Development of Plasma Panel Particle Detectors

Yiftah Silver Tel-Aviv University

Dec. 18 2013

Collaborators

- Tel Aviv University, School of Physics & Astronomy
 Yan Benhammou, Meny Ben Moshe, Erez Etzion, <u>Yiftah Silver</u>
- Integrated Sensors, LLC Peter Friedman
- University of Michigan, Department of Physics
 Robert Ball, J. W. Chapman, Claudio Ferretti, Daniel Levin,
 Curtis Weaverdyck, Riley Wetzel, Bing Zhou
- Oak Ridge National Laboratory, Physics Division Robert Varner, James Beene
- Ion Beam Applications S.A. (IBA, Belgium)
 Hassan Bentefour
- General Electric Company, Reuter-Stokes Division (Twinsburg, OH)
 Kevin McKinny, Thomas Anderson

Outline

- Motivation
- Plasma display panel (PDP) operational principles
- Plasma panel sensor (PPS) description
- Simulations
- Lab results
- Next generation design
- Summary

Motivations

- Hermetically sealed
 - no gas flow
 - no expensive and cumbersome gas system
- Over 40 years of plasma panel manufacturing & cost reductions (\$0.03/cm² for plasma panel TVs)
- Potential for scalable dimensions, low mass profile, long life
 - meter size with thin substrate capability
- Potential to achieve contemporary performance benchmarks
 - Timing resolution → approx 1 ns
 - Granularity (cell pitch) → 50-200 μm
 - Spatial resolution → tens of μm
- Potential applications in
 - Nuclear and high energy physics, medical imaging, homeland security, etc.

TV Plasma Panel Structure

A Display panel is complicated structure with

- MgO layer
- dielectrics/rib
- phosphors
- protective layer

TV Plasma Panel Structure

 For detector, a dielectric layer front plate glass simplified version display electrode with readout & quench resistor Mg0 layer No MgO layer No dielectric/rib No phosphors No protective layer rear plate glass phosphors address electrode address protective layer

Commercial Panel Designs

- Two basic configurations for the electrodes: CD and SD
- Discharge dimensions ≈ 100 μm
- Gas pressure ≈ 400-600 Torr (usually Ne, Xe, Ar, Kr, He)
- Applied voltage typically hundreds of volts

Commercial Panel Designs

- Two operational modes:
 - AC → televisions, monitors

employ dielectric layers on electrodes

– DC → dot-matrix displays

use directly facing metalized anodes & cathodes

Commercial Plasma Panel

- Columnar Discharge (CD) Pixels at intersections of orthogonal electrode array
- Electrodes sizes and pitch vary between different panels

PPS with CD-Electrode Structure

(≈ 20-25% active cell/pixel fill-factor)

- 1. Remove or procure without gas
- 2. Alter manufacturer's electrode material (replace SnO₂ with Ni)
- 3. Add a custom gas port and high quality VCR valve
- 4. Subject panel to extended pump down, bake-out
- 5. Fill with commercial or in-house gas mixture
- 6. Close valve, mount panel for exposure to source or CR trigger
- 7. Configure with HV feed, quench resistors, signal readout & DAQ
- Panels operable for several months (even 1 year) after gas-filling without hermetic seal (i.e. only with "closed" shut-off valve)
- Investigate the behavior for different conditions
 - Gas composition, pressure, HV, termination, Electrode materials
 - Sources and Configurations
 - β , CR & test beam muons, beam protons, neutrons, gammas
 - Triggered, untriggered, collimated, uncollimated

Modified Commercial Panel

(fill-factor 23.5%, cell pitch 2.5 mm)

Principles of Operation

- Accelerated electrons begin avalanche
- Large electric field leads to streamers
- Streamers lead to breakdown - roughly follows Paschen's law.

"A Theory of Spark Discharge", J. M. Meek, Phys. Rev. 57, 1940

- Gas gap becomes conductive
- Voltage drops on quench resistor
- E-field inside the pixel drops
- Discharge terminates

Paschen discharge potential

$$V = \frac{a x}{\ln(x/x_0) + b}$$

 $x = pressure * gap x_0 = 1 Torr cm$ a, b = gas specific parameters

Electromagnetic Field Model

- Each cell is modeled as a capacitor
- COMSOL model for the electric field inside the cell

Capacitances and inductances are also calculated

E-field in the PDP pixels

Equivalent Circuit Simulations

 SPICE simulation incorporates the inductances and capacitances calculated with COMSOL

Electrical pulse is injected into the cell and the

output signal is simulated

SPICE Simulated Signal

Design & Operating Parameters

- Cell Design: fill-factor
 - open vs. closed architecture
 - columnar vs. surface discharge
- Electrodes: pitch, width, material
- Cell capacitance
- Operating voltage
- Quench resistance
- Gas mixture & pressure
- Substrate material (e.g. thickness, density)
- Dielectric surfaces

Performance Issues

(some of which we have begun to address)

- After pulsing & discharge spreading
- Gas hermeticity & decomposition
- Response in magnetic field
- Electrode degradation
- Radiation hardness
- High rate response
- Spatial uniformity
- Spatial response
- Time response
- Efficiency
- Readout
- Cost

19

Experimental Results

All results reported here obtained with prototype detectors adapted from:

glass sealed,

open architecture,

columnar discharge,

monochromatic,

DC display panels

shut-off valve "seal"

Signals from Panel

← pulse from Xe fill 2003, tested 2010

← panel sealed & tested in 2013, pulse from neutron source & ³He fill

- 1. Signals amplitudes: volts
- 2. Good signal to noise ratios.
- 3. Fast rise times O(ns)
- 4. Pulse shape uniform for a given panel design

Response to β Source

vs applied High Voltage

Quench Resistance Dependence

(Characteristic Response Curve)

Position Sensitivity Proton Test beam & Lab

PPS Proton Test Beam

March 2012

IBA ProCure Facility - Chicago

IBA Proton Beam Test

- Beam energy 226 MeV, Gaussian distributed with 0.5 cm width
- Proton rate was larger than 1 GHz on the entire spread of the beam

Position Scan

- Two position scans (panel filled with 1% CO₂ in Ar at 600 Torr)
 - 1 cm steps using brass collimator with 1 cm hole, 2.5 cm from beam center
 - 1 mm steps with 1 mm hole directly in beam center
- Rate of protons through 1 mm hole in center of beam was measured at 2 MHz

Dec. 18 2013

1 mm Scan

Number of hits per channel

Reconstructed centroid of hit map vs. PDP relative displacement with respect to the panel's initial position

Collimated Source Position Scan

¹⁰⁶Ru collimated source

- Light-tight , RF shielded box
- 1 mm pitch panel
- 20 readout lines
- 1.25 mm wide graphite collimator

Motorized X-Y table

Test Panel

Collimated \(\beta\)-Source Simulation

Dispersion of β-Particles in Panel (simulation)

Source Moved in 0.1 mm Increments (1 mm pitch panel)

PPS Position Scan

Mean fit for β-source moved in **0.1 mm** increments

33

Position Resolution/Dispersion

PPS Cosmic-Ray Muon Results

Cosmic Muon Measurement Setup

CR Muon Response

Response over active region

All channels active

exhibit similar levels of activity

Time Spectrum

- Pulse "arrival" time (includes arbitrary trigger offset)
- σ = timing resolution (jitter) of the detector
- We repeat this measurement with various gases and voltages

Time Spectrum

Ar / 1% CF₄ at 730 Torr

Timing Resolution vs. Applied HV

Timing Resolution

using 65% He 35 % CF4 at 730 Torr

Timing Resolution

using 80% ³He 20 % CF4 at 730 Torr

PPS Area Corrected Efficiency

(10% CF₄ in Ar, at 740 Torr, 0.38 mm gas gap)

PPS Muon Test Beam

November 2012

H8 at CERN

Setup

8 HV lines 100 M Ω quenched

Panel active area is 2 cm x 4 cm

Time Resolution

- Timing resolution with
 Ar-CO₂ better than
 10 nsec
- Geometrical acceptance times efficiency ≈ 2% (pixel efficiency is much higher). Did not have beam time to optimize or even raise the voltage!
- Active area fill-factor for PPS detector is 23.5%

Neutron Detection

in collaboration with GE, Reuter-Stokes

Objectives: high efficiency neutron detectors with high γ rejection

develop alternate to ³He as neutron interaction medium

This test: explore PPS as a general detector structure for converting neutrons

using thin gap ³He gas mixture

Gas fill: 80% ${}^{3}\text{He} + 20\% \text{ CF}_{4}$ at 730 Torr

Panel: 2.5 mm pitch large panel used for CR muons

Instrumented pixels = 600 Area: 6 in²

Method: irradiate panel with

thermal neutrons from various sources

high activity (10 mrem/hr) gammas

conduct count rates experiment with & w/o neutron mask plates.

Setup

Gamma transparent, neutron blocking plates

(~ 0.1% transmission)

neutron sources

²⁵² Cf , ²⁴¹ Am-Be, ²³⁹ Pu-Be

nested in stainless capsule, Pb cylinder, high density polyethylene (HDPE)

y Rejection

VPE HV (V)	γ detection rate Hz	γ efficiency
970	0.09	3.0e-07
1000	1.2	3.7e-06
1030	7.9	2.5e-05

3x10⁵ γ/sec at instrumented region

Reasonably good γ rejection before any optimizations offered by:

thin substrates
lower gas pressure
thinner metallization
Improving internal dielectrics around pixels

Spatial Position

blocking plate with 5

PPS

panel

40

20

Channel

10 11 12 13 14 15 16 17 18 19 20

Microcavity-PPS

Microcavity Concept

radial discharge gaps cavity depth → longer path lengths individually quenched cells isolation from neighbors

COMSOL simulation:

Equipotential lines

E-field

Microcavity Prototype (Back Plate)

Dec. 18 2013

Y. Silver Tel-Aviv University

Sealed Microcavity-PPS

Summary

We have demonstrated functioning of modified plasma displays as highly pixelated arrays of micro-discharge counters

- sensitive to highly ionizing & minimum ionizing charged particles: β 's, μ 's CR and test beam, intense proton beams, neutrons [with appropriate conversion (3 He)] & high γ rejection
- Panels have operated for up to 1 year (sealed only by valve)
- Timing resolution < 10 ns, approaching 3 ns for some gasses
- Spatial response at level of pixel granularity

Near Term Efforts

- Near term effort
 - microcavity PPS program
 - Final fabrication & initial testing
 - 2D readout
 - Pursue higher resolution panels, faster timing
 - stacked panels for tracking

Cathodes: metalized inner cavity surfaces connected to HV bus with resistive *via*

Anodes: pads on top plate

Example of microcavity arrays produced by chemical etching processes commonly used in PDP fabrication. Cavity scale is 100 microns.

Yong-Seog Kim, Woong Sik Kim, Yoo-Seong Kim, "Cost Effective Technologies for Barrier Rib Processing of HD PDPs" (Invited Paper), SID 2006 Digest of Technical Papers, Vol. XXXVII (June 2006), 1480-1483.