

ATLAS Phase II Strip Tracker: Electronic Developments

ACES, CERN, 19/03/2014 Peter W Phillips On behalf of The ATLAS ITK Strip Community

Outline

- Conceptual Layout
 - Barrels and Disks, Staves and Petals
- Architecture
 - ASICs
 - HCC
 - ABC130
 - Trigger Scheme
 - First ABC130 Results !!!
 - ABC130 Module with Integrated Powering
 - HV Multiplexing and Bias Current Measurement
- Status of Petal and Stave Prototypes
 - With 250nm chipset

Provisional ITk Layout

ACES, CERN, 19/04/2014

The Short Strip Stave

Key Features

- Stave core with CF skins
 - Integrated thermal management (CO2)
- 13 modules per stave side
 - Planar Sensors (n in p, 320 µm thick)
 - 4 columns of ~23.8mm strips
 - 1280 strips per column
 - Chipset: ABC130 & HCC
 - Integrated Powering (SPP or PoL DC-DC)
- Side mounted "End of Substructure" carge
 - Readout Interface
 - Custom power connector
 - on pigtail

Peter W Phillips

- First Prototype
 - Electrical Readout
- Second Prototype
 - GBT + VTRx
- Pre-Production
 - IpGBT + multi channel opto

Power

Connector

VTRx

GBT

Cooling

The Petal

Key Features

- Petal core with CF skins
 - Integrated thermal management (CO2)
- Modules with wedge geometry
 - Several sensor & hybrid geometries
 - Varying number of ASICs
 - Chipset: ABC130 & HCC
 - Powering components at edges
 - SPP or DC-DC converter
- "End of Substructure" cards mounted on "ears"
 - Readout Interface

As similar to the Stave as geometrically possible!

Hybrid Controller Chip (HCC)

- Pad Frame optimized for hybrid mass reduction
 - Smaller footprint => Smaller hybrid
 - Hybrid side SLVS buses copied to both sides to suit left and right "handed" hybrids
- **Key Features:**
 - **SLVS IO**
 - Data back to EoS at up to 320Mbits ٠
 - with optional 8b10b
 - PLL to generate 40, 80, 160, 320, 640MHz synchronous to BCO
 - Modified GBT ePLL
 - Delays
 - DCS Monitoring & General Purpose IO
 - Temperature, Voltage, ...
 - Output ABC130 compatible fixed length packets
- Status
 - P&R and verification well advanced
 - Probable submission in May

ABC130 Front End Chip

IBM CMOS 8RF

- Pad Frame optimized for hybrid mass reduction
 - 256 channels -> reduce part count
 - FE geometry suits direct sensor bonding
 - All power bonds at back edge
- New 2 level trigger architecture
 - Level-0 synchronous 500kHz-1MHz
 - Moves event data from a pipeline to buffer in FEs, no readout
 - Event data tagged with LOID
 - Level-1 asynchronous ~200kHz
 - Data retrieved from buffer using LOID tag
- Other key features
 - Fixed length data packets
 - Programmable LDOs for Analogue / Digital power
 - Shunt to support Serial Powering
- Two variants made
 - One includes additional "Fast Cluster Finder" block for self-seeded trigger
- First wafers back Q4 2013
 - Testing in progress

ABC130 Trigger Architecture

- Additional track-trigger function
 - Regional Readout (R3)
 - A special trigger sent only to modules inside a Region of Interest
 - LO-trigger identified regions of interest
- LOA copies data from pipeline to RAM
 - LOID counter used as address
- L1A and R3 requests have independent FIFOs
 - Stores LOIDs locates event in buffer
 - Arbiter ensures ordered data handling R3 has priority
 - Effective as a de-randomiser
- Data is formatted by dedicated blocks and serialised to HCC

ABC130 Early Test Issue

FIB edit by NanoScope Ltd., Bristol

• No data output

- Problem traced to custom transceiver block
 - Discrepancy between reality and functional model for polarity of "direction" signal
- Corrected for a small number of die by FIB edit
 - Cut direction line
 - Strap to VDD or 0V as required
- Resubmission being prepared
 - New M3 layer only
 - Others unchanged

ABC130 Preliminary Results (1)

ABC130 under Probe Test

- Evaluation of single FIB die continues
 - Test PCB
 - Probe Card
- Test coverage to date:
 - Register write/read
 - DACs & LDOs
 - 40, 80, 160 MHz DCLK
 - Noise with mini sensors
 - Mean Power vs trigger rate
 - Pending
 - Clock margin (higher BCO)
 - Power vs time
 - Gain calibration
 - beam, laser, source...
 - SEU studies
 - Irradiation

ABC130 Preliminary Results (2)

ABC130 with two ATLAS07 mini sensors

Preliminary noise data at 150V bias

Noise is as expected. To date - apart from the known "feature" - ABC130 is working well.

Testing The Fast Cluster Finder

FCF Output (black) at 320 MHz (blue)

 Fast-Cluster-Finder is a proof-ofprinciple block for self-seeded triggering

- Autonomous no interaction with other chip functions
- Outputs cluster lists at up to 640Mbits for correlation with hits from other side of stave/petal
- Parallel effort to verify function of this block on uncorrected die
 - Plot shows FCF output at 320 MHz
 - Half speed for now, but basically working
- This effort will continue
 - Work is directed toward a self-seeded trigger demonstrator module

ABC130 Barrel Module

Assembly of "half module" with 5 FIB corrected ABC130 and 5 uncorrected ABC130 pending

- Module is made up of 3 main parts:
 - Sensor
 - Flex circuits (carrier for readout asics and I/O buffer)
 - Power Board (SPP or PoL DC-DC) with sensor filtering
- Moving towards an integrated module
 - Flex circuits and powering attached within sensor area
 - Sensor provides mechanical support and thermal management

Thermo-Mechanical Module with Prototype DCDC converter

Prototype DC-DC Converters

ABC130 Prototype Converter

- Wrap-around shield added to encompass noisy circuitry
- Efficiency comes in at 77% at 3A

Converter at 4MHz

•Switching frequency of Buck regulator increased from 2MHz to 4MHz

- Should allow smaller sized components to be used, making integration/packaging easier
- •Inductor now ~110nH (was originally ~220nH) and DC resistance now ~14m Ω (was ~26m Ω)
- •Tests done with converter on sensor, largest sized component is 0805
 - •Input noise is more or less identical to previous measurements using ~200nH coil at 2MHz
 - Efficiency is coming in at ~77% at 2A (predicted ABC130 module current consumption)
 - •Was originally 70-72% operating at 2MHz

Sensor Bias (HV) Multiplexing

- Propose use of rad-hard HV switches
 - To be able to disconnect any failed sensors from common bias line
- Present phase: Device Identification
 - Study of commercial HV transistors: GaN, Silicon, Silicon Carbide
 - before and after irradiation
 - Devices with BV < 500V would need to be "stacked"

Crystalonic 2N6449

Transistor	Туре	Other data	Status		
Crystalonic 2N6449	Si JFET	BV = 300V, Idmax = 5 mA , Idss = 1 nA, die 0.8 x 0.8 mm ²	TESTED		
Interfet 2N6449	Si JFET	Similar to Crystalonic	IRRADIATED		
IXYS CPC5603	Si MOSFET	BV = 410V, Idmax = 0.3 A, Idss = 0.02μA, packaged	IRRADIATED		
ROHM R6006ANX	Si MOSFET	BV = 600V, Idmax = 6A, Idss <1nA@500V, packaged	TESTED		
Infineon IPA50R950CE	Si MOSFET	BV = 500V, Idmax = 4 A, Idss <1nA, packaged	TESTED		
Semisouth SJEP170	SiC JFET	BV = 1700V, Idmax = 8 A, Idss = 10 μA	TESTED	GOOD but unavaila	able
USCi UJN1205	SiC JFET	BV = 1200V, Idmax = 23 A, Idss = 250 μA, die 3.1 x 3.1 mm ²	TESTED		
CREE CPMF-1200	SIC MOSFET	BV = 1200V, Idmax = 28 A, Idss = 50 μA, die 3.1 x 3.1 mm²	IRRADIATED	PROMISING	
ROHM S2403	SIC MOSFET	BV = 1700V, die 4 x 3mm²	IRRADIATED		
ROHM SCT2080K	SIC MOSFET	BV = 1200V, die 2 x 2 mm²	IRRADIATED		
GeneSiC GA04JT17	SiC BJT	BV = 1700V, Idmax = 4 A, Idss = 0.5 μA, die 1.45 x1.45 mm ²	TESTED		
TranSiC FSICBH057A120	SiC BJT	BV = 1200V, Idmax = 20 A, Idss = 100 μA, die 2.5 x 2.5 mm ²	TESTED		
Transphorm TPH2006C	GaN JFET	BV = 600V, die and packaged			
EPC2012	GaN JFET	BV = 200V, die and packaged	TESTED	GOOD	

On-Hybrid Sensor Current Measurement

- Signal Return on Hybrid
 - Strip Bias AC coupled at every corner
- DC return
 - One corner has diode/op-amp combination
 - Normal DC path through opamp (later HCC or other ASIC)
 - Backup DC path through diode (accommodates amplifier offset)
- Proof of Principle test using commercial parts
 - OPA365, 1N4148
- No additional noise for test module using DC-DC converter

Status of Petal & Stave Prototypes

With 250nm Chipset

Stave 250 DC-DC

- 12 module stave side
 - Fully loaded and working
- "Tandem" DC-DC converter
 - Design by CERN group
 - Two converters in one PCB
 - Necessary due to current demand of 250nm chipset
 - LTC3605 chip
- "one wire" control
 - DS2413 chip
- Power bus split into 4 segments
 - Each drives 4 modules

Tandem DC-DC on Stave 250

Stave 250 DC-DC ENC Results

- Input Noise
 - Inner Columns 600 646 ENC, Outer Columns in range 610 677 ENC
- Double Trigger Noise Occupancy (not shown)
 - clean at 0.75fC Low occupancy at 0.50fC due to bad channels

Stave 250 SPP

- Uses the Serial Power & Protection (SPP) ASIC
 - shunt regulation
 - bypass (under DCS control)
 - over voltage protection
- Still work in progress
 - Presently 4 (of 12) modules on the stave
 - Testing and optimisation continue

SPP chip

Stave 250 SPP ENC Results

- Basics working, but latest ENC result is slightly higher than for Stave 250 DC-DC
 - Optimisation continues

First Petalet Results

- Additional Shielding around and under converter found necessary for best noise performance.
- Reasons to be confirmed. Possibilities include:
 - STV10 uses non-blind vias: signals may couple into CF skin and hence sensor backplane (no shield under sensor as for DC-DC staves)
 - HV bonds in close proximity to gap between shield and PCB
- Investigations continue
- Meanwhile noise approaching expectation
 - Characteristic shape related to integrated fanins on the sensors

Summary

130nm chipset

- HCC submission expected May
- Good results from ABC130
 - Results from half module in near future
- Smaller DC-DC converter made and under test
 - Works well but height will be a critical parameter
- Programme in place to identify radiation hard HV switch transistors
 - Awaiting full results from most recent irradiations

250nm chipset

- 12 module DC-DC powered stave
 - good noise performance throughout
- 12 module serially powered stave
 - Under construction, basics working for 4 modules
- First "Petalets" assembled and under test
 - Require additional shielding of DC-DC due to layout differences