Probing e/μ asymmetry in flavor violating decays to leptons

A. Dery¹, A. Efrati¹, R. Orr², S. Bressler¹

¹Weizmann Institute of Science ²University of Toronto

e/μ asymmetry in flavor violating decays to leptons

Look at $\Gamma(X \rightarrow \tau e)$ and $\Gamma(X \rightarrow \tau \mu)$

- X any *non leptonic neutral* particle; Obvious candidate: the Higgs.
- e $\mu \tau$ the three charged lepton

 $X \rightarrow \tau e(\mu)$: lepton flavor violating decay

$$\Gamma(X \rightarrow \tau e) \neq \Gamma(X \rightarrow \tau \mu) \implies e/\mu \text{ asymmetry}$$

• Implies that either $\Gamma(X \to \tau e) \neq 0$ or $\Gamma(X \to \tau \mu) \neq 0 \Rightarrow$ huge discovery

$$\Gamma(X \rightarrow \tau e) = \Gamma(X \rightarrow \tau \mu) \neq 0$$
?

• Different approach is needed

Outline

Motivation:

- Lepton flavor conservation in the standard model
- Higgs properties
- Z & other non SM particles

Analysis strategy

- Channel selection
- Cut flow optimization

Background estimation

- The experimental challenge
- e / μ (a)symmetry: Quick introduction
- Data driven method

Analysis strategy - continued

- Statistical treatment
- Systematic uncertainties

Sensitivity to other models

Status & Plans

Lepton flavor *conservation* in the SM

 $e \mu \tau$: electrically charged

 $3 \times v$: electrically neutral

The lepton number is conserved in all the interactions \Rightarrow v's are emitted in β decays $p \rightarrow n e^+ v$

v oscillations ⇒
LFV in the neutral lepton sector ⇒
New physics

LFV in charged lepton interactions

⇒ physics beyond the standard model

3 flavors : $e \mu \tau$

The lepton flavor is conserved in the gauge interactions \Rightarrow Weak decay: $\tau \to \mu \, \overline{\nu}_{\mu} \, \nu_{\tau}$

These are accidental symmetries of the SM Lagrangian

Higgs properties

Is it the Higgs of the Standard Model?

- Many measurements are in agreement with the standard model predictions
- Nevertheless, constraints on properties which are not predicted by the standard model are not always stringent

New physics coupled to the lepton sector could induce LFV Higgs decay

• Effective Lagrangian:

$$\sum_{i,j=e,\mu,\tau} c_{ij} \ \bar{\ell}_L^i \ell_R^j h + \text{H.c.}$$

The strongest bounds are all indirect

• $|C_{e\mu}|$: very small

 $\sum_{i,j=e,\mu,\tau} c_{ij} \ \bar{\ell}_L^i \ell_R^j h + \text{H.c.} \qquad h ------$

• $|C_{\tau\mu}|$ or $|C_{\tau e}|$: could be as large as the standard model coupling of the Higgs to the τ lepton

Eff. couplings	Bound	Constraint
$ c_{e\mu} ^2$, $ c_{\mu e} ^2$	1×10^{-12}	$\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$
$ c_{\mu\tau} ^2, c_{\tau\mu} ^2$	$5 \times 10^{-4} \ [*]$	$\mathcal{B}(au o \mu \gamma) < 4.4 imes 10^{-8}$
$ c_{e\tau} ^2$, $ c_{\tau e} ^2$	$3 \times 10^{-4} \ [*]$	$\mathcal{B}(\tau \to e\gamma) < 3.3 \times 10^{-8}$

MEG Collaboration, arXiv:1303.0754 [1]

Blankenburg et al. arXiv: 1202.5704 [2]

• $|C_{e\tau}C_{\tau\mu}| \& |C_{\tau e}C_{\mu\tau}|$: very small

Eff. couplings	Bound	Constraint
$ c_{e\tau}c_{\tau\mu} , c_{\tau e}c_{\mu\tau} $	1.7×10^{-7}	$\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13}$

Expected numbers of events in 20 fb⁻¹ of the ATLAS data Assuming BR(h $\rightarrow \tau \mu$) < 10⁻² (10⁻¹)

- $h \rightarrow e\mu$: $\ll 1$ events
- $h \rightarrow \tau \mu : \leq 4000 \text{ (40000)}$ events (tree level processes)
- h $\rightarrow \tau e$: $\leq 4000 (40000)$ events (tree level processes)
- → Can be seen on top of as high as 0.5 M (50 M) background events

- The bound on $|C_{e\tau}C_{\tau\mu}| \& |C_{\tau e}C_{\mu\tau}|$ are less robust
 - Additional diagrams may cancel the large contribution to the process $\mu \rightarrow e\gamma$

Analysis strategy: h→τμ

2 search channels depending on the τ decay mode

- Hadronic channel (τ decay to hadrons $\sim 66\%$)
- Leptonic channel (\sim 17 % to e and \sim 17% to μ)
- Experimentally different
- Similar sensitivity
 - Hadronic channel: Harnik, Kopp and Zupan arXiv:1209.1397
 - Leptonic channel: Davidson and Verdier arXiv:1211.1248

⇒ Start with the leptonic channel and later combine with the hadronic

$$\ell \longleftarrow h \xrightarrow{\tau} \psi_{\ell'}$$

Signal events in 20 fb⁻¹ of the ATLAS data

- $h \rightarrow \tau \mu \rightarrow l \mu 2 \nu : < 1400 \ (14000)$ events
- $h \rightarrow \tau e \rightarrow l\mu 2\nu : < 1400 \ (14000)$ events
- → Can be seen on top of 0.8M (8M) background events

Event signature

$h \rightarrow \tau \mu \rightarrow 1\mu 2\nu$: two options

- $\mu^+ \mu^-$ and some missing E_T
- $\mu^{\pm} e^{\mp}$ and some missing E_T

Count 2-lepton events $(\mu^+ \mu^- \text{ or } \mu^\pm e^\mp)$ compare to the SM prediction

Signal events in 20 fb⁻¹ of the ATLAS data

- $h \rightarrow \tau \mu \rightarrow l \mu 2\nu : < 1400 \ (14000)$ events
- $h \rightarrow \tau e \rightarrow l \mu 2 \nu : < 1400 \ (14000)$ events

Channel selection: H→τμ→eμ2ν

Leptonic channel: two possible final states

- $\ell \longleftarrow h \xrightarrow{\tau} \nu_{\tau} \nu_{\ell'},$
- $\tau \rightarrow \mu 2\nu$: opposite sign $\mu + E_T^{miss}$ \Rightarrow huge background from $Z \rightarrow \mu\mu$ (~ 20M in 20 fb⁻¹ of data)
- $\tau \rightarrow e2\nu$: <u>opposite sign $e\&\mu + E_T^{miss}$ </u>
 - \Rightarrow h $\rightarrow \tau \mu \rightarrow e \mu 2 \nu : < 700 (7000)$ events

no background from $Z\rightarrow\mu\mu/ee$, only background from $Z\rightarrow\tau\tau\rightarrow e\mu4\nu$

Event topology

$$h \rightarrow \tau \mu \rightarrow e \mu 2 \nu$$

- The τ and μ are produced back-to-back in the transverse plan
- The τ is boosted \Rightarrow 1' and the 2v from the τ decay are collinear with the τ
- Jets are only from ISR

The collinear approximation

- Assumes that the τ decay products are in the direction of the τ
- Reconstruct the τ 4-momentum from the lepton and E_T^{miss}

The collinear mass: an estimation of the h mass:

$$\begin{split} M_{coll}^2 &= 2p_T^\ell (p_T^{\ell'} + MET)(cosh\Delta\eta_{\ell\ell'} - cos\Delta\phi_{\ell\ell'}) \\ M_{inv}^2 &= 2p_T^\ell p_T^\tau (cosh\Delta\eta_{\ell\tau} - cos\Delta\phi_{\ell\tau}) \end{split}$$

Event topology \Rightarrow S/B separation

Trigger	Detail	
Single Isolated e Single Isolated μ	EF_e24vhi_medium1 EF_mu24i_tight	
Combined eµ	EF_e12Tvh_medium1_mu8 EF_mu18_tight_e7_medium1	

Selection criteria (w/ pre-selection)	Signal Eff.	Signal	Background
Exactly 1 e & 1 μ - opposite sign			
e: $p_T > 20 \text{ GeV } \& \eta < 2.5$			
μ : $p_T > 40 \text{ GeV } \& \eta < 2.1$			
Jet veto: $p_T > 30 \text{ GeV } \& \eta < 2.5$			
$\Delta \varphi(e, \mu) > 2.5$			
$\Delta \varphi(1', E_T^{miss}) < 0.5$	4%	29-290	1246

Event topology \Rightarrow S/B separation

Selection criteria (w/ pre-selection)			
Exactly 1 e & 1 μ - opposite sign			
e: $p_T > 20 \text{ GeV } \& \eta < 2.5$			
μ : $p_T > 40 \text{ GeV } \& \eta < 2.1$			
Jet veto: $p_T > 30 \text{ GeV } \& \eta < 2.5$			
$\Delta \varphi(e, \mu) > 2.5$			
$\Delta \varphi(1', E_{T}^{miss}) < 0.5$			

Selection criteria (w/ pre-selection)
Exactly 1 e & 1 μ - opposite sign
e: $p_T > 20 \text{ GeV } \& \eta < 2.5$
μ : $p_T > 40 \text{ GeV } \& \eta < 2.1$
Jet veto: $p_T > 30 \text{ GeV } \& \eta < 2.5$
$\Delta \phi(e, \mu) > 2.5$
$\Delta \varphi(l', E_{T}^{miss}) < 0.5$

Main background sources:

- $Z \rightarrow \tau \tau \rightarrow e \mu + E_T^{miss}$
- WW $\rightarrow e\mu + E_T^{miss}$
- ttbar

Event topology \Rightarrow S/B separation

Slightly different use of the collinear approximation $\ell \leftarrow h \xrightarrow{\tau} h^{\tau}$ Davidson and Verdier arXiv:1211.1248

Selection criteria	N _{backgrd} .	$N_{h o au au}$	$N_{h o WW}$	$N_{h \to ZZ}$	Signal efficiency (%)	N_{sig} .
≥ 1 muon with $p_T > 30$ GeV and $ \eta < 2.1$ and	59271 ± 76	89. ± 3.	235. \pm 5.	4.2 ± 0.7	21.2 ± 0.1	145.4 ± 0.9
≥ 1 electron with $p_T > 15$ GeV and $ \eta < 2.5$						
exactly 2 OS leptons	58447 ± 75	89. ± 3.	235. \pm 5.	2.2 ± 0.5	21.2 ± 0.1	145.4 ± 0.9
jet veto: no jet with $p_T > 30 \text{ GeV}$ and $ \eta < 2.5$	19477 ± 44	51. \pm 2.	123. \pm 3.	1.0 ± 0.3	13.1 ± 0.1	89.7 ± 0.7
$\Delta \phi(e,\mu) > 2.7$	$ 13261 \pm 36 $	40. ± 2.	8.7 ± 0.9	0.1 ± 0.1	10.7 ± 0.1	72.9 ± 0.7
$\Delta \phi(e \cancel{E}_T) < 0.3$	3885 ± 20	15. \pm 1.	2.4 ± 0.5	0.1 ± 0.1	7.85 ± 0.09	53.7 ± 0.6
2D cut in $(\delta E_T, p_T^{\mu})$ plane	53 ± 2	0.6 ± 0.3	0.5 ± 0.2	0	5.34 ± 0.07	36.5 ± 0.5

TABLE II: Selection criteria for the $h \to \tau^{\pm}\mu^{\mp}$ search at the $\sqrt{s}=8$ TeV LHC with $\mathcal{L}=20~fb^{-1}$ with the total number of events expected from SM backgrounds, the contribution of SM Higgs decay to the total background, and the signal efficiency (%) and the number of signal events expected for $BR(h \to \tau^{\pm}\mu^{\mp}) = 10^{-1}$, uncertainties are statistical only.

Background estimation

The experimental challenge:

- 1. How many standard model events passed the selection
- 2. How wrong we might be \Rightarrow systematic uncertainties

Difficulties

- The higgs peak is in an intermediate region between the sharp $Z \to \tau\tau$ peak and the flat WW and ttbar components
- "Traditional" background estimation techniques are likely to result in large systematic uncertainties

Traditional estimation methods

- Side band fit
 Difficult (impossible) to find a function describing both
 the Z peak and the other background sources
- Monte Carlo base
- Extrapolation from control regions No obvious $Z \rightarrow \tau\tau$ CR

e / μ (a)symmetry

Charged lepton interactions in the standard model:

- Strong: not participating
- EM: proportional to the charge \Rightarrow e / μ symmetric
- Weak: universal gauge coupling \Rightarrow e / μ symmetric
- SM Yukawa: proportional to the mass ⇒ can be neglected

Theoretically*: Complete e/μ symmetry in the SM

* up to small phase space corrections that can be neglected at the LHC energies

e / μ (a)symmetry

$h \rightarrow \tau \mu \rightarrow e \mu 2 \nu$

- h $\rightarrow \tau \mu$: the τ and μ take half the h energy (on the average)
- $\tau \rightarrow e2\nu$: the e takes 1/3 of the τ energy (on the average)
- The μ is 3 time more energetic than the e the e/μ symmetry breaks

Divide the data

Sample I: events with $p_T^{\mu} > p_T^e$ (µe)

Sample II: events with $p_T^e > p_T^{\mu}(e\mu)$

→ SM processes are split to half

 $h \rightarrow \tau \mu \rightarrow e \mu 2\nu$ is in sample I

e / μ (a)symmetry

$h \rightarrow \tau \mu \rightarrow e \mu 2 \nu$

- h $\rightarrow \tau \mu$: the τ and μ take half the h energy (on the average)
- $\tau \rightarrow e2\nu$: the e takes 1/3 of the τ energy (on the average)
- The μ is 3 time more energetic than the e the e/μ symmetry breaks

Data driven method: $H \rightarrow \tau \mu \rightarrow e \mu 2\nu$

Divide the data

Sample I (μe): events with $p_T^{\mu} > p_T^e \Rightarrow$ the signal is here

Sample II (eµ): events with $p_T^e > p_T^{\mu}$

Calculate the collinear mass for each sample separately

$$M_{coll}^2 = 2p_T^{\ell}(p_T^{\ell'} + MET)(\cosh\Delta\eta_{\ell\ell'} - \cos\Delta\phi_{\ell\ell'})$$

Use the leading and subleading leptons correctly

Note

- e/ μ symmetry in the SM \Rightarrow the distributions of the background processes look the same in the two samples
 - As long as the leading and subleading leptons are defined correctly
- $h \rightarrow \tau \mu \Rightarrow peaks at sample I (\mu e)$

Data driven method: H→τμ→eμ2v

Divide the data

Sample I (μe): events with $p_T^{\mu} > p_T^e \Rightarrow$ the signal is here

Sample II (eµ): events with $p_T^e > p_T^{\mu}$

Conclusion

The distributions obtained with sample II (eµ) model the standard model background in sample I (µe)

Caveat

The method can probe differences between $\Gamma(X \to \tau e)$ and $\Gamma(X \to \tau \mu)$ Any observation would imply physics beyond the standard model

Eff. couplings	Bound	Constraint
$ c_{e\tau}c_{\tau\mu} , c_{\tau e}c_{\mu\tau} $	1.7×10^{-7}	$\mathcal{B}(\mu \to e \gamma) < 5.7 \times 10^{-13}$

Sensitivity: $H \rightarrow \tau \mu \rightarrow e \mu 2\nu$

Things that may go wrong

Experimentally, e & µ are different objects

- Electrons emit Bremsstrahlung radiation (small dependence on the electron energy)
 - p_T^e may have lower spectrum
 - The electron direction may be mis-measured
- Different momentum resolution
- Different reconstruction efficiency
- Different trigger efficiency
- Different fake rate

But

The final state has both e & µ

 \Rightarrow cancels most of the potential systematic uncertainties p_T dependent effects are the main problem

Things that may go wrong: examples

Testing the symmetry: leading lepton p_T

Selection criteria (w/ pre-selection)

Exactly 1 e & 1 μ - opposite sign

e: $p_T > 20 \text{ GeV } \& |\eta| < 2.5$

 μ : $p_T > 20$ GeV & $|\eta| < 2.1$

Jet veto: $p_T > 30 \text{ GeV } \& |\eta| < 2.5$

 $\Delta \phi(e, \mu) > 2.5$

 $\Delta \varphi(l', E_{T}^{miss}) < 0.5$

Sample I: μe Sample I: eμ

Testing the symmetry: subleading lepton p_T

Selection criteria (w/ pre-selection)

Exactly 1 e & 1 μ - opposite sign

e: $p_T > 20 \text{ GeV } \& |\eta| < 2.5$

 μ : $p_T > 20$ GeV & $|\eta| < 2.1$

Jet veto: $p_T > 30 \text{ GeV } \& |\eta| < 2.5$

 $\Delta \phi(e, \mu) > 2.5$

 $\Delta \varphi(l', E_{T}^{miss}) < 0.5$

Sample I: μe Sample I: eμ

Testing the symmetry: $\Delta \varphi(e,\mu)$

Selection criteria (w/ pre-selection)

Exactly 1 e & 1 μ - opposite sign

e: $p_T > 20 \text{ GeV } \& |\eta| < 2.5$

 μ : $p_T > 20$ GeV & $|\eta| < 2.1$

Jet veto: $p_T > 30 \text{ GeV } \& |\eta| < 2.5$

 $\Delta \phi(e, \mu) > 2.5$

 $\Delta \varphi(l', E_{T}^{miss}) < 0.5$

Sample I: μe Sample I: eμ

Testing the symmetry: collinear mass

Selection criteria (w/ pre-selection)

Exactly 1 e & 1 μ - opposite sign

e: $p_T > 20 \text{ GeV } \& |\eta| < 2.5$

 μ : $p_T > 20$ GeV & $|\eta| < 2.1$

Jet veto: $p_T > 30 \text{ GeV } \& |\eta| < 2.5$

 $\Delta \phi(e, \mu) > 2.5$

 $\Delta \varphi(l', E_{T}^{miss}) < 0.5$

Data looks OK

Testing the symmetry: asymmetric p_T cuts

Statistical treatment

Sample I: µe Sample I: eµ

Can we say something about higher mass resonances?

How can we quantify the level of μe eμ symmetry?

How can we quantify the level of μe e μ asymmetry if observed?

Statistical treatment

ATLAS has many existing tools but for now we are studying the problem using private (simple) code

Step 0:

- No systematic uncertainties
- Using likelihood as test statistics
- Take the mean of μe & $e\mu$ distributions as background pdf
 - p-value ~ 0.95
- Add 30 events around 300 GeV
 - p-value ~ 0.03 ⇒
 a hint for a mismatch
 not enough to reject the 0 hypothesis
 - This is only step 0

Step 1:

- No systematic uncertainties
- Using profile likelihood ratio as test statistics

Systematic uncertainties

Signal related: Standard recommendations

- Smearing
- Scale factors ...
- → The tools are in place

Background related:

- Main source: low statistics
 - Will improve with more data
 - Can employ smoothing techniques
- Imperfect eμ μe symmetry
- Using the statistical tools presented in the previous slides

Systematic uncertainties

Addressing uncertainties in the assumption of eµ / µe symmetry

Compare the symmetry assumption to alternate assumptions

- Smearing
- Shifts

Use control regions to determine the best model

- Side bands
- Reverse selection criteria that do not affect the e/μ symmetry
 - jets
 - Δφ
- Same sign*

Incorporate into the statistical model

Sensitivity to other models

LFV Z decays are strongly constraint by LEP

- $\Gamma(Z \rightarrow e\mu) : < 1.7 \times 10^{-6} \implies$ \$\leq 700 \text{ events in 20 fb}^{-1} \text{ of data}
- $\Gamma(Z \to \tau \mu) : <9.8 \times 10^{-6} \implies \Gamma(Z \to \tau \mu \to e \mu 2\nu) : <1.7 \times 10^{-6}$ \$\leq\$ 1200 events in 20 fb⁻¹ of data
- $\Gamma(Z \rightarrow \tau e) : < 1.2 \times 10^{-5} \implies \Gamma(Z \rightarrow \tau e \rightarrow e \mu 2 \nu) : < 2.0 \times 10^{-6}$ \$\leq 1200\$ events in 20 fb⁻¹ of data
- → Can be seen on top of as high as 60K background events
- → At 200 fb⁻¹ can challenge LEP's bounds

Sensitivity to other models

LFV decays of non-SM particles

- Heavy Higgs, Z'
- Searches mostly focus on $X \rightarrow \mu e$
 - experimentally easiest
 - Indirect weak bound also on $X \rightarrow \mu \tau \Rightarrow$ weaker than the bound from a dedicated search?
 - Low sensitivity to wide resonances

General searches

- Resonances in compound final states
- e/μ asymmetry (not necessarily a resonance) in compound final states
 - Using the statistical tools we are developing to test the symmetry assumption

Status

Cut flow optimization is on going

• Monte Carlo based

Statistical model is being built

Will be used to determine symmetry uncertainties

Work in parallel on private Monte-Carlo production

- Emulate simple detector response
 - Using Yevgeny Kats's et. al "Pythia 8 + FastJet + private detector simulation"

http://arxiv.org/abs/arXiv:1106.0030 http://arxiv.org/abs/arXiv:1110.6444 http://arxiv.org/abs/arXiv:1209.0764 http://arxiv.org/abs/arXiv:1310.5758

& Plans

Find LFV higgs/Z/resonance decay

or improve existing bounds

Present in ATLAS WG

HSG? Exotics?

Establish the method before completing the search in ATLAS

Summary

The rate of higgs LFV decays to τμ & τe may be as high as 10%

- All the bounds are indirect
- These decays are not allowed by the SM
 - ⇒ any observation would imply a discovery of new physics

We are searching for LFV in the charged sector

- The focus is on LFV higgs decays: $h \rightarrow \tau \mu \& h \rightarrow \tau e$ when the τ decays to leptons
- The search is sensitive to resonances at a wide mass range

Fully data driven background estimation method

- Probing differences between $\Gamma(X \rightarrow \tau e)$ and $\Gamma(X \rightarrow \tau \mu)$
- Promising preliminary results
- Main uncertainty due to the low statistics ⇒ improves with more data

Plenty of work ahead

