fluid cells and Doppler blue shifted

temperature

Search for exotic objects

Exotica - Introduction

H-dibaryon (uuddss):

First predicted by Jaffe in a bag model calculation (Jaffe, PRL 38 (1977) 195)

Recent lattice calculations suggest bound state or a resonance close to the Ξp threshold

An bound state:

H-dibaryon

Expected H-dibaryons (H $\rightarrow \Lambda p \pi^{-}$):

strongly bound H: 2110 * 0.1 = 211 lightly bound H: 2110 * 0.64 = 1350

H-dibaryon

Expected H-dibaryons (H $\rightarrow \Lambda p \pi^{-}$):

$$N_{\text{H}^{\circ}} = 1.38 \cdot 10^{7} \cdot 0.0385 \cdot 0.64 \cdot 3.1 \cdot 10^{-3} \cdot 2 \approx 2110$$
 events eff. $BR(\Lambda)$ dN/dy dy $BR(\text{H-dibaryon})$

strongly bound H: 2110 * 0.1 = 211 lightly bound H: 2110 * 0.64 = 1350

No signal visible

From the non-observation we obtain as **upper limits**:

For a strongly bound (20 MeV) H:

 \rightarrow dN/dy ≤ 8.4 · 10⁻⁴ (99% CL)

For a lightly bound (1 MeV) H:

→ $dN/dy \le 2 \cdot 10^{-4}$ (99% CL)

Λn bound state

Expected $\overline{\Lambda n}$ bound states $(\overline{\Lambda n} \rightarrow \overline{d}\pi^+)$:

$$N_{\overline{h}} = 1.38 \cdot 10^7 \cdot 0.0255 \cdot 0.35 \cdot 1.6 \cdot 10^{-2} \cdot 2 \approx 4000$$

events eff. BR dN/dy dy

No signal visible

From the non-observation we obtain as **upper limit**:

 \rightarrow d*N*/d*y* ≤ 1.5 · 10⁻³ (99% CL)

Comparison to models

- The √n bound state and the H-dibaryon are not observed
- Different model predictions are of the same order
- Upper limits for the two particles are set, at least a factor 10 below model predictions

→ Existence of these particles with the assumed properties (BR, mass, lifetime) is questionable

Dark Photon Search

Muon g-2 experiment (E821) has 3.6σ result beyond the Standard Model

One explanation is the dark photon – Low mass, weak coupling

PHENIX, HADES and ALICE have excellent dark photon search capabilities

No dark photon signal seen

Our upper limit, plus others, nearly rules out dark Photons as g-2 explanation

Dark Photon Search

Muon g-2 experiment (E821) has 3.6σ result beyond the Standard Model

One explanation is the dark photon – Low mass, weak coupling

PHENIX, HADES and ALICE have excellent dark photon

search capabilities

No dark photon signal seen

Our upper limit, plus others, nearly rules out dark Photons as g-2 explanation

G. Agakishiev et al., Phys. Lett. B 731 (2014) 265

Dark Photon Search

Muon g-2 experiment (E821) has 3.6σ result beyond the Standard Model

One explanation is the dark photon – Low mass, weak coupling

PHENIX, HADES and ALICE have excellent dark photon search capabilities

No dark photon signal seen

Our upper limit, plus others, nearly rules out dark Photons as g-2 explanation

Summary and conclusion

Summary and Conclusion

- A lot of interesting physics results from A-A and in particular p/d-A
- Pb-Pb/Au-Au like features are observed for the bulk of the produced particles at low p_T : v_2 , radial flow, thermal fits..
- No indications of *quenching* at high p_T (charged hadrons, jets, open charm, heavy flavor, electrons, muons). However, CMS & ATLAS observe a yet unexplained *enhancement* at high p_T ...
- Quarkonia measurements provide an essential baseline for the understanding of the Pb-Pb results. Electroweak bosons can help to constrain nPDFs and centrality estimators.
- For searches of exotic objects significant upper limits have been set
- Very interesting times ahead of us...

Summary and Conclusion

- A lot of interesting physics results from A-A and in particular p/d-A
- Pb-Pb/Au-Au like features are observed for the bulk of the produced particles at low p_T : v_2 , radial flow, thermal fits..
- No indications of *quenching* at high p_T (charged hadrons, jets, open charm, heavy flavor, electrons, muons). However, CMS & ATLAS observe a yet unexplained *enhancement* at high p_T ...
- Quarkonia measurements provide an essential baseline for the understanding of the Pb-Pb results. Electroweak bosons can help to constrain nPDFs and centrality estimators.
- For searches of exotic objects significant upper limits have been set

Very interesting times ahead of us...

Summary and Conclusion

- A lot of interesting physics results from A-A and in particular p/d-A
- Pb-Pb/Au-Au like features are observed for the bulk of the produced particles at low p_T : v_2 , radial flow, thermal fits..
- No indications of *quenching* at high p_T (charged hadrons, jets, open charm, heavy flavor, electrons, muons). However, CMS & ATLAS observe a yet unexplained *enhancement* at high p_T ...
- Quarkonia measurements provide an essential baseline for the understanding of the Pb-Pb results. Electroweak bosons can help to constrain nPDFs and centrality estimators.
- For searches of exotic objects significant upper limits have been set

Very interesting times ahead of us...

BACKUP

p-Pb collision geometry

the direction fo the proton is always at positive $y \equiv y_{cms}$ and positive η_{cms}

Centrality — Introduction

- In contrast to Pb-Pb collisions, it is not straightforward to relate experimental quantities to the collision geometry, i.e. the number of participants N_{part} and binary collisions N_{coll}.
 - \rightarrow in p-Pb collisions: $N_{coll} = N_{part} 1$
- Large biases present in the system:
 - Multiplicity fluctuations
 - Jet-veto bias
 - Geometric bias
- Most simple approach: only multiplicity classes instead of centrality, but more can be done...

Different experiments employ different approaches in order to deal with biases. One needs to be careful in comparisons.

Centrality — ALICE

- Standard Glauber fit+event selection (a la AA) leads to results which depends on the η-region of the centrality estimator.
- Example Q_{pA} (not called R_{pA}, because collision geometry is not properly reflected):

$$Q_{pA}^{i} = \frac{dN_{pA}/dp_{T}}{\langle N_{coll} \rangle_{i} dN_{pp}/dp_{T}}$$

- Forward neutrons (measured in Zero Degree calorimeter) cause no selection bias on midrapidity bulk production
- -> used to bin events in classes
- Determine N_{coll}/N_{part} by assuming one out of:
 - Mid-rapidity dNch/dη ~ Npart
 - Forward dNch/d η ~ $N^{Pb}_{part} = N_{part}$ -1
 - High p_T yield $\sim N_{coll}$
- Methods reach consistent results:
 - N_{coll} consistent within 5-10%
 - High p_T Q_{pA} flat (> **150/GHEXCR)** 2014 Benjamin Dönigus 19.08.2014

Standard Glauber fit+event selection

70

Centrality — ATLAS

- A different approach is used:
 - The underlying model is changed from a Glauber model to a Glauber-Gribov.
- NN cross-section is subject to quantum fluctuations in the proton configuration (controlled by fluctuation parameter Ω).
- Model can be constrained by pp diffraction data.

multiplicity classes in p-Pb

Correlation between impact parameter and multiplicity is not as straight-forward as in Pb-Pb

Definition of seven multiplicity classes:

→ slices in VZERO-A (V0A) amplitude

