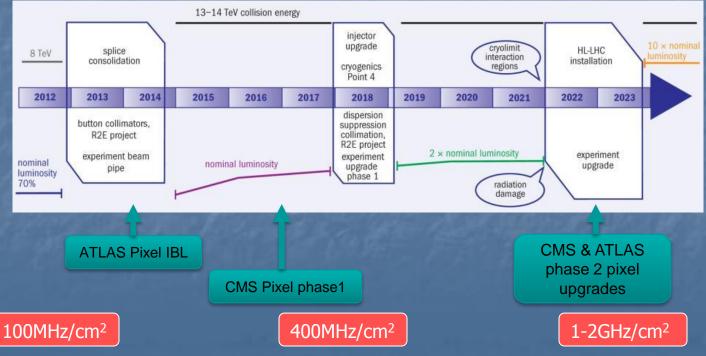
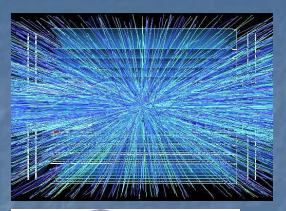

ATLAS–CMS-LCD **RD53** collaboration:

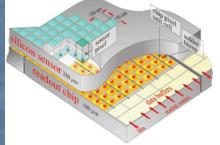

Pixel readout integrated circuits for extreme rate and radiation

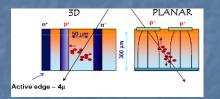
Jorgen Christiansen on behalf of RD53

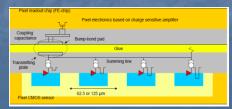
LHC Pixel upgrades

- Current LHC pixel detectors have clearly demonstrated the feasibility and power of pixel detectors for tracking in high rate environments
- Phase0/1 upgrades: Additional pixel layer, ~4 x hit rates
 - ATLAS: Addition of Inner B Layer (IBL) with new 130nm pixel ASIC (FEI4)
 - CMS: New pixel detector with modified 250nm pixel ASIC (PSI46DIG)
- Phase2 upgrades: ~16 x hit rates, ~4 x better resolution, 10 x trigger rates, 16 x radiation tolerance, Increased forward coverage, less material, , ,
 - Installation: ~ 2022
 - Relies fully on significantly improved performance from next generation pixel chips.


Phase 2 pixel challenges


ATLAS and CMS phase 2 pixel upgrades very challenging


- Very high particle rates: 500MHz/cm²
 - Hit rates: 1-2 GHz/cm² (factor \sim 16 higher than current pixel detectors)
- Smaller pixels: ~¼ (~50x50um² or 25x100um²)
 - Increased resolution
 - Improved two track separation (jets)
 - Outer layers can be larger pixels, using same pixel chip
- Participation in first/second level trigger ? (no)
 - A. 40MHz extracted clusters (outer layers) ?
 - B. Region of interest readout for second level trigger ?
- Increased readout rates: 100kHz -> ~1MHz
 - Data rate: 10x trigger X >10x hit rate = >100x !
- Low mass -> Low power


Very similar requirements (and uncertainties) for ATLAS & CMS

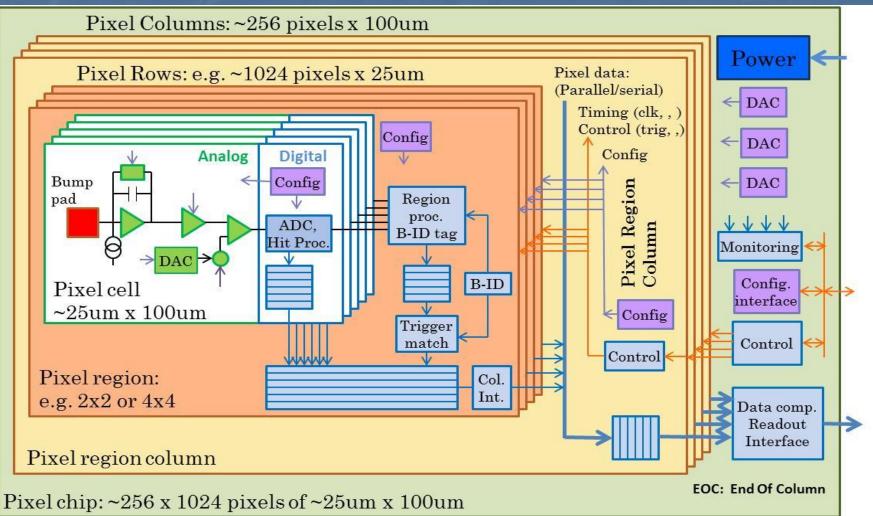
- Unprecedented hostile radiation: ~1Grad, ~10¹⁶ Neu/cm²
 - Hybrid pixel detector with separate readout chip and sensor.
 Monolithic seems unfeasible for this very high rate hostile radiation environment
 - Phase2 pixel will get in 1 year what we now get in 10 years (10.000 x more radiation than space/mil !)
- Pixel sensor(s) not yet determined
 - Planar, 3D, Diamond, HV CMOS, ,,
 - Possibility of using different sensors in different layers
 - Final sensor decision may come relatively late.
- Complex, high rate and radiation hard pixel chips required

ATLAS HVCMOS program

Pixel chip

Pixel readout chips critical to be ready for phase 2 upgrades

- Technology: Radiation qualification
- Building blocks: Design, prototyping and test
- Architecture definition/optimization/verification
- Chip prototyping, iterations, test, qualification and production
- System integration
 - System integration tests and test-beams
- Production and final system integration, test and commissioning


Phase 2 pixel chip very challenging

- Radiation
- Reliability: Several storage nodes will have SEUs every second per chip.
- High rates
- Mixed signal with very tight integration of analog and digital
- Complex: ~256k channel DAQ system on a single chip
- Large chip: >2cm x 2cm, $\frac{1}{2}$ 1 Billion transistors.
- Very low power: Low power design and on chip power conversion
- ATLAS and CMS have evolved to similar pixel chip architectures and plans to use same technology (65nm) for its implementation.
- Experienced chip designers for complex mixed signal ICs in modern technologies that must work in a extremely harsh radiation environment is a scarce and distributed "resource" in HEP.

Pixel chip generations

Generation	Current FEI3, PSI46	Phase 1 FEI4, PSI46DIG	Phase 2: HL-LHC
Pixel size	100x150um ² (CMS) 50x400um ² (ATLAS)	100x150um ² (CMS) 50x250um ² (ATLAS)	~ 50x50um ²
Sensor	2D, ~300um	2D+3D (ATLAS) 2D (CMS)	2D, 3D, Diamond, HVCMOS ?
Chip size	7.5x10.5mm ² (ATLAS) 8x10mm ² (CMS)	20x20mm ² (ATLAS) 8x10mm ² (CMS)	> 20 x 20 mm ²
Transistors	1.3M (CMS) 3.5M (ATLAS)	87M (ATLAS)	~1G
Hit rate	100MHz/cm ²	400MHz/cm ²	1-2 GHz/cm ²
Trigger rate	100kHz	100KHz	200kHz - 1MHz
Trigger latency	2.5us (ATLAS) 3.2us (CMS)	2.5us (ATLAS) 3.2us (CMS)	6 - 20us
Hit memory per chip	0.1Mb	1Mb	~16Mb (160x)
Readout rate	40Mb/s	320Mb/s	1-4Gb/s (100x)
Radiation	100Mrad	200Mrad	1Grad
Technology	250nm	130nm (ATLAS) 250 nm (CMS)	65nm
Architecture	Digital (ATLAS) Analog (CMS)	Digital (ATLAS) Analog (CMS)	Digital
Buffer location	EOC	Pixel (ATLAS) EOC (CMS)	In Pixel buffering
Power	~1/4 W/cm ²	~1/4 W/cm ²	1/2 - 1 W/cm ²

3rd generation pixel architecture

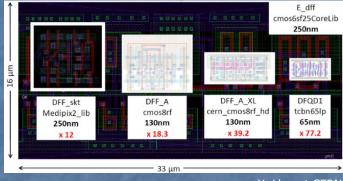
- 95% digital (as FEI4)
- Charge digitization (TOT or ADC)
- ~256k pixel channels per chip

- Pixel regions with buffering
- Data compression in End Of Column
- Chip size: >20 x 20 mm²

Technology: Why 65

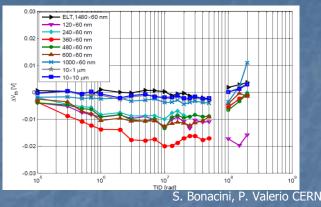
Mature technology:

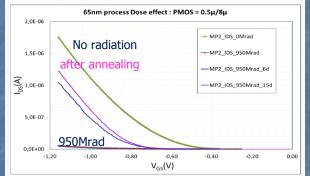
Available since ~2007

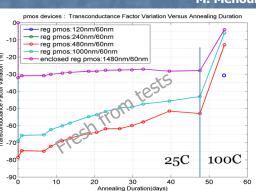

High density and low power

- High density vital for smaller pixels and ~100x increased buffering during trigger latency
- Low power tech critical to maintain acceptable power for higher pixel density and much higher data rates
- Long term availability
 - Strong technology node used extensively for industrial/automotive
- Access: CERN frame-contract with TSMC and IMEC
 - Design tool set, Shared MPW runs, Libraries, Design exchange within HEP community
- Affordable (MPW from foundry and Europractice, ~1M NRE for final chips)
- Significantly increased density, speed, , , and complexity compared to 130nm !

Introducing 14XM (eXtreme Mobility)


X. Llopart CERN


7


65nm Technology

Radiation hardness

- Uses thin gate oxide
 - Radiation induced trapped charges removed by tunneling
 - More modern technologies use thick High K gate "oxide" with reduced tunneling/leakage ?.
- Verified for up to 200Mrad
- To be confirmed for 1Grad
 - PMOS transistor drive degradation, V_t shift, Annealing ?
- CMOS normally not affect by NIEL
 - To be confirmed for 10¹⁶ Neu/cm²
 - Certain circuits using "parasitic" bipolars to be redesigned ?
- SEU tolerance to be built in (as in 130 and 250nm)
 - SEU cross-section reduced with size of storage element, but we will put a lot more per chip
- All circuits must be designed for radiation environment (e.g. Modified SRAM)
- Annealing scenario critical
 - Detectors will run cold (~-20°C)
 - Yearly annealing periods ? (room temp or higher ?)
- If unacceptable degradation then other technologies (alternative foundries, 40nm, etc.) must be evaluated and/or a replacement strategy must be applied for inner pixel layers.

ATLAS – CMS RD collaboration

- Similar/identical requirements, same technology choice and limited availability of rad hard IC design experts in HEP makes this ideal for a close CMS – ATLAS RD collaboration
 - Even if we do not make a final common pixel chip

Forming a RD collaboration has attracted additional groups and collaborators

- Synergy with CLIC pixel (and others): Technology, Rad tol, Tools, etc.
- RD53 collaboration recommended by LHCC June 2013
 - Institutes: 17 (+ 3 new applicants)
 - ATLAS: CERN, Bonn, CPPM, LBNL, LPNHE Paris, NIKHEF, New Mexico, RAL, UC Santa Cruz.
 - CMS: Bari, Bergamo-Pavia, CERN, Fermilab, Padova, Perugia, Pisa, PSI, RAL, Torino.
 - Collaborators: ~100, ~50% chip designers
 - Collaboration organized by Institute Board (IB) with technical work done in specialized Working Groups (WG)
 - Initial work program covers ~3 years to make foundation for final pixel chips
 - Co-spokes persons: ATLAS: M. Garcia-Sciveres, LBNL. CMS: J. Christiansen, CERN

RD53 web (new): <u>www.cern.ch/RD53/</u>

Working groups

WG Domain

WG1 Radiation test/qualification: M. Barbero, CPPM

Coordinate test and qualification of 65nm for 1Grad TID and 10¹⁶ neu/cm² Radiation tests and reports.

Transistor simulation models after radiation degradation Expertise on radiation effects in 65nm

WG2 Top level: (M. Garcia-sciveres, LBNL)

Design Methodology/tools for large complex pixel chip Integration of analog in large digital design Design and verification methodology for very large chips. Design methodology for low power design/synthesis. Clock distribution and optimization.

WG3 Simulation/verification framework: T. Hemperek, Bonn

System Verilog simulation and Verification framework Optimization of global architecture/pixel regions/pixel cells

WG4 I/O : To be started

Development of rad hard IO cells (and standard cells if required) Standardized interfaces: Control, Readout, etc.

WG5 Analog design / analog front-end: V. Re, Bergamo/Pavia

Define detailed requirements to analog front-end and digitization Evaluate different analog design approaches for very high radiation environment. Develop analog front-ends

WG6 IP blocks: (J. Christiansen, CERN)

Definition of required building blocks: RAM, PLL, references , ADC, DAC, power conversion, LDO, , Distribute design work among institutes Implementation, test, verification, documentation

Status and plans

General

- MOU in the pipeline
- Some institutes have obtained funding thanks to RD53 (justified by the fact that it is for ATLAS & CMS)
- WGs have regular meetings
- Next collaboration workshop: April 10-11 at CERN
- Define schedule for shared IC runs, Full pixel chip demonstrator: 2016
- Radiation: Urgent
 - Verify that 65nm is OK, Evaluate alternatives (2014)
 - Radiation test campaigns have started
 - Simulation models after radiation (2015)
- Analog
 - Defining requirements
 - Defined alternative schemes to be evaluated: TOT, ADC, Auto-zero, Sync Async, etc.
 - Design/test different implementations and choose (2015)
- IPs: ~30 IP block
 - Defined who makes what.
 - Define detailed specs, how to make/deliver IPs, start design (2014)
 - IP library with layouts, simulation models, documentation, , , , (end 2015)

Simulation:

- Defining simulation tool (SV + UVM), bench mark, Framework definition
- Simulate different architectures and optimize
- SEU immunity verification
- Top: How to put such a chip together
 - Global aspects: Metal stack, Mixed signal, Power dist, Global integration, Bump-bonding pattern, ,
- IO: To be started

RD53 Summary

Highly focused ATLAS-CMS-LCD/CLIC RD collaboration to develop/qualify technology, tools, architecture and building blocks required to build next generation pixel chips for very high rates and radiation Synergy with other pixel projects when possible Centered on technical working groups Baseline technology: 65nm CERN frame contract/NDA/design kit . Will evaluate alternatives ("emergency" plan) 17 Institutes, 100 Collaborators Initial work program of 3 years Goal: Full pixel chip prototype 2016 Working groups have gotten a good start. Common or differentiated final chips to be defined at end of 3 year R&D period

Backup slides

RD53 Outlook

2014:

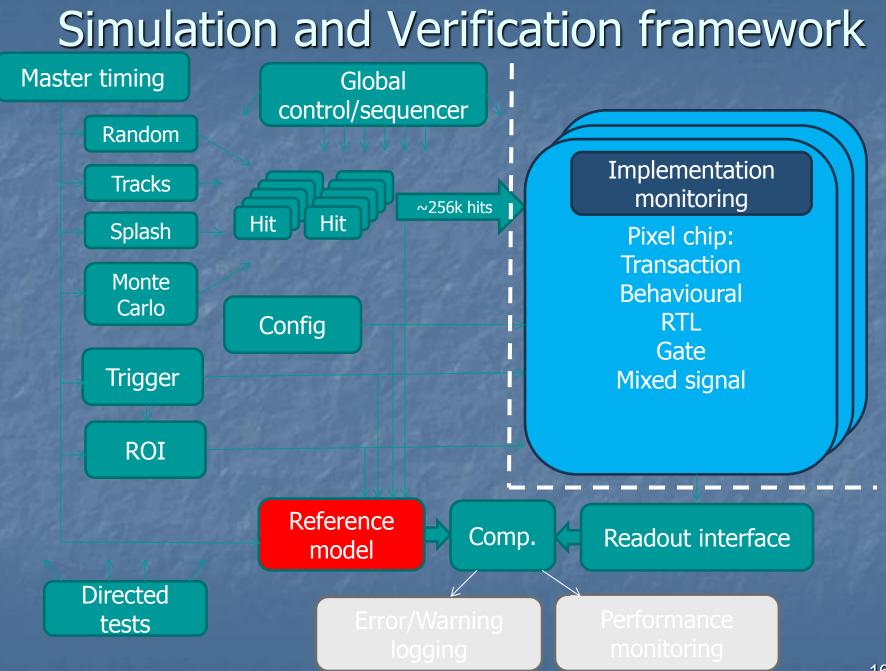
- Release of CERN 65nm design kit: Very soon !
- Detailed understanding of radiation effects in 65nm
 - Radiation test of few alternative technologies.
 - Spice models of transistors after radiation/annealing
- IP block responsibilities defined and appearance of first FE and IP designs/prototypes
- Simulation framework with realistic hit generation and auto-verification.
- Alternative architectures defined and efforts to simulate and compare these defined
- Common MPW submission 1: First versions of IP blocks and analog FEs

2015:

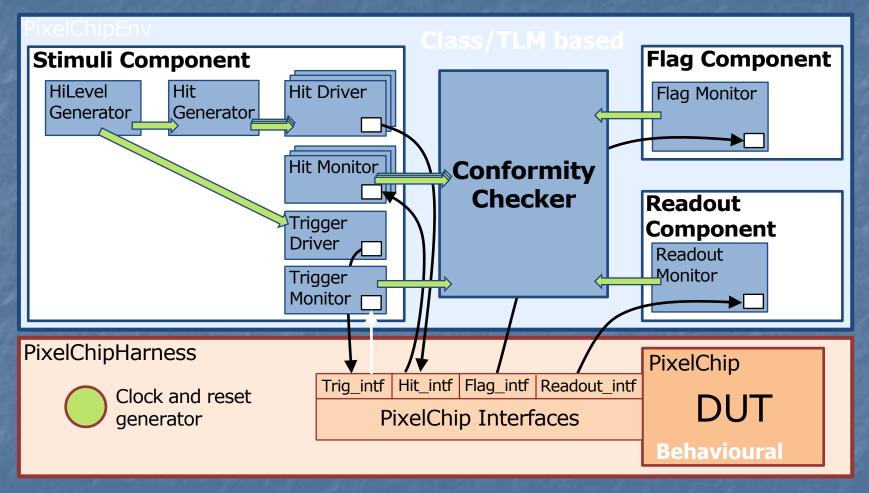
- Common MPW submission 2: Near final versions of IP blocks and FEs.
- Final versions of IP blocks and FEs: Tested prototypes, documentation, simulation, etc.
- IO interface of pixel chip defined in detail
- Global architecture defined and extensively simulated
- Common MPW submission 3: Final IPs and Fes, Small pixel array(s)

2016:

- **Common engineering run**: Full sized pixel array chip.
- Pixel chip tests, radiation tests, beam tests , ,
- 2017:


Separate or common ATLAS – CMS final pixel chip submissions.

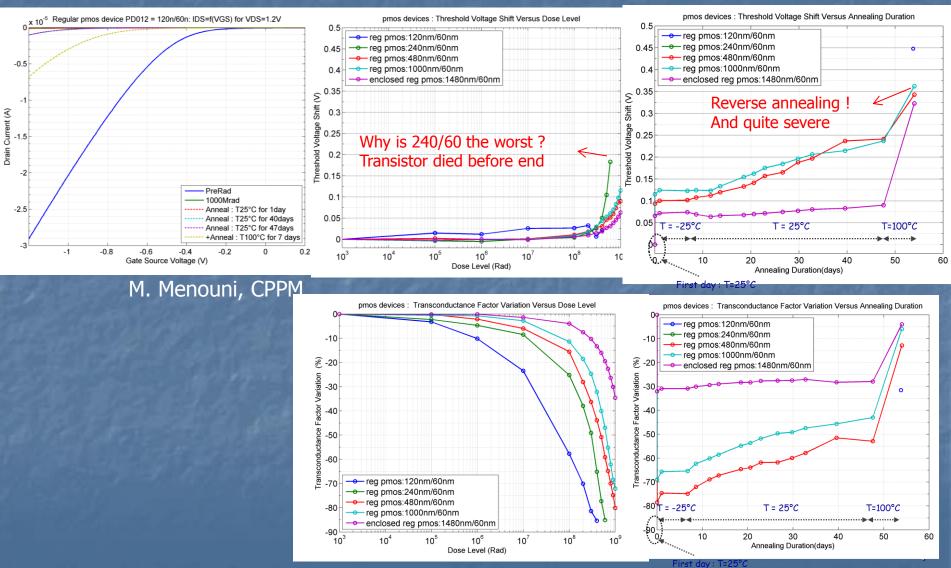
Participation matrix


Institute	WG1 Radiation	WG2 Top level	WG3 Sim./Ver	WG4 I/O	WG5 Analog	WG6 IPs
Bari	С		А			А
Bergamo-Pavia	А			С	А	В
Bonn	С	А	А	В	В	А
CERN	B(*)	(*)	А	C(*)	А	B ^(*)
СРРМ	А	В	С	С	В	А
Fermilab	А	В			А	
LBNL	В	А	В	В	А	А
LPNHE Paris	А	В	А			А
NIKHEF		А	А			А
New Mexico	А					
Padova	А					А
Perugia	В		А			В
Pisa		В	А	А		А
PSI	В	Α		С	А	А
RAL		В	В		А	С
Torino	С	В	С	В	А	А
UCSC	С	В	С			А

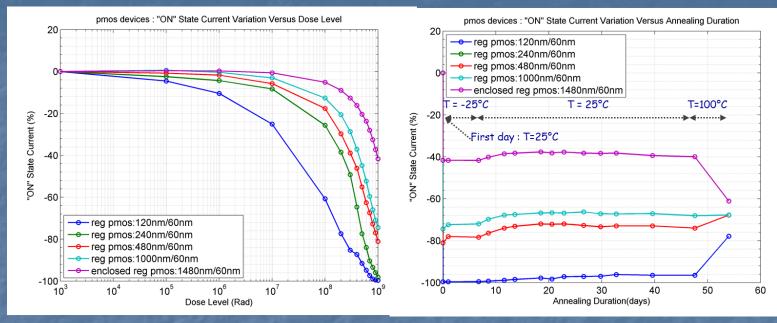
A: Core competency, B: High interest, C: Ability to help

(*): General CERN support for 65nm

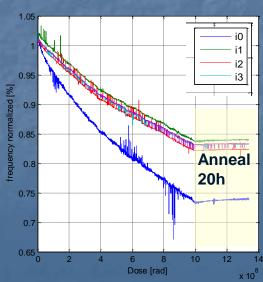
SV+UVM framework



IP blocks


Country	DE	CFRN	FR WddD	NL	i ir	av/ erg	IT -	INFN	Pisa	e E	US TINIT	FR HNAT	UK	SU SU	CZ (e)	Comments				
Group	Ä	۲ ۲	9 8	NIKHFF		Pav/ Berg	(Mila	Padova		Torino	Е	LPN	Ľ.	Santa Cruz	(Pro					
ANALOG: Coordination with analog WG																				
Temperature sensor.			0			(P)				(P)					(P)					
Radiation sensor			(P)			(P)				0?					(P)					
HV leakage current sensor.			0			(,)				(P)					(P)					
Band gap reference		0		(P)		0				(F)			(P)		(F)	3 Groups				
Self-biased Rail to Rail analog buffer	(P)		(P)										0		(P)					
MIXED	(٢)		(P)	(٢)									0		(P)					
8 – 12 bit biasing DAC		(D)			0															
10 - 12 bit slow ADC for monitoring		(P) 0	0		0										(P)	3 Groups				
PLL for clock multiplication	0	(P)	Ŭ	(P)	Ŭ			(P)	(P)	(P)			(P)	(P)						
High speed serializer (~Gbit/s)	0	(P)		(P)				. /	(P)				(P)			Together				
(Voltage controlled Oscillator)				(P)				0	(P)	(P)						Needed ?				
Clock recovery and jiter filter	0	(P)							(P)				(P)							
Programmable delay DIGITAL	0	(P)							(P)				(P)							
SRAM for pixel region	(P)	(P)					0							(P)						
SRAM/FIFO for EOC.		(P)					(P)		(P)					0						
EPROM/EFUSE	(P)	Ó	(P)				()													
DICE storage cell / config reg	(P)		0				(P)		(P)					(P)		Or TMR ?				
LP Clock driver/receiver	(P)	()				0							(P)							
(Dedicated rad hard digital library)	(P)	(P)	(P)						0			(P)	(P)			If needed				
(compact mini digital library for pixels)	(P)	(P)	(P)						0			(P)	(P)			If needed				
IO: Coordination with IO WG																				
Basic IO cells for radiation	(P)	0																		
Low speed SLVS driver (<100MHz)	(P)	(P)				0			(P)	(P)					(P)					
High speed SLVS driver (~1Gbits/s)	(P)	(P)				0			(P)	(P)					(P)	Together				
SLVS receiver	(P)	(P)				0			(P)						(P)					
1Gbits/s drv/rec cable equalizer															()	New				
C4 and wire bond pads	(P)	0																		
(IO pad for TSV)	0		(P)									(P)		(P)						
Analog Rail to Rail output buffer	0		(P)									(P)		(P)						
Analog input pad POWER	0											(P)								
LDO(s)		(P)	(P)	0					(P)	(P)			(P)							
Switched capacitor DC/DC		(P)	(•)	0					(,)		0		(•)		(D)					
Shunt regulator for serial powering		(P)		0							0				(P)					
Power-on reset				0												New				
Power pads with appropriate ESD	(P)	0																		
SOFT IP: Coordination with IO WG		(5)																		
Control and command interface		(P)			(P)				0			(P)								
Readout interface (E-link ?) Summary		(P)			(P)				0			(P)								
ATLAS/CMS/Neutral	•	N		•	C	C	C	<u> </u>	C	<u> </u>	•	•	N	^			~	AC	N	
O's	A	N 7 (A	C 2 :	C 2 5	C	C 1 ·	C L ₄	C 4 1	A 1	A	N		A	ATLAS 1		ሳS 14		eutral
(P)'s		/ (4 10				2 2		2	L 10			7	_	-				24		2
																				18

7 25 **18**



PMOS drive current (Digital)

M. Menouni, CPPM

Acceptable for digital circuits ? (Yes but ---) Analog performance ?

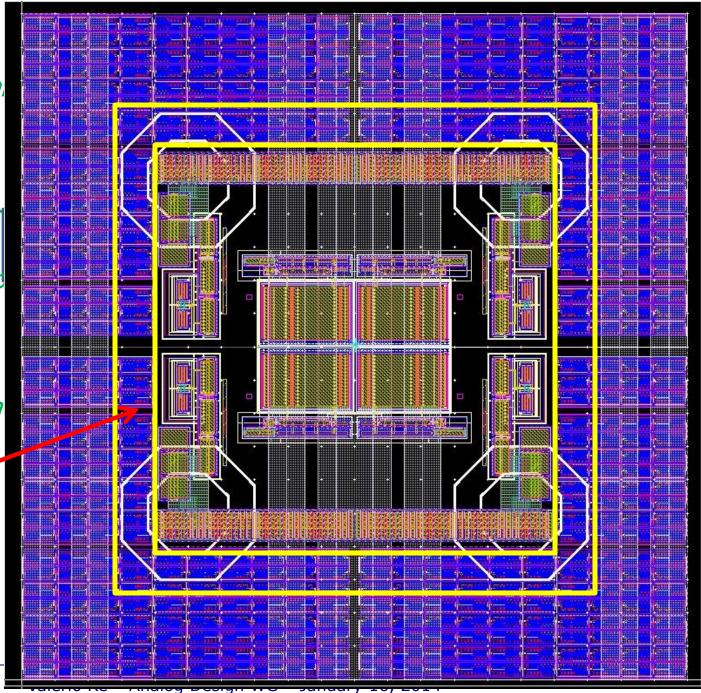
Ring oscillator frequency with different transistor sizes and cold (-25 °C)

S, Bonacini, CERN

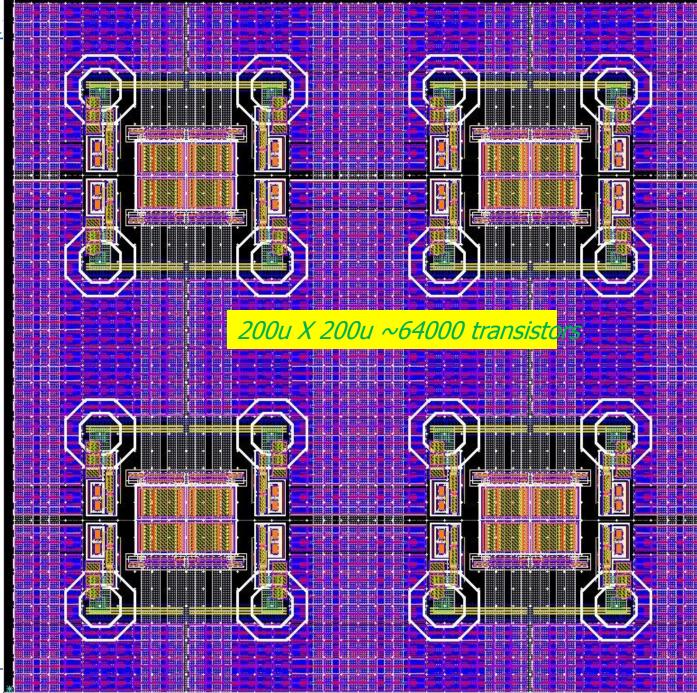
#	Wp	Wn	М
Ring 0	260	195	1
Ring 1	520	390	1
Ring 2	520	390	2
Ring 3	520	390	3

Various interests in analog blocks

INFN (BG/PV, Torino, Padova): continuous-time front-end (PA and shaper), sybchronous comparator, ToT-based ADC, signal injection and calibration


- Bonn (Prague): continuous and switched amplifier, static and dynamic comparator, SAR ADC
- CERN: CLIC-PIX (ToT-based analog channel)
- CPPM: high-resolution ADC (8 bits), adaptation of MAPS front-end
- FNAL: Synchronous front-end, FLASH ADC (130 nm)
- LBNL: ToT-based channel (6-7 bits resolution)

<u>A 2X2 Unit</u>


Is this a digital units
 FEI4 Bump pitch
 ~16000 Transistors

 ~32000 transistor p
 FEI4 equivalentregion (analog hole included)
 "Pixels" communica horizontally and
 vertically Quiet logic Area
 Work in progress

A. Mekkaoui, LBNL

