Tests of Fundamental Principles

Claus Lämmerzahl

Centre for Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359 Bremen, Germany

DFG Research Training Group "Models of Gravity"

Questioning Fundamental Physical Principles CERN, May 6 – 9, 2014

The Equivalence Principle

- 1 The Equivalence Principle
- 2 Implications of the UFF

- 1 The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion

- 1 The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems

- 1 The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall

- 1 The Equivalence Principle
- Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law

- 1 The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

- 1 The Equivalence Principle
- 2 Implications of the UFF
- Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

Implication

Gravity is a metrical theory

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

Implication

Gravity is a metrical theory

- Solar system effects
 - Perihelion shift
 - Gravitational redshift
 - Deflection of light
 - · Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

All predictions of General Relativity are experimentally well tested and confirmed

Foundations

The Einstein Equivalence Principle

- Universality of Free Fall
- Universality of Gravitational Redshift
- Local Lorentz Invariance

Implication

Gravity is a metrical theory

- Solar system effects
 - Perihelion shift
 - · Gravitational redshift
 - Deflection of light
 - Gravitational time delay
 - Lense–Thirring effect
 - Schiff effect
- Strong gravitational fields
 - Binary systems
 - Black holes
- Gravitational waves

General Relativity

Description of tests of the universality principles

Purpose: parametrization of deviations, comparison of different experiments

Haugan formalism (Haugan, AP 1979)

Ansatz: effective atomic Hamiltonian (from modified Dirac and modified Maxwell)

$$H = mc^{2} + \frac{1}{2m} \left(\delta^{ij} + \frac{\delta m_{i}^{ij}}{m} \right) p_{i} p_{j} + m \left(\delta_{ij} + \frac{\delta m_{gij}}{m} \right) U^{ij}(\boldsymbol{x}) + \dots$$

- additional anomalous spin terms (CL, CQG 1996, SME)
- additional anomalous charge terms (Dittus, C.L., Selig, GRG 2006)

can calculate (all quantities depend on all anomalous parameters)

- acceleration → WEP tests
- frequency comparison \longrightarrow redshift tests
- spin dynamics

- The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4) Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

Consequences of the UFF

Trajectories

- Trajectory of a particle x = x(p; t)p = particle parameter (e.g. mass, charge, etc)
- UFF \Rightarrow trajectory does not depend on particle parameters x=x(t)This is already the geometrization of the gravitational interaction
- The set of all trajectories is a path structure

Order of equations of notion / Cauchy problem

- Newton's setup: trajectory determined through
 - initial position $x_0 = x(t_0)$ and
 - initial velocity $v_0 = \dot{x}(t_0)$.
- \Rightarrow ordinary differential equations of second order: $\ddot{x}^{\mu} = H^{\mu}(p; x, \dot{x})$

Question: Why the fundamental equations of motion are of second order? Equivalent to questioning Newton's second axiom

Consequences of the UFF

UFF + second order

equation of motion

$$\ddot{x}^{\mu} = H^{\mu}(x, \dot{x})$$

- ullet equation of motion does not depend on particle parameter p
- equation of motion is of second order
- this defines a curve structure

Gravity cannot be transformed away:

Acceleration towards the center of Earth depends on horizontal velocity

exists no inertial system

Implies several effects: ${\cal G}(T)$, violation of UGR

The free fall: The notions

Gravity can be transformed away

 \exists coordinate system \forall particles : $\ddot{x} = 0$ Then in an arbitrary coordinate system

$$\ddot{x}^{\mu} = -\Gamma^{\mu}_{\rho\sigma}(x)\dot{x}^{\rho}\dot{x}^{\sigma}$$

autoparallel equation, projective structure (Ehlers, Pirani, Schild 1973, Coleman & Korte, many papers in the 80's)

- Need still relation between the connection $\Gamma^{\mu}_{o\sigma}(x)$ and the metric $g_{\mu\nu}$
 - properties of light and clocks as formulated in EPS axiomatics (Ehlers, Pirani, Schild 1993)
 - free turnability (Helmholtz, Lie)
- result: Riemannian geometry
- How to test whether gravity can be transformed away?
- equivalent to questioning Newton's first axiom

- 1) The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

Order of equation of motion?

Usual framework

$$L=L(t,m{x},\dot{m{x}}) \qquad \Rightarrow \qquad rac{d}{dt}m{p}=m{F}(t,m{x},\dot{m{x}}) \;\; ext{with} \;\; m{p}=m\dot{m{x}}$$

more general equations?

 $m{p}=m\dot{m{x}}$ is a constitutive law. Can be more general (as is many cases)

$$m{p} = m{f}(\dot{m{x}}, \ddot{m{x}}, \ddot{m{x}}, \ldots)$$

then higher order equations of motion

 Influence of external fluctuations (e.g. space-time fluctuations, gravitational wave background, Göklü, C.L., Camacho & Macias, CQG 2009): generalized Langevin equation with extra force term

$$\int_0^t C(t-t')\dot{x}(t')dt'$$

Order of equation of motion?

Generalized framework

$$L = L(t, oldsymbol{x}, \dot{oldsymbol{x}}, \ddot{oldsymbol{x}}) \qquad \Rightarrow \qquad rac{d^2}{dt^2} \left(\epsilon \ddot{oldsymbol{x}}
ight) = oldsymbol{F}(t, oldsymbol{x}, \dot{oldsymbol{x}}, \ddot{oldsymbol{x}}, \ddot{oldsymbol{x}})$$

Our specific model

Gauge procedure in order to invent structure of interactions

$$L(t, \boldsymbol{x}, \dot{\boldsymbol{x}}, \ddot{\boldsymbol{x}}) = L_0(t, \boldsymbol{x}, \dot{\boldsymbol{x}}, \ddot{\boldsymbol{x}}) \quad \underline{-q_0 A_a \dot{x}^a} \quad + \quad \underline{q_1 A_{ab} \dot{x}^a \dot{x}^b}$$

1st order gauge fields 2nd order gauge fields

with (Pais-Uhlenbeck oscillator)

$$L_0(t, \boldsymbol{x}, \dot{\boldsymbol{x}}, \ddot{\boldsymbol{x}}) = -\frac{\epsilon}{2} \ddot{\boldsymbol{x}}^2 + \frac{m}{2} \dot{\boldsymbol{x}}^2$$

 ϵ additional new particle parameter, dim $\epsilon = \log s^2$

 ϵ additional new particle parameter, dim $\epsilon=\mathrm{kg}\,\mathrm{s}^2$ $\epsilon_{\mathrm{QG}}\sim m_{\mathrm{Planck}}t_{\mathrm{Planck}}^2\sim 10^{-95}\,\mathrm{kg}\,\mathrm{s}^2 \qquad \qquad \epsilon_{\mathrm{C}e}\sim m_{\mathrm{C}e}t_{\mathrm{C}e}^2\sim 10^{-71}\,\mathrm{kg}\,\mathrm{s}^2$

Equation of motion

simplest case: constant electric field

$$\epsilon \ddot{x} + m\ddot{x} = qE_0$$

solution in 1D with initial conditions x(0) = 0, $\dot{x}(0) = 0$, $\ddot{x}(0) = 0$, and $\ddot{x}(0) = 0$

$$x(t) = \frac{q}{m} E_0 \left(\frac{1}{2} t^2 + \frac{\epsilon}{m} (\cos(\omega t) - 1) \right)$$
$$\dot{x}(t) = \frac{q}{m} E_0 \left(t - \sqrt{\frac{\epsilon}{m}} \sin(\omega t) \right)$$

$$\left(1 \left(\omega t
ight)
ight)$$
 small deviation

$$\ddot{x}(t) = \frac{q}{m} E_0 \left(1 - \cos\left(\omega t\right) \right)$$

$$\mathcal{O}(1)$$
 deviation

small deviation

$$\ddot{x}(t) = \frac{q}{m} E_0 \sqrt{\frac{m}{\epsilon}} \sin(\omega t)$$
 $\omega = \sqrt{\frac{m}{\epsilon}}$

$$\omega = \sqrt{\frac{m}{\epsilon}}$$

large deviation

- Limit $\epsilon \to 0$ exists for x and \dot{x} , not for \ddot{x}

Search for ϵ

Accelerated flight

Flight through accelerator

$$\frac{\langle \dot{x}(L)\rangle - \dot{x}_0}{\dot{x}_0} = \frac{\epsilon}{4m} \frac{\dot{x}_0^2}{L^2}$$

Ion interferometric measurement of acceleration

phase shift

$$\Delta \phi = A(\omega) \mathbf{k} \cdot \ddot{\mathbf{x}}(\omega) T^2$$

with transfer function

$$A(\omega) = C \frac{\sin^2(\omega t)}{\omega^2}$$

Search for ϵ

Electronic devices

Zitterbewegung of a charged particle induces voltage noise

$$\frac{1}{2}C\langle U^2\rangle_t = m\langle \dot{x}^2\rangle = \frac{1}{2}\epsilon \left(\frac{q}{m}E_0\right)^2$$

- General estimate: $\epsilon \le 10^{-50} \text{ kg s}^2$.
- Application to mirrors in gw interferometers?
- Adding a small higher derivative term is a mathematical method to analyze differential equations.

C.L. & Rademaker, PRD 2012

higher order time derivative in Schrödinger C.L, Bordé 2000

- 1) The Equivalence Principle
- 2 Implications of the UFF
- Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- Summary and Outlook

Reasons for Finsler geometry

Why Finsler?

- geometry of field equations
- EPS axiomatics (Ehlers, Pirani & Schild 1973)
- dynamical model for respecting UFF but violating Einstein's elevator
- from Quantum Gravity (Girelli, Liberati & Sindoni, PRD 2003)
- VSR (Gibbons, Gomis & Pope, PRD 2007)
- elegance of Lagrange and Hamilton formalism
- nontrivial generalization of Riemannian geometry
- example for violation of Schiff's conjecture
- · and Finsler modifications not covered by PPN test theory

Two aspects

- Finsler geometry in the tangent space = Finsler relativity
- Finsler geometry of manifold = Finsler gravity

Finsler space

Finsler length function

$$dl^2 = F(x, dx), \qquad F(x, \lambda dx) = \lambda^2 F(x, dx)$$

Finsler metric tensor $f_{\mu\nu}(x,\,dx)$ is defined as

$$dl^2 = g_{\mu\nu}(x,\,dx)dx^\mu dx^\nu \,, \quad \text{where} \quad g_{\mu\nu}(x,\,y) = \frac{1}{2}\frac{\partial^2 F(x^k,\,y^m)}{\partial y^\mu \partial y^\nu}$$

Light cones

Light cone defined by

$$ds^2 = dt^2 - dl^2$$

Euclidean light cone

Riemannian light cone

Finslerian light cone

There is no coordinate transformation so that the Finslerian light cone can be locally written in Minkowskian form $0=-dt^2+\left(dx^2+dy^2\right)$

Euclidean light cone

Riemannian light cone

Finslerian light cone

There is no coordinate transformation so that the Finslerian light cone can be locally written in Minkowskian form $0=-dt^2+\left(dx^2+dy^2\right)$

There is no coordinate transformation so that the Finslerian light cone can be locally written in Minkowskian form $0 = -dt^2 + (dx^2 + dy^2)$

Geodesics

$$\delta \int ds = 0 \qquad \Rightarrow \qquad \boxed{ 0 = \frac{d^2 x^{\mu}}{ds^2} + \left\{ \begin{smallmatrix} \mu \\ \rho \sigma \end{smallmatrix} \right\} (x, \dot{x}) \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}}$$

with

$$\left\{ \begin{smallmatrix} \mu \\ \rho \sigma \end{smallmatrix} \right\}(x,\dot{x}) = g^{\mu\nu}(x,\dot{x}) \left(\partial_{\rho}g_{\sigma\nu}(x,\dot{x}) + \partial_{\sigma}g_{\rho\nu}(x,\dot{x}) - \partial_{\nu}g_{\rho\sigma}(x,\dot{x}) \right)$$

- UFF true, but gravity cannot be transformed away (no Einstein elevator)
- violates LLI: counterexample to Schiff's conjecture

Deviation from Riemann geometry

How to describe deviation from Riemannian geometry? (test theory)

Deviation from Riemann (C.L., Lorek & Dittus, GRG 2009)

Special case: "power law" metrics (Riemann)

$$dl^{2} = (g_{\mu_{1}\mu_{2}...\mu_{2r}}(x)dx^{\mu_{1}}dx^{\mu_{2}}\cdots dx^{\mu_{2n}})^{\frac{1}{r}}$$

• From any given Riemannian metric g_{ij} and a tensor $\phi_{i_1\cdots i_{2r}}$ we can construct a Finslerian metric by

$$D^{r}(dx^{i}) = (g_{ij}dx^{i}dx^{j})^{r} + \phi_{i_{1}\cdots i_{2r}}dx^{i}\cdots dx^{i_{2r}}$$
$$= (g_{i_{1}i_{2}}\cdots g_{i_{2r-1}i_{2r}} + \phi_{i_{1}\cdots i_{2r}})dx^{i}\cdots dx^{i_{2r}}$$

- ullet any deviation from Riemann encoded in coefficients $\phi_{i_1\cdots i_{2r}}$
- small deviation given by small $\phi_{i_1 \cdots i_{2r}} \ll 1$, then

$$D(dx^{i}) = g_{ij}dx^{i}dx^{j}\left(1 + \frac{1}{r}\frac{\phi_{i_{1}\cdots i_{2r}}dx^{i}\cdots dx^{i_{2r}}}{\left(g_{kl}dx^{k}dx^{l}\right)^{r}}\right)$$

Testing Finsler

- test of Finslerian Special Relativity:
 - Michelson-Morley type test (C.L., Lorek, Dittus, GRG 2009)
 - quantum tests are under consideration (Itin, C.L., Perlick, in preparation)
- test of Finslerian gravity: Finslerian deviation from given solutions of Einstein equation

First model: Finsler modification of Schwarzschild

for $h_{\mu\nu}$ Schwarzschild metric: simplest Finsler modification

$$2L = (h_{tt} + c^2 \psi_0) \dot{t}^2 + ((h_{ij}h_{kl} + \phi_{ijkl}) \dot{x}^i \dot{x}^j \dot{x}^k \dot{x}^l)^{\frac{1}{2}}$$

by spherical symmetry

$$\phi_{ijkl} = \psi_1 \dot{r}^4 + \psi_2 r^2 \dot{r}^2 (\sin^2 \vartheta \dot{\varphi}^2 + \dot{\vartheta}^2) + \psi_3 r^4 (\sin^2 \vartheta \dot{\varphi}^2 + \dot{\vartheta}^2)$$

Solar system: Approximation, Specifications

- linearization with respect to Finslerian perturbations
- restriction to equatorial plane

then

$$L = \frac{1}{2} \left((1 + \phi_0) h_{tt} \dot{t}^2 + (1 + \phi_1) h_{rr} \dot{r}^2 + r^2 \dot{\varphi}^2 + \phi_2 \frac{h_{rr} r^2 \dot{r}^2 \dot{\varphi}^2}{h_{rr} \dot{r}^2 + r^2 \dot{\varphi}^2} \right)$$

with

- $\phi_0 := \frac{c^2}{h_{tt}} \psi_0$ modifies temporal metric
- $ullet \phi_1 := rac{\psi_1}{2h_{rr}^2}$ modifies radial metric
- $\phi_2:=rac{h_{rr}\psi_2-\psi_1}{2h_{rr}^2}$ is "Finslerity" not covered by standard PPN ansatz

Kepler's third law

for circular orbits

$$\frac{r^3}{T^2} \left(1 - \frac{c^2 r^2}{2GM} \left(\phi_0 \left(1 - \frac{2GM}{c^2 r} \right) \right)' \right) = \frac{GM}{4\pi^2}$$

from observations

$$r_1 \left| \frac{\phi_0(r_2) - \phi_0(r_1)}{r_2 - r_1} \right| \le 10^{-16}$$

for all r_1 and r_2 between Mercury and Neptune

Radial acceleration

acceleration from rest

$$\frac{d^2r}{d\tau^2} = -\frac{GM}{r^2} \left(1 - \phi_1 - \phi_0' r \left(1 - \frac{c^2 r}{2GM} \right) \right)$$

from observations

$$|\phi_1(r)| \le 10^{-6}$$

so far no effect related to Finslerity

Effects for Finslerity

- for access to the Finslerity one needs $\dot{\varphi} \neq 0$ and $\dot{r} \neq 0$
- this is for light deflection, gravitational time delay, perihelion shift
- calculations are a bit involved
 - light deflection

$$|10^4 \, \phi_1 + \phi_2| \le 50$$

will be improved by Gaia

gravitational time delay

$$|20\,\phi_1 + \phi_2| \le 10^{-3}$$

perihelion shift

$$|\phi_2| \le 10^{-3}$$

effect most pronounced for perihelion shift (periodic motion)

C.L., Perlick, Hasse: PRD 2012

Quantum mechanics in Finsler space

Finslerian Hamilton operator

$$H = H(p)$$
 with $H(\lambda p) = \lambda^2 H(p)$

"Power-law" ansatz (non-local operator)

$$H = \frac{1}{2m} \left(g^{i_1 \dots i_{2r}} \partial_{i_1} \dots \partial_{i_{2r}} \right)^{\frac{1}{r}}$$

Simplest case: quartic metric

$$H = \frac{1}{2m} \left(g^{ijkl} \partial_i \partial_j \partial_k \partial_l \right)^{\frac{1}{2}}$$

Deviation from standard case

$$H = -\frac{1}{2m} \left(\Delta^2 + \phi^{ijkl} \partial_i \partial_j \partial_k \partial_l \right)^{\frac{1}{2}}$$
$$= -\frac{1}{2m} \Delta \sqrt{1 + \frac{\phi^{ijkl} \partial_i \partial_j \partial_k \partial_l}{\Delta^2}}$$

Quantum mechanics in Finsler space

$$H = -\frac{1}{2m} \Delta \left(1 + \frac{1}{2} \frac{\phi^{ijkl} \partial_i \partial_j \partial_k \partial_l}{\Delta^2} \right)$$

- Hughes-Drever: $H_{\text{tot}} = H + \boldsymbol{\sigma} \cdot \boldsymbol{B}$
- Atomic interferometry, atom-photon interaction

$$\delta\phi \sim H(p+k) - H(p) = \frac{k^2}{2m} + \frac{1}{m} \left(\delta^{il} + \frac{\phi^{ijkl}p_jp_k}{p^2}\right) p_i k_l$$

modified Doppler term: gives different Doppler term while rotating the whole apparatus (even in Finsler light still propagates on straight lines, anisotropy – deformed mass shell)

incorporation of gravity needs relativistic framework

Maxwell in Finsler space

Maxwell in Minkowski

$$\partial_{[a}F_{bc]} = 0 \qquad \partial^b F_{ab} = J_a$$

Maxwell in Riemann

$$\partial_{[\mu} F_{\nu\rho]} = 0 \qquad \partial^{\nu} F_{\mu\nu} = J_{\mu}$$

Maxwell in Finsler

$$\partial_{[\mu}F_{\nu\rho]} = 0 \qquad H^{\nu}(\partial)F_{\mu\nu} = J_{\mu}$$

with

$$H^{\mu}(x,k)=\frac{1}{2}\frac{\partial H(x,k)}{\partial k_{\mu}} \qquad \text{with} \qquad H(x,k)=k_{\mu}\dot{x}^{\mu}-L(x,\dot{x})$$

Then

- characteristics are Finslerian null geodesics
- Finsler modified Coulomb law in flat Finsler space

$$\Delta V + 2 \frac{\phi^{abcd} \partial_a \partial_b \partial_c \partial_d}{\Delta} V = q \delta(r) \quad \Rightarrow \quad V = \frac{q}{r} \left(1 - \frac{3}{4r^4} \phi^{abcd} x_a x_b x_c x_d \right)$$

Hydrogen atom

$$-rac{\hbar^2}{2m}\left(\Delta+2rac{\phi^{abcd}\partial_a\partial_b\partial_c\partial_d}{\Delta}
ight)\Psi(m{r})-rac{e^2}{r}\left(1+rac{3}{4r^4}\phi^{abcd}x_ax_bx_cx_d
ight)\Psi(m{r})=E\Psi(m{r})$$

can calculate shifts of energy levels Itin, Perlick, C.L. in preparation

Outline

- 1) The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

The basic equations

The model

Klein–Gordon equation

$$g^{\mu\nu}D_{\mu}D_{\nu}\varphi + m^2\varphi = 0, \qquad D = \partial + \{\dot{} \ \ \}$$

Fluctuating metric

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \,, \qquad |h_{\mu\nu}| \ll 1$$

noise

$$\langle h_{\mu\nu}(x)\rangle_{\rm st} = \gamma_{\mu\nu} , \qquad \delta^{\rho\sigma}\langle h_{\mu\rho}(x)h_{\nu\sigma}(x)\rangle_{\rm st} = \sigma_{\mu\nu}^2$$

- small amplitude of fluctuations
- frequency might be large, wavelength might be small
- \bullet $\langle \cdot \rangle_{\mathrm{st}} =$ averaging over a space–time volume
- ullet we do not require the $h_{\mu
 u}$ to obey a wave equation

The basic equations

Approximations

- \star Weak field up to second order $ilde{h}^{\mu
 u} = h^{\mu
 ho} h_{
 ho}{}^{
 u}$
- Relativistic approximation of metric and quantum field (á la Kiefer & Singh, PRD 1994)

$$H\psi = -(^{(3)}g)^{\frac{1}{4}}\frac{\hbar^{2}}{2m}\Delta_{\text{cov}}\left((^{(3)}g)^{-\frac{1}{4}}\psi'\right) + \frac{m}{2}\left(\tilde{h}_{(0)}^{00} - h_{(0)}^{00}\right)\psi$$
$$-\frac{1}{2}\left\{i\hbar\partial_{i}, h_{(1)}^{i0} - \tilde{h}_{(1)}^{i0}\right\}\psi$$

manifest hermitean w.r.t. flat scalar product

- only second order terms do not vanish by averaging
- Dirac equation

Short wavelength

Spatial average

spatial average

$$\langle A\psi \rangle_{\mathbf{s}}(x) := \frac{1}{V_x} \int_{V_x} A(y)\psi(y)d^3\mathbf{y}$$

- ullet short wavelength of fluctuations: V small
- spatial average of Schrödinger equation

$$H = \frac{1}{2m} \left(\delta^{ij} + \alpha^{ij}(x) \right) p_i p_j + \alpha_0$$

with
$$\alpha(x) = \langle \tilde{h}^{ij} - h^{ij} \rangle_{\rm s}(x)$$

- $\alpha^{ij}(x)$: small variation w.r.t. x, fluctuations w.r.t. t.
- decompose $\alpha^{ij}(x) = \tilde{\alpha}^{ij}(x) + \gamma^{ij}(x)$ with $\langle \gamma^{ij} \rangle_{\rm t} = 0$
- \bullet $ilde{lpha}^{ij}(x)$ acts like an anomalous inertial mass tensor

Space-time fluctuations

Fluctuation model

- $\alpha^{ij} \leftrightarrow$ spectral noise density of fluctuations
- particular model:

$$\tilde{\alpha}^{ij}(x) = \frac{1}{V_x} \int_{V_x} \tilde{h}^{ij}(\mathbf{x},t) d^3\mathbf{x} = \frac{1}{V_x} \int_{1/V_x} (S^2(\mathbf{k},t))^{ij} d^3\mathbf{k}$$

model: power law spectral noise density

$$(S^2(\mathbf{k},t))^{ij} = (S^2_{0n})^{ij} |\mathbf{k}|^n \quad \overset{\text{integration}}{\Longrightarrow} \quad \alpha^{ij}(x) = (S^2_{0n})^{ij} \lambda_n^{-(6+n)}$$

with
$$\dim(S_{0n}^2)^{ij} = \operatorname{length}^{3+\frac{n}{2}}$$

- $V_x \sim \lambda_p^3$
- $\lambda_p = ext{invariant length scale of quantum object} = \lambda_{ ext{Compton}}$
- $\lambda_p = \text{de Broglie wave length}$
- $\lambda_p = \text{geometric extension } l_p$ of quantum object (Bohr radius of atom)

Space-time fluctuations

Fluctuation model

 \star assumption: $S_{0n} \sim l_{
m Planck}^{3+rac{n}{2}}$, then

$$lpha^{ij}(x) \sim \left(\frac{l_{\mathrm{Planck}}}{l_p}\right)^{eta} a^{ij}(x), \qquad eta = 6 + n, \ a^{ij}(x) = \mathscr{O}(1)$$

effective Hamiltonian

$$H = \frac{1}{2m} \left(\delta^{ij} + \left(\frac{l_{\text{Planck}}}{l_p} \right)^{\beta} a^{ij}(x) \right) p_i p_j = \frac{1}{2m} \left(\delta^{ij} + \frac{\delta m^{ij}(x)}{m} \right) p_i p_j$$

 $\delta m^{ij}=$ anomalous inertial mass tensor, depends on particle

• δm^{ij} leads to violation of Universality of Free Fall

- $\beta = \frac{1}{2}$ \leftrightarrow random walk
- $\beta = \frac{2}{3}$ \leftrightarrow holographic noise

Result

Result

metric fluctuations \Rightarrow anomalous inertial mass \rightarrow apparent violation of UFF

- alternative route for violation of UFF and LLI
- need of quantum tests

Example

for Cesium and Hydrogen and geometric extension of atoms

$$\eta_{\beta=1} = 10^{-20}$$
, $\eta_{\beta=2/3} = 10^{-15}$, $\eta_{\beta=1/2} = 10^{-12}$

accuracy $\overline{10^{-15}}$ is planned for the next years

(Göklü & C.L. CQG 2008)

Outline

- 1) The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4) Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

actio = reactio ?

Active and passive mass

Gravitationally bound two-body system (Bondi, RMP 1957)

$$m_{1i}\ddot{x}_{1} = m_{1p}m_{2a}\frac{x_{2} - x_{1}}{|x_{2} - x_{1}|^{3}}$$
 $m_{2i}\ddot{x}_{2} = m_{2p}m_{1a}\frac{x_{1} - x_{2}}{|x_{1} - x_{2}|^{3}}$

center-of-mass and relative coordinate

$$egin{array}{lll} oldsymbol{X} & := & rac{m_{1\mathrm{i}}}{M_{\mathrm{i}}} oldsymbol{x}_1 + rac{m_{2\mathrm{i}}}{M_{\mathrm{i}}} oldsymbol{x}_2 \ oldsymbol{x} & := & oldsymbol{x}_2 - oldsymbol{x}_1 \end{array}$$

 $M_{\rm i}=m_{1\rm i}+m_{2\rm i}={
m total}$ inertial mass. Then

Active and passive mass

Decoupled dynamics of relative coordinate

$$\begin{array}{lll} \ddot{\pmb{X}} & = & \frac{m_{1\mathrm{p}} m_{2\mathrm{p}}}{M_{\mathrm{i}}} C_{21} \frac{\pmb{x}}{|\pmb{x}|^3} & \text{with} & C_{21} = \frac{m_{2\mathrm{a}}}{m_{2\mathrm{p}}} - \frac{m_{1\mathrm{a}}}{m_{1\mathrm{p}}} \\ \\ \ddot{\pmb{x}} & = & -\frac{m_{1\mathrm{p}} m_{2\mathrm{p}}}{m_{1\mathrm{i}} m_{2\mathrm{i}}} \left(m_{1\mathrm{i}} \frac{m_{1\mathrm{a}}}{m_{1\mathrm{p}}} + m_{2\mathrm{i}} \frac{m_{2\mathrm{a}}}{m_{2\mathrm{p}}} \right) \frac{\pmb{x}}{|\pmb{x}|^3} \\ \end{array}$$

- $C_{21}=0$: ratio of the active and passive masses are equal for both particles
- $C_{21} \neq 0$: \Rightarrow self-acceleration of center of mass

Interpretation

$$\ddot{\boldsymbol{X}} \neq 0 \quad \Leftrightarrow \quad C_{12} \neq 0 \quad \Leftrightarrow$$

- Violation of law of reciprocal action or of actio = reactio for gravity
- The gravitational field created by masses of same weight depends on its composition. Has the same status as the Weak Equivalence Principle.

Requires experimental tests ...

Experiment testing $m_{ m ga} = m_{ m gp}$

Measurement of relative acceleration

- Step 1: Take two masses with $m_{\rm pg1} = m_{\rm pg2}$ (equal weight)
- Step 2: Test active equality of these two masses with torsion balance

Experimental setup: Torsion balance with equal passive masses reacting on $m_{
m ag1}$ and $m_{
m ag2}$

No effect has been seen: $C_{12} \le 5 \cdot 10^{-5}$ (Kreuzer, PR 1868)

Experiment testing $m_{ m ga}=m_{ m gp}$

Measurement of relative acceleration

- Step 1: Take two masses with $m_{pg1} = m_{pg2}$ (equal weight)
- Step 2: Test active equality of these two masses with torsion balance

Experimental setup: Torsion balance with equal passive masses reacting on $m_{
m ag1}$ and $m_{
m ag2}$

No effect has been seen: $C_{12} \le 5 \cdot 10^{-5}$ (Kreuzer, PR 1868)

Experiment testing $m_{ m ga}=m_{ m gp}$

Experiment testing $m_{ m ga}=m_{ m gp}$

Experiment testing $m_{ m ga} = m_{ m gp}$

Earth

Measurement of center-of-mass acceleration

$$\frac{\boldsymbol{F}_{\mathrm{self}}}{F_{\mathrm{EM}}} = C_{\mathrm{Al-Fe}} \frac{M_{\mathrm{M}}}{M_{\oplus}} \frac{r_{\mathrm{EM}}^2}{r_{\mathrm{M}}^2} \frac{s}{r_{\mathrm{M}}} \frac{\rho}{\Delta \rho} \widehat{\boldsymbol{s}}$$

Effect of tangential part: increase of orbital angular velocity

$$\frac{\Delta \omega}{\omega} = 6\pi \frac{F_{\rm self}}{F_{\rm EM}} \sin 14^{\circ}$$
 per month

From LLR $\frac{\Delta\omega}{\omega} \leq 10^{-12}$ per month

$$\Rightarrow$$
 $C_{\text{Al-Fe}} \leq 7 \cdot 10^{-13}$

Bartlett & van Buren, PRL 1986 significant improvement with new LR data and moon orbiter data possible

Active and passive charges: Dynamics

C.L., Macias, Müller, PRA 2007

Dynamics of two electrically bound particles $(E={\sf external}\;{\sf electric}\;{\sf field})$

$$m_{1i}\ddot{\boldsymbol{x}}_{1} = q_{1p}q_{2a}\frac{\boldsymbol{x}_{2} - \boldsymbol{x}_{1}}{|\boldsymbol{x}_{2} - \boldsymbol{x}_{1}|^{3}} + q_{1p}\boldsymbol{E}(\boldsymbol{x}_{1})$$

$$m_{2i}\ddot{\boldsymbol{x}}_{2} = q_{2p}q_{1a}\frac{\boldsymbol{x}_{1} - \boldsymbol{x}_{2}}{|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}|^{3}} + q_{2p}\boldsymbol{E}(\boldsymbol{x}_{2})$$

- Similar phenomena
- New feature: Active and passive neutrality
- Very good neutrality measurements $\Rightarrow C_{12} \le 10^{-21}$
- ullet Other approach through fine structure constant for ${
 m H}$ and ${
 m He}^+$
- Also: active and passive magnetic moment
- Theory: no Hamiltonian for total system, only for relative motion

Outline

- 1) The Equivalence Principle
- 2 Implications of the UFF
- 3 Order of equations of motion
- 4 Finsler geometry Existence of inertial systems
- 5 Apparent violations of the Universality of Free Fall
- 6 Newton's third law
- 7 Summary and Outlook

Summary and outlook

- discussion of underlying assumptions influencing the meaning of UFF and EEP
- order of equation of motion
- Finsler geometry as example for no inertial system / violation of local Minkowski
- no test theory so far for Finslerian modification of gravity, needs considerations beyond PPN
- Finslerian modification of Schwarzschild
- Solar system effects
- Finsler is further example for violation of Schiff's conjecture
- Earth–Moon system in field of Sun, should lead to extra polarization, comparison with LLR data
- Finslerian extension of Kerr

Main theme

Gravity and its structure can only be explored through the motion of test particles

Test particles

- Orbits and clocks
- Massive particles and light
- quantum fields

What is gravity depends on the structure of the equation of motion

- Existence of inertial systems
- Order of differential equation
- Dependence on particle parameters

Summary

What determines gravity?

$$GR = UFF + CP + LLI + UGR + Newton potential + UGF + ...$$

- scheme not complete as far as Einstein's equations are concerned
- ullet part of it can be interpreted as test of Newton's axioms: IS + CP + UGF
- fundamental violation of principle vs. apparent violation of principle

What are the fundamental principles?

Summary

Thank you!

Thanks to

- H. Dittus
- E. Göklü
- D. Lorek
- H. Müller
- V. Perlick
- P. Rademaker

- DLR
- DFG
- Research Training Group "Models of Gravity"
- Center of Excellence QUEST

