

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

Measurement of the HYPERFINE STRUCTURE of ANTIHYDROGEN in a beam

E. WIDMANN

STEFAN MEYER INSTITUTE FOR SUBATOMIC PHYSICS, VIENNA

QFFP WORKSHOP CERN

08.05.2014

MATTER-ANTIMATTER SYMMETRY

• COSMOLOGICAL SCALE:

asymmetry

H·HFS

• Microscopic: symmetry?

E. Widmann

ANTIHYDROGEN SPECTROSCOPY

E. Widmann

ANTIHYDROGEN SPECTROSCOPY

ANTIHYDROGEN SPECTROSCOPY

3

E. Widmann

E. Widmann

H·HFS

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

E. Widmann

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

E. Widmann

• ATOMIC PHYSICS EXPERIMENTS, ESPECIALLY ANTIHYDROGEN OFFER THE MOST SENSITIVE EXPERIMENTAL VERIFICATIONS OF CPT

E. Widmann

HFS and Standard Model Extension

E. Widmann

GROUND-STATE HYPERFINE SPLITTING OF H/H

 SPIN-SPIN INTERACTION **POSITRON - ANTIPROTON**

00000

GROUND-STATE HYPERFINE SPLITTING OF H/\overline{H}

- SPIN-SPIN INTERACTION POSITRON - ANTIPROTON
- LEADING: FERMI CONTACT TERM

$$\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c \ Ry,$$

000

。 。

GROUND-STATE HYPERFINE SPLITTING OF H/H

- SPIN-SPIN INTERACTION **POSITRON - ANTIPROTON**
- • LEADING: FERMI CONTACT TERM

GROUND-STATE HYPERFINE SPLITTING OF H/\overline{H}

- SPIN-SPIN INTERACTION POSITRON - ANTIPROTON
- LEADING: FERMI CONTACT TERM

•magnetic moment of \overline{p}

• previously known to 0.3%, 2012 Gabrielse Penning trap 4.4 ppm PRL 110,130801 (2013)

0 •••

GROUND-STATE HYPERFINE SPLITTING OF H/\overline{H}

- SPIN-SPIN INTERACTION POSITRON - ANTIPROTON
- LEADING: FERMI CONTACT TERM

•magnetic moment of \overline{p}

• previously known to 0.3%, 2012 Gabrielse Penning trap 4.4 ppm PRL 110,130801 (2013)

GROUND-STATE HYPERFINE SPLITTING OF H/H

- SPIN-SPIN INTERACTION POSITRON - ANTIPROTON
- LEADING: FERMI CONTACT TERM

.00

HFS

Austrian Academy

•magnetic moment of p

- previously known to 0.3%, 2012 Gabrielse Penning trap 4.4 ppm PRL 110,130801 (2013)
- •H: deviation from Fermi contact term: ~ 32 ppm
 - finite electric & magnetic radius (Zemach corrections): 41 ppm
 - polarizability of p/\overline{p} : < 4 ppm
 - few ppm theoretical uncertainty remain

$$\Delta\nu(\text{Zemach}) = \nu_{\text{F}} \frac{2Z\alpha m_{\text{e}}}{\pi^2} \int \frac{d^3p}{p^4} \left[\frac{G_E(p^2)G_M(p^2)}{1+\kappa} - 1 \right]$$
idmann

ASACUSA COLLABORATION

tomic
pectroscopy
nd
ollisions
sing
low
ntiprotons

ASACUSA Scientific project

- (1) Spectroscopy of p̄He
- (2) \bar{p} annihilation cross-section

(3) **H** production and spectroscopy

The $\overline{\mathbf{H}}$ team

University of Tokyo, Komaba: K. Fujii, N. Kuroda, Y. Matsuda, M. Ohtsuka, S. Takaki, K. Tanaka, H.A. Torii

RIKEN: Y. Kanai, A. Mohri, D. Murtagh, Y. Nagata, B. Radics, S. Ulmer, S. Van Gorp, Y. Yamazaki

Tokyo University of Science: K. Michishio, Y. Nagashima

Hiroshima University: H. Higaki, S. Sakurai

Univerita di Brescia: M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli, N. Zurlo

Stefan Meyer Institut für Subatomare Physik: P. Caradonna, M. Diermaier, S. Friedreich, C. Malbrunot, O. Massiczek, C. Sauerzopf, K. Suzuki, E. Widmann, M. Wolf, J. Zmeskal

Antiproton decelerator CERN-AD

ANTIPROTON DECELERATOR @ CERN

.

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

E. Widmann

CONTRACTOR OF Sciences

 atoms evaporate - no trapping needed

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

E. Widmann

- atoms evaporate no trapping needed
- cusp trap provides polarized beam

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

E. Widmann

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave
- spin analysis by sextupole magnet

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

2.0

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

- atoms evaporate no trapping needed
- cusp trap provides polarized beam
- spin-flip by microwave

- spin analysis by sextupole magnet
- low-background high-efficiency detection of antihydrogen

E.W. et al. ASACUSA proposal addendum CERN-SPSC 2005-002

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 \overline{H} /s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations uptsreams

POLARIZED H BEAM FROM "CUSP"

First antihydrogen production in 2010

A. Mohri & Y. Yamazaki, Europhysics Letters 63, 207 (2003).

Y. Enomoto et al. Phys. Rev. Lett 243401, 2010

E. Widmann

H·HFS

POLARIZED H BEAM FROM "CUSP"

First antihydrogen production in 2010

achievable resolution

- better 10^{-6} for T ≤ 100 K
- > 100 \overline{H} /s in 1S state into 4π needed
- event rate I / minute: background from cosmics, annihilations upstreams

A. Mohri & Y. Yamazaki, Europhysics Letters 63, 207 (2003).

Y. Enomoto et al. Phys. Rev. Lett 243401, 2010

H·HFS

E. Widmann

ASACUSA H PRODUCTION

ASACUSA H PRODUCTION

0

p

E. Widmann

B=2.7T

RECENT RESULTS

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	_
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

 $n \leq 43 \quad n \leq 29$

RECENT RESULTS

BACKGROUND

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, $N_{\rm t}$	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	_
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

$n \lesssim 43 \quad n \lesssim 29$

E. Widmann

H·HFS

RECENT RESULTS

BACKGROUND e⁻ cooling of p

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

Scheme 1	Scheme 2	Background
4,950	2,100	1,550
1,149	487	352
99	29	6
5.0	3.2	—
4.8	3.0	—
	Scheme 1 4,950 1,149 99 5.0 4.8	Scheme 1 Scheme 2 4,950 2,100 1,149 487 99 29 5.0 3.2 4.8 3.0

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7},
C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹,
M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7},
B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸,
Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

$n \lesssim 43 \ n \lesssim 29$

E. Widmann

H·HFS

- BACKGROUND
 - e⁻ cooling of p
 mix e⁻ and p

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—
1			

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

 $n \lesssim 43$ $n \lesssim 29$

- BACKGROUND
 - e⁻ cooling of p
 - mix e⁻ and p
- SCHEME |

H·HFS

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

Scheme 1	Scheme 2	Background
4,950	2,100	1,550
1,149	487	352
99	29	6
5.0	3.2	—
4.8	3.0	—
	Scheme 1 4,950 1,149 99 5.0 4.8	Scheme 1 Scheme 2 4,950 2,100 1,149 487 99 29 5.0 3.2 4.8 3.0

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7},
C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹,
M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7},
B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸,
Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

E. Widmann

 $n \lesssim 43 \quad n \lesssim 29$

- BACKGROUND
 - e⁻ cooling of p
 - mix e^- and \overline{p}
- SCHEME |

H·HFS

• e⁻ cooling of p

E. Widmann

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

Table 1	Summary	of antihydrogen	events	detected	by the
antihydro	ogen detec	tor.			

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
<i>Z</i> -value (profile likelihood ratio) (σ)	5.0	3.2	—
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

 $n \leq 43 \quad n \leq 29$

80 100 120 140 160 180 200 E (MeV)

- BACKGROUND
 - e⁻ cooling of p
 - mix e⁻ and p
- SCHEME |

HFS

• e^- cooling of \overline{p}

E. Widmann

• mix e^+ and \overline{p}

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	—
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

Table 1 | Summary of antihydrogen events detected by theantihydrogen detector.

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
Z-value (profile likelihood ratio) (σ)	5.0	3.2	_
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

14

 $n \leq 43 \quad n \leq 29$

• H BEAM OBSERVED WITH 5σ significance

- n≤43 (field ionization)
- 6 events / 15 min

Table 1 Summary of antihydrogen events detected by	the
antihydrogen detector.	

	Scheme 1	Scheme 2	Background
Measurement time (s)	4,950	2,100	1,550
Double coincidence events, N _t	1,149	487	352
Events above the threshold			
(40 MeV), N _{>40}	99	29	6
<i>Z</i> -value (profile likelihood ratio) (σ)	5.0	3.2	—
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—

Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7},

B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸,

 $n \leq 43 \quad n \leq 29$

- H BEAM OBSERVED WITH
 5σ significance
 - n≤43 (field ionization)
 - 6 events / 15 min
- significant fraction in lower n
 - n≲29:3σ

• 4 events / 15 min

E. Widmann

• **τ** ~ few ms

·HFS

N. Kuroda¹, S. Ulmer², D.J. Murtagh³, S. Van Gorp³, Y. Nagata³, M. Diermaier⁴, S. Federmann⁵, M. Leali^{6,7}, C. Malbrunot^{4,†}, V. Mascagna^{6,7}, O. Massiczek⁴, K. Michishio⁸, T. Mizutani¹, A. Mohri³, H. Nagahama¹, M. Ohtsuka¹, B. Radics³, S. Sakurai⁹, C. Sauerzopf⁴, K. Suzuki⁴, M. Tajima¹, H.A. Torii¹, L. Venturelli^{6,7}, B. Wünschek⁴, J. Zmeskal⁴, N. Zurlo⁶, H. Higaki⁹, Y. Kanai³, E. Lodi Rizzini^{6,7}, Y. Nagashima⁸, Y. Matsuda¹, E. Widmann⁴ & Y. Yamazaki^{1,3}

NATURE COMMUNICATIONS | 5:3089 | DOI: 10.1038/ncomms4089 | www.nature.com/naturecommunications

Table 1 Summary of antihydrogen events detected by theantihydrogen detector.				
	Scheme 1	Scheme 2	Background	
Measurement time (s)	4,950	2,100	1,550	
Double coincidence events, $N_{\rm t}$	1,149	487	352	
(40 MeV), $N_{>40}$	99	29	6	
Z-value (profile likelihood ratio) (σ)	5.0	3.2	_	
Z-value (ratio of Poisson means) (σ)	4.8	3.0	—	

 $n \lesssim 43 \quad n \lesssim 29$

SPIN-FLIP RESONATION

Außensensor

- f = 1.420 GHz, Δf = few MHz, ~ mW power
- challenge: homogeneity over $10 \times 10 \times 10 \times 10^{3}$ ($\lambda = 21 \text{ cm}$
- solution: strip line

000

H·HFS

strip line

Vergoldete Kupfer-Beryllium Streifen zur Verbesserung der elektrischen Leitfähigkeit

E. Widmann

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

G4 studies:

- simulation of \overline{H}
- trajectories in field
- background creation
- cosmics
- estimation of transition probabilities
- effect of homogeneities

H·HFS

cosmic events in the CPT detector (2012)

E. Widmann

simulation done at 2G, T=50K

needed: 2000 evts per scan

SETUP TESTING DURING LSI

Polarized cold hydrogen beam:

- •Source of atomic hydrogen (microwave discharge)
- Permanent sextupoles create polarized hydrogen beam
- •QMS detect GS hydrogen

•Choppers connected to a lock-in amplifier for noise reduction

permanent sextupole for initial polarization developed at CERN I.4 T integrated field I0mm inner diameter Permendur/permanent magnet

hydrogen beamline developed at SMI

H·HFS

SETUP TESTING DURING LSI

Polarized cold hydrogen beam:

- •Source of atomic hydrogen (microwave discharge)
- Permanent sextupoles create polarized hydrogen beam
- •QMS detect GS hydrogen

•Choppers connected to a lock-in amplifier for noise reduction

permanent sextupole for initial polarization developed at CERN I.4 T integrated field I0mm inner diameter Permendur/permanent magnet

hydrogen beamline developed at SMI

H·HFS

H BEAM SETUP @ CERN-CRYOLAB Superconducting Cryogenic permanent Fork-Chopper Sextupole 00000 Cavity Sextupole Quadrupole Mass Spectrometer atomic hydrogen source **H**·HFS E. Widmann

B BEAM SOURCE SCHEMATIC

HYDROEN BEAM LINE TEST SETUP@CERN

Ist H RESONANCE SCAN: σ_{I}

- NO MAGNETIC SHIELDING
- EARTH MAGNETIC FIELD OF 20 µT
- CAVITY L=10 CM

Simulated spectra

Ist H RESONANCE SCAN: σ₁

• NO MAGNETIC SHIELDING

- EARTH MAGNETIC FIELD OF 20 μT
- CAVITY L=10 CM

Simulated spectra

st H resonance scan: σ₁

E. Widmann

Ist H resonance scan: σ₁

• NO MAGNETIC SHIELDING

- EARTH MAGNETIC FIELD OF 20 μT
- CAVITY L=10 CM

Simulated spectra

	V(MHz)	Error (Hz)/ deviation	Rel error/ deviation
Resonance center	1 420.406 354	133	9E-08
V_{HF}	1 420.405 751 768	603	4E-07

2nd H RESONANCE SCAN: TTI

• NO MAGNETIC SHIELDING

EARTH MAGNETIC
FIELD OF 33 μT
CAVITY L=10 CM

Simulated spectra

E. Widmann

EXPERIMENTS IN AN ATOMIC BEAM

• Phase I (ongoing): Rabi method

(FAR) FUTURE EXPERIMENTS

• PHASE 3: TRAPPED H

- Hyperfine spectroscopy in an atomic fountain of antihydrogen
- needs trapping and laser cooling outside of formation magnet
- slow beam & capture in measurement trap
- Ramsey method with d=1m
 - $\Delta f \sim 3 Hz$, $\Delta f/f \sim 2 \times 10^{-9}$

M. Kasevich, E. Riis, S. Chu, R. Devoe, Prl 63, 612–615 (1989)

H·HFS

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

27

E. Widmann

 Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

E. Widmann

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of **CPT** symmetry
- First "beam" of H observed in field-free region

ERC Advanced Grant 291242 **HbarHFS** www.antimatter.at **PI EW**

E. Widmann

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

. Widmann

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of **CPT** symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more
 - high n states, need: ground state

ERC Advanced Grant 291242 **HbarHFS** www.antimatter.at **PI EW**

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more
 - high n states, need: ground state
 - velocity unknown: T~ms, v(50 K)= 1000 m/s: deexcitation in flight

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

. Widmann

0000

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more
 - high n states, need: ground state
 - velocity unknown: T~ms, v(50 K)= 1000 m/s: deexcitation in flight
- Next steps: optimize rate, check polarization, velocity

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

SUMMARY

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more
 - high n states, need: ground state
 - velocity unknown: T~ms, v(50 K)= 1000 m/s: deexcitation in flight
- Next steps: optimize rate, check polarization, velocity
- HFS measurement of H beam < ppm achieved

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

Austrian Acade

E. Widmann

SUMMARY

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
- First "beam" of H observed in field-free region
 - rate 20/hour, need factor 10 to 100 more
 - high n states, need: ground state
 - velocity unknown: T~ms, v(50 K)= 1000 m/s: deexcitation in flight
- Next steps: optimize rate, check polarization, velocity
- HFS measurement of H beam < ppm achieved
- Time scale of precision experiments is 5-10 years

ERC Advanced Grant 291242 HbarHFS www.antimatter.at PI EW

Austrian Academ

. Widmann

ERC Advanced Grant PI: Prof. Dr. Eberhard Widmann

THANK YOU FOR YOUR ATTENTION

