

Aielet Efrati

Work in progress - AE and Yosef Nir

Introduction

- A Higgs boson was found
- It looks like a SM Higgs
- It couples to pairs of heavy gauge bosons takes part in ElectroWeak symmetry breaking

• Is it the SM Higgs?

Introduction

 Many well-motivated scenarios predict extended Higgs sectors

Different experimental signatures

Not necessarily accompanied by discovery of new particles in the foreseen future

These might be too heavy or too weakly coupled

Introduction

 Precise measurements of Standard Model processes might be the only way to see New Physics imprints

Standard Model

Introduction - Standard Model

The SM scalar potential is a 2 parameter model

$$V_{SM} = \mu^2 |\phi_{SM}|^2 + \lambda |\phi_{SM}|^4$$
 with $\lambda = -\mu^2/v^2$

- Both of them are now measured
- A 3rd measurement = a test

$$\lambda_{hhh}^{SM} = \frac{3m_h^2}{v}$$

 But can we learn something new that cannot be learned otherwise?

YES!

- Gives clean window to the scale of New Physics
- Can distinguish between different New Physics models

Define deviations from SM:

$$\delta \lambda_{hhh} = \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}} - 1$$
 $\delta \lambda_{hVV} = \frac{\lambda_{hVV}}{\lambda_{hVV}^{SM}} - 1$

Consider mainly

$$\frac{\delta \lambda_{hhh}}{\delta \lambda_{hVV}}$$

- Analyze extended Higgs sector models
- In the decoupling limit
 - No direct observation of new particles
 - Small mixing with non Standard Model particles

λ_{hhh} at the LHC

- Probed by h pair production ~ 30 fb
- Both $gg \rightarrow h^* \rightarrow hh$ and $gg \rightarrow hh$

• Destructive - suppressed for $1 < \frac{\lambda_{hhh}}{\lambda_{hhh}^{SM}} < 3$

λ_{hhh} at the LHC

• $hh \rightarrow 4h$

hopeless

• $hh \rightarrow bb\gamma\gamma$

the most promising

• $hh \rightarrow bb\tau\tau, bbWW, WW\tau\tau$ others

λ_{hhh} at the LHC

Expected accuracy:

LHC ~30%-50%

~20%

 e^+e^- synchrotron $\sim 30\%$

photon collider hopeless

Precise measurement: not in the near future

λ_{hVV} at the LHC

• Currently: $-15\% \lesssim \delta \lambda_{hVV} \lesssim 5\%$

• Expected:

Experiment	\sqrt{s} in TeV	\mathcal{L} in fb ⁻¹	$\delta \lambda_{hVV} \lesssim$
LHC (ATLAS)	14	300	(2.5 - 3.3)%
LHC (CMS)	14	300	(2.7-5.7)%
LHC (ATLAS)	14	3000	(1.6-2.6)%
LHC (CMS)	14	3000	(1.0 - 4.5) %
ILC	0.25 + 0.5	250 + 500	0.39%
ILC	0.25 + 0.5 + 1	250+500+1000	0.21%

New Physics

Doublet-Singlet mixing

- The simplest extension:
 additional real singlet scalar
- Spectrum:

light
$$h = c_{\alpha}\phi_{SM} - s_{\alpha}\phi_{S}$$
 decoupled H

• Decoupling limit:

$$m_H \gg m_h$$
 $s_{\alpha} \ll 1$

Doublet-Singlet mixing

$$\delta \lambda_{hVV} \simeq -s_{\alpha}^2/2$$

$$\delta \lambda_{hhh} \simeq -3s_{\alpha}^2/2$$

$$\frac{\delta \lambda_{hhh}}{\delta \lambda_{hVV}} \simeq 3$$
A decisive test $\langle \phi_S \rangle$

Doublet-Doublet mixing

- CP conserving 2HDM
 Motivated by SUSY models
- Spectrum:

light
$$h$$
 decoupled H, A, H^{\pm}

Decoupling limit

$$\cos(\beta - \alpha) = \frac{\hat{\lambda}v^2}{m_A^2} \ll 1$$

Doublet-Doublet mixing

$$\delta \lambda_{hVV} \sim -c_{\beta-\alpha}^2$$

$$\delta \lambda_{hhh} \sim -c_{\beta-\alpha}$$

$$\left(\frac{\delta \lambda_{hhh}}{\delta \lambda_{hVV}} \simeq \frac{4m_A^2}{m_h^2} \gg 1\right)$$

Larger signature

 m_A

Doublet-Triplet mixing

- Can accommodate neutrino masses
- Additional three triplets χ with Y=-1,0,1 preserves custodial symmetry

$$\rho = m_W^2/(m_Z^2 \cos^2 \theta_W) = 1$$

Relevant spectrum:

$$h \sim c_{\alpha} \phi_{SM} - s_{\alpha} \chi$$

$$H$$

$$\tan \theta_{H} \sim \langle \chi \rangle / \langle \phi_{SM} \rangle$$

Doublet-Triplet mixing

• Consider $s_{\alpha} \ll 1$

Effective interactions

•
$$V = V_{SM} + \frac{\rho}{\Lambda^2} |\phi_{SM}|^6$$

$$\lambda_{hVV} = \lambda_{hVV}^{SM}$$

$$\lambda_{hhh} = \lambda_{hhh}^{SM} + 6\rho \frac{v^3}{\Lambda^2}$$

The only probe for NP

Lessons from $\delta \lambda_{hhh}/\delta \lambda_{hVV}$

Model	$\delta \lambda_{hhh}/\delta \lambda_{hVV}$	
1D1S	3	
2D	$4m_A^2/m_h^2 \gg 1$	
1D3T $(s_{\alpha} \ll 1)$	-1	
Dim 6 EFT	∞	

Summary

- A measurement of $\lambda_{hhh} =$ a test for the SM
- It might provide a first hint for New Physics
- The combination of $\delta\lambda_{hhh}$ and $\delta\lambda_{hVV}$ is particularly powerful
- If $\delta\lambda_{hVV}\neq 0$ is observed, an accurate measurement of λ_{hhh} will become highly motivated as a clean window for New Physics

Summary

- A measurement of $\lambda_{hhh} =$ a test for the SM
- It might provide a first hint for New Physics
- The combination of $\delta\lambda_{hhh}$ and $\delta\lambda_{hVV}$ is particularly powerful
- If $\delta\lambda_{hVV}\neq 0$ is observed, an accurate measurement of λ_{hhh} will become highly motivated as a clean window for New Physics

Thank you!