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Outline  
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• Plasma display panel (PDP) operational principles  

• Plasma panel sensor (PPS) description  

• Simulations 

• Lab results 

• Next generation design 
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Motivations 
  

• Hermetically sealed  
–  no gas flow 

–  no expensive and cumbersome gas system 

 

• Over 40 years of plasma panel manufacturing & cost reductions 
($0.03/cm2  for plasma panel TVs) 

 

• Potential for scalable dimensions, low mass profile, long life 
– meter size  with thin substrate capability  

 

• Potential to  achieve contemporary  performance benchmarks 
– Timing resolution  approx 1 ns 

– Granularity (cell pitch)  50-200 µm 

– Spatial resolution   tens of  µm 
 

• Potential applications in 
– Nuclear and high energy physics, medical imaging, homeland security, etc 
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TV Plasma Panel Structure  

A Display panel is 
complicated 
structure with 
   

– MgO layer 

– dielectrics/rib 

– phosphors 

– protective  layer 
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TV Plasma Panel Structure  

• For detector, a 
simplified version 
with readout & 
quench resistor 

   

– No MgO layer 

– No dielectric/rib 

– No phosphors 

– No protective layer 
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Commercial Panel Designs  

• Two basic configurations for the 
electrodes:  CD and SD 

 

• Discharge dimensions ≈ 100 µm 
  

• Gas pressure ≈ 400-600 Torr 
(usually Ne, Xe, Ar, Kr, He) 

 

• Applied voltage typically 
hundreds of volts 

Surface Discharge (SD) 

Columnar Discharge (CD) 
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Commercial Panel Designs  

• Two operational modes: 
– AC    televisions,  monitors 

 

 employ dielectric layers  on electrodes 

 

– DC   dot-matrix  displays 

 

 use directly  facing metalized anodes  &  cathodes  
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Commercial Plasma Panel 
• Columnar Discharge (CD) – Pixels at  intersections of orthogonal  

electrode array 
• Electrodes sizes and pitch vary between different panels  

 

Y. Silver Tel-Aviv University 

220 –  450 µm  
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PPS with CD-Electrode Structure 
 (≈ 20-25% active cell/pixel fill-factor) 
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PDP  PPS 
1. Remove or procure without   gas  

2. Alter manufacturer’s  electrode material (replace SnO2 with Ni ) 

3. Add a custom gas port and high quality VCR valve 

4. Subject panel to extended pump down,  bake-out    

5. Fill with commercial or in-house gas mixture 

6. Close valve, mount panel for exposure to source or CR trigger  

7. Configure with HV feed,  quench resistors,  signal readout & DAQ 
 

 Panels operable for several months (even 1 year) after gas-filling without 
hermetic seal (i.e. only with “closed” shut-off valve) 

 

  Investigate  the behavior for  different conditions  

– Gas composition, pressure, HV, termination, Electrode materials 

– Sources and Configurations 

• , CR & test beam muons,  beam protons, neutrons, gammas 

• Triggered, untriggered, collimated, uncollimated 
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Modified Commercial Panel  
(fill-factor 23.5%, cell pitch 2.5 mm)  

“Refillable” gas 

shut-off valve 

for R&D testing 
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Principles of Operation 

• Accelerated electrons 
begin avalanche  

• Large electric field leads 
to streamers 

• Streamers lead to 
breakdown - roughly 
follows  Paschen’s law.  

  
“A Theory of Spark Discharge”,  
       J. M. Meek, Phys. Rev.  57, 1940  

anode 

cathode 
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50 µm -1mm 

• Gas gap becomes conductive 

• Voltage drops on quench resistor  

• E-field inside the pixel drops 

• Discharge terminates  
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Small variations in Penning mixtures  

 dramatically affect breakdown voltage   

Paschen discharge potential 
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Lieberman and Lichtenberg,  

Principles of Plasma Discharges,  

Wiley 2005. 
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Electromagnetic Field Model 

• Each cell is modeled as a 
capacitor 

• COMSOL model for the 
electric field inside the 
cell 

• Capacitances  and 
inductances are also 
calculated 

E-field in the PDP pixels 

5 mm 

0 

-5 mm 

E-field is 
localized 

No E-field 
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Equivalent Circuit Simulations 

• SPICE simulation incorporates the inductances 
and capacitances calculated with COMSOL 

• Electrical pulse is injected into the cell and the 
output signal is simulated 

Single cell SPICE model 

Many cells SPICE model 
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SPICE Simulated Signal 

free parameters 

total charge, width of “” function  
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Design & Operating Parameters  

• Cell Design:  fill-factor 

               - open vs. closed architecture 

          - columnar vs. surface discharge    

•    Electrodes:   pitch, width, material 

•    Cell capacitance 

•    Operating voltage 

•    Quench resistance 

•    Gas mixture & pressure 

•    Substrate material (e.g. thickness, density) 

•    Dielectric surfaces 
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Performance Issues 
( some of which we have begun to address ) 

• After pulsing &  discharge spreading 

• Gas hermeticity & decomposition 

• Response in magnetic field  

• Electrode  degradation 

• Radiation hardness 

• High rate response 

• Spatial uniformity 

• Spatial response 

• Time response 

• Efficiency 

• Readout 

• Cost 
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Experimental Results 

All results reported here obtained with prototype detectors   

adapted from: 

 

glass sealed,  

          open architecture,  

                   columnar discharge, 

                               monochromatic, 

                                         DC display panels 

           shut-off valve “seal” 
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Signals from Panel  

1. Signals amplitudes: volts 

2. Good signal to noise ratios.  

3. Fast rise times   O(ns)  

4. Pulse shape uniform for a given 

panel design 

 pulse from Xe fill  2003,  tested 2010 

  panel sealed & tested in 2013,  

pulse from neutron source & 3He fill 

30 V 

Y. Silver Tel-Aviv University 

1 mm electrode 

pitch 

2.5 mm 

electrode pitch 
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Response to   Source 

Y. Silver Tel-Aviv University 

vs applied High Voltage 
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Quench Resistance Dependence  
( Characteristic Response Curve )  

Sa
tu

ra
ti

o
n
 

Working Region 

Secondary Pulses 
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Position Sensitivity 
Proton Test beam & Lab 
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PPS Proton Test Beam 

March 2012  
 

IBA ProCure Facility - Chicago 
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• Beam energy 226 MeV, Gaussian distributed with 0.5 cm width  
 

• Proton rate was larger than 1 GHz on the entire spread of the beam 

IBA Proton Beam Test 
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Position Scan 
• Two position scans (panel filled with 1% CO2 in Ar at 600 Torr) 

– 1 cm steps - using brass collimator with 1 cm hole, 2.5 cm from beam center 

– 1 mm steps with 1 mm hole directly in beam center 

• Rate of protons through 1 mm hole in center of beam was measured at 2 MHz 

The Panel 
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1 mm Scan 

Number of hits per channel 

Reconstructed centroid of hit map 

vs. PDP relative displacement with 

respect to the panel’s initial position 
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Collimated Source Position Scan 

Motorized X-Y table Test Panel 

•  Light-tight , RF 
shielded box  
•  1 mm pitch panel 
•  20 readout lines  
•  1.25 mm wide 
graphite collimator 

106Ru collimated source 
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Collimated β-Source Simulation 

Primary electrons exiting 
the graphite collimator 
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Dispersion of β-Particles in Panel 
(simulation) 

Geant4 simulation: 
106Ru ’s  

1.25 mm slit collimator 

2.25 mm glass 
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Source Moved in 0.1 mm Increments 
(1 mm pitch panel) 
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PPS Position Scan 

Mean fit for β-source moved in 0.1 mm increments 

* 

*Electrode Pitch 1.0 mm 

Centroid measurement consistent   
with electrode pitch 
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Position Resolution/Dispersion 

Electrode Pitch = 1.0 mm 

Y. Silver Tel-Aviv University 

 source 

2
res = 2

meas  - 
2

MC 

Position resolution < 1 mm 
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PPS Cosmic-Ray Muon Results 
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Cosmic Muon Measurement Setup 

30 HV lines 24 RO channels 

Trigger is 3” x 4’’ 

scintillation pads 
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CR Muon Response 

Y. Silver Tel-Aviv University 

2.5 days 
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Response over active region 

Y. Silver Tel-Aviv University 

All channels 

active  

 

exhibit similar 

levels of activity 
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Time Spectrum 

• Pulse “arrival” time 
(includes arbitrary trigger 
offset) 

 

•  = timing resolution 
(jitter) of the 
detector 

 

• We repeat this 
measurement with 
various gases and 
voltages 

Ar / 1% CF4 

at 730 Torr  

1100V 

Y. Silver Tel-Aviv University 

 = 40.1  0.9  
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Time Spectrum 

40 

Ar / 1% CF4  at 730 Torr  
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Timing Resolution vs. Applied HV 
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Timing Resolution   
using 65% He 35 % CF4  at 730 Torr 

HV =1290 V 

 ~  10 ns  

•  trigger time subtracted; 

•  arbitrary cable offset 
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Timing Resolution   
using 80%  3He   20 % CF4  at 730 Torr 

HV =1030 V 

 ~  3.5 ns  

•  trigger time subtracted; 

•  arbitrary cable offset 

trigger  

artifacts 

Dec. 18 2013 
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PPS Area Corrected Efficiency  
(10% CF4 in Ar, at 740 Torr, 0.38 mm gas gap) 

Maximum Pixel Efficiency:  60% 

pixel efficiency = 53%  

( 88% of maximum possible) 

Assumptions: 
• Uniform trigger response 

• Constant effective pixel size  
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Setup 

180 GeV BEAM 

2 scintillation pads 

4 cm2 each 

Ni-SnO2 PPS 

Ar / 7% CO2 

600 Torr 

HV = 1090 V 

16 channels  

8 HV lines 100 MΩ quenched  

Panel active area is 2 cm x 4 cm 

AND 

OR 

AND 
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Time Resolution 

• Timing resolution with  

 Ar-CO2 better than  

     10 nsec 

 

• Geometrical acceptance 
times efficiency ≈ 2% 
(pixel efficiency is much 
higher).  Did not have 
beam time to optimize or 
even raise the voltage! 

 

• Active area fill-factor for 
PPS detector is 23.5% 
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Neutron Detection 
in collaboration with GE, Reuter-Stokes  
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Objectives:   high efficiency neutron detectors with high     rejection 

         develop alternate to 3He   as neutron interaction medium 

This test:   explore PPS as a general detector structure for converting neutrons   

      using thin gap  3He gas mixture 

Gas fill:    80%  3He  +  20% CF4   at 730 Torr    

 

Panel:      2.5 mm pitch large panel used for CR muons 

      Instrumented pixels = 600    Area:   6 in2    

 

Method:  irradiate panel with  

  thermal neutrons from various sources 

   high activity (10 mrem/hr)  gammas 

  conduct count rates experiment with & w/o  neutron mask plates.

     

Dec. 18 2013 
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neutron sources 

 

  252 Cf ,  241Am-Be, 239Pu-Be 

 

nested in stainless capsule, Pb 

cylinder, high density polyethylene 

(HDPE) 

Gamma transparent, neutron 

blocking plates  

 

(~ 0.1% transmission )  PPS panel 

Setup 

Dec. 18 2013 
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Results  
PPS 

panel 

Neutron  

blocking 

 plate 

neutron 

source   
( 252 Cf ) 

Background 

subtracted data 

is neutrons only 

efficiency  

plateau 

Background:  

 from source 
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PPS 

panel 

3x105 /sec at instrumented region  

 source  

 ( 137 Cs ) 

Reasonably good  rejection  

before any optimizations offered by: 

 

thin substrates 

lower gas pressure 

thinner metallization 

Improving internal dielectrics around pixels 

 

VPE HV 

(V) 
 

detection 

rate Hz 

 

efficiency 

970 0.09 3.0e-07 

1000 1.2 3.7e-06 

1030 7.9 2.5e-05 

 

 

 

  Rejection  
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Spatial 

Position 

PPS 

panel 

blocking plate with 5 

mm slit 

neutron 

source  
(239Pu-Be)  
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Microcavity-PPS 
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Microcavity  Concept 

54 

E-field 

glass 

Equipotential lines 

COMSOL simulation: 

Y. Silver Tel-Aviv University 

radial discharge gaps  

cavity depth  longer path lengths 

individually quenched cells  

isolation from neighbors 
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Microcavity Prototype (Back Plate) 

Via 

Plug 
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Sealed Microcavity-PPS 

Bottom Half of “Open” 

Bakeout Oven 

Microcavity-PPS attached to 

vacuum-line / gas-fill system 
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Summary 

We have demonstrated functioning of modified plasma displays as  

  highly pixelated arrays of micro-discharge counters  

 

– sensitive to highly ionizing & minimum ionizing charged particles: 
 

    ’s,   ’s  CR and test beam, intense proton beams,  
 

    neutrons  [with appropriate conversion (3He ) ]  & high  rejection 

 

– Panels have operated for up to 1 year (sealed only by valve) 

 

–  Timing resolution  < 10 ns,  approaching 3  ns for some gasses   

 

– Spatial response at level of pixel granularity  

Y. Silver Tel-Aviv University Dec. 18 2013 



58 58 58 

Near Term Efforts 
 

• Near term effort 

– microcavity PPS program 

• Final fabrication & initial testing 

– 2D readout  

– Pursue higher resolution panels, faster timing 

– stacked panels for tracking 
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Cathodes: metalized inner cavity surfaces             

connected to HV bus with resistive via   

Anodes:  pads on top plate 
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Example of microcavity arrays 

produced by chemical etching 

processes commonly used in PDP 

fabrication. Cavity scale is 100 

microns. 

Yong-Seog Kim, Woong Sik Kim, Yoo-Seong Kim, “Cost 

Effective Technologies for Barrier Rib Processing of HD PDPs” 

(Invited Paper), SID 2006 Digest of Technical Papers, 

Vol. XXXVII (June 2006), 1480-1483. 
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