CMS Tracker Upgrade: Requirements and Layout

Stefano Mersi On behalf of the CMS Collaboration 19 March 2014 RCES 2014

Pixel & strip replacement: aim at LS3

Mersi - ACES 2014 CMS Tracker Upgrade **2** layout and requirements

Survive **JL.dt** = **3000 fb**⁻¹

Higher L1A rate \rightarrow > 500 kHz

Resolve **<µ>=140** → 200

Latency \rightarrow > 10 µs

Ensure experiment lifetime

Improve tracking at high pT

Improve tracking at low pT Reduce secondary interactions

Increase forward acceptance

Improve CMS trigger

New outer tracker & new pixel

Total tracker replace Pixel & strip replacement: aim Survive ∫L.dt = 3000 fb ⁻¹ Higher L1A rate → > 500 kHz	ment Mersi - RCES 2014 A
Resolve <µ>=140 → 200	Higher granularity
Latency → > 10 µs	Larger front-end buffers
Ensure experiment lifetime	Redundancy for Outer Tracker Possible extraction for Pixels
Improve tracking at high pT	Increase granularity
Improve tracking at low pT Reduce secondary interactions	Reduce material
Increase forward acceptance	Mostly through pixel layout
Improve CMS trigger	Provide tracking to Level-1 40 MHz output for L1

The challenge

Mersi - ACES 2014 CMS Tracker Upgrade layout and requirements

Material amount is limiting current tracker's performance: reduce material

LESS power/material

MORE power/material

New technologies

- DC-DC converters
- CO₂ cooling
- Low-power GBT
- Front-ends

Less layers

Higher granularity Bandwidth!

Outer Tracker

Challenging requirements:

- Trigger readout (40 MHz)
- Power (=material!)
- Track finding QL1

pT modules Providing "stubs" for tracking trigger

Mersi - ACES 2014 CMS Tracker Upgrade layout and requirements

6

Module design Concept: integration at the module level

Binary readout: CBC

provides hit-matching (already working prototype)

Mersi -**RCES 2014** CMS Tracker Upgrade layout and requirements

CO_2 cooling

already used in Phase-1 mass-efficient cooling

Hybrid is the key element

nyunu nodule integration

Data link: Low-power GigaBit Transceiver

lpGBT currently under development integrated at module level

DC/DC converter

Functional Prototypes in handl

already used in Phase-1 10 V lines: lower current, lower material

Only two module types

Mersi - ACES 2014 CMS Tracker Upgrade 8 layout and requirements

2 Strip sensors Strips: 5 cm × 90 μm Strips: 5 cm × 90 μm P = 2.7 W ~ 92 cm² active area For r > 40 cm

Pixel + Strip sensors Strips: 2.5 cm × 100 μm **Pixels**: 1.5 mm × 100 μm P = 5.0 W ~ 44 cm² active area For r > 20 cm

Module design Concept: integration at the module level

Mersi – ACES 2014 CMS Tracker Upgrade **11** layout and requirements

- Two sensors per module
 - Mass-effective way of collecting two coordinates
 - Help for pattern recognition (also for HLT)
- Large bandwidth needed => one link per module
 - Contribution to power: moderate
 - System very simple and elegant (... light!)
 - Almost no electrical connectivity in the tracking volume
 - The module is a self-contained system

The chosen implementation brings many **more advantages than drawbacks**

Uniform cut Possible, with tuning

Mersi – ACES 2014 CMS Tracker Upgrade **12** layout and requirements

(@construction) (@front-ends) Need to tune **sensor spacings** and **hit matching windows** are required to maintain uniform p_T cut

2S modules

Mersi - ACES 2014 CMS Tracker Upgrade **13** layout and requirements

- Technology leap
- Key element for 2-sensor design

Flex hybrid:

200um CF base plate

- Technology leap
- Key element for 2-sensor design

Providing tracks for trigger Readout architecture

Mersi – ACES 2014 CMS Tracker Upgrade 15 layout and requirements

Level-1 "stubs" are processed in the back-end

Form Level-1 tracks, pT above ~ 2 GeV, contributing to CMS Level-1 trigger

@ 40 MHz – Bunch crossing
@ ~ 500 kHz – CMS Level-1 trigger

@ 40 MHz – Bunch crossing
@ ~ 500 kHz – CMS Level-1 trigger

Pixel detector

Challenging requirements:

- Radiation hardness
- Readout bandwidth
- Power (=material!)
- Contribution to trigger ?

Mersi – ACES 2014 CMS Tracker Upgrade **18** layout and requirements

Sensors: Φ up to 2×10¹⁶ neq cm⁻² @ r=5 cm

With current CMS pixel @600V CCE = 50% at 10¹⁶ neg cm⁻²

Mersi – ACES 2014 CMS Tracker Upgrade **19** layout and requirements

- Sensors: Φ up to 2×10¹⁶ neq cm⁻² @ r=5 cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - 100 × 25 µm²
 - 50 × 50 µm²

- Mersi ACES 2014 CMS Tracker Upgrade 20 layout and requirements
- Sensors: Φ up to 2×10¹⁶ neq cm⁻² @ r=5 cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - 100 × 25 µm²
 - 50 × 50 µm²
- Front-end: up to 10 MGy
 - ROC Chip 65 nm CMOS
 - One chip, footprint compatible with both pixel geometries

- Sensors: Φ up to 2×10¹⁶ neq cm⁻² @ r=5 cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - 100 × 25 µm²
 - 50 × 50 µm²
- Front-end: up to 10 MGy
 - ROC Chip 65 nm CMOS
 - One chip, footprint compatible with both pixel geometries
 - Same chip compatible also with 100x100 μm^2 pixels
 - Radiation hardness? Other electronics?

ACES

CMS Tracker Upgrade 21

layout and requirements

2014

- Sensors: Φ up to 2×10¹⁶ neq cm⁻² @ r=5 cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - 100 × 25 µm²
 - 50 × 50 µm²
- Front-end: up to 10 MGy
 - ROC Chip 65 nm CMOS
 - One chip, footprint compatible with both pixel geometries
 - Same chip compatible also with 200x200 μm^2 pixels
 - Radiation hardness? Other electronics?

Mersi

RCES 2014

CMS Tracker Upgrade 22

layout and requirements

Pixels: readout bandwidth Huge increase w.r.t. present system

Mersi - ACES 2014 CMS Tracker Upgrade 23 layout and requirements

HL-LHC Present system × 10 Rate → 200 MHz/cm² Rate \rightarrow 2 GHz/cm² L1 rate 500 kHz (1 MHz) x 5~10 – L1 rate 100 kHz x 50~100 Optical on-board readout not possible: – Rad-hardness – Material/space Electrical links to opto links Out of main Phase 1: ~1m x 400 MBps acceptance? Twp link Ooto Module Even more difficult to keep material budget under control

Pixel: power => material

Mersi – ACES 2014 CMS Tracker Upgrade **24** layout and requirements

- Target: O(0.5) W/cm²
- Traditional inductor-based on-board DC/DC not possible:
 - Rad-hardness
 - Material/space
- Possible options:

Serial powering

Layout and expected performance

Tracker Layout

Lower density **25 modules** outside (~8400 modules) **PS modules** middle z info in trigger θ info in trigger (~7100 modules)

More detailed model

Pixel modules inside accurate impact parameter resolution & forward coverage **No detailed model**: using Phase-I detector layout w/ more disks in the forward

Mersi

2014

ACES

- Unambiguous 3D coordinates helps track finding in high pile-up
- Up to **10 points** available for track-trigger up to $\eta=2.5$
 - Comparable to current tracker's coverage, but at L1

- Up to **10 points** available for track-trigger up to η=2.5
 - Comparable to current tracker's coverage, but at L1
- Hit coverage up to **η≈4** at L1A

Upgrade overview

Current

Upgrade

Outer	~200 m ²	Silicon	~220 m ²	Silicon
0	9.3 M	Strips	47.8 M	Strips
	0	MacroPixels	217 M	MacroPixels
	15'148	Modules	15'508	Modules
	100 kHz	readout rate	40 MHz	readout rate*
Pixel	~1 m²	Silicon	4.6 m ²	Silicon
	66 M	Pixels	O(1) G?	Pixels
	1440	Modules	??	??
	100 kHz	readout rate	>500 kHz readout rate	
			¥	

* only high-pt hits read-out

Mersi - ACES 2014 CMS Tracker Upgrade **29**

layout and requirements

Tracker material budget

Mersi - ACES 2014 CMS Tracker Upgrade **30** layout and requirements

CMS Phase-1

CMS Phase-2 estimate, if keeping ~ phase-1 pixels material

Phase-1 Pixel

Tracking resolution pT resolution of single muons

Mersi – ACES 2014 CMS Tracker Upgrade **31** layout and requirements

Clear improvement expected in the whole pT range

Track-trigger resolution Potential pT resolution using all stub info Mersi **RCES 2014** CMS Tracker Upgrade 32 lavout and requirements 10 σ (δ p_T/p_T) [%] 0.3_{I} z₀) [cm] pT potential resolution z0 potential resolution 9 **CMS** Preliminary **CMS Preliminary** [∞]0.25 0.2 6 5 0.15 4 % 1 mm 0 3 0.05 **CMS Preliminary** 0₀ 0.5 0.5 1.5 1.5 2 2.52 2.5 Challenge for L1-track finding: Single $\mu p_T = 2 \text{ GeV/c}$ Single µ p_T=10 GeV/c finding precise tracking information Single µ p_T=100 GeV/c See 14:20 CMS Views for the Off-Detector **Track Trigger Electronics**

Ted Liu

Thank you!

Total tracker replace Pixel & strip replacement: aim of	Mersi - ACES 2014 CMS Tracker Upgrade 34 layout and requirements
Survive JL.dt = 3000 fb-1	Radiation hardness Operating cold (-20°C)
Higher L1A rate → > 500 kHz	Bandwidth!
Resolve <µ>=140 → 200	Higher granularity
Latency → > 10 µs	Larger front-end buffers
Ensure experiment lifetime	Redundancy for Outer Tracker Possible extraction for Pixels
Improve tracking at high pT	Increase granularity
Improve tracking at low pT Reduce secondary interactions	Reduce material
Increase forward acceptance	Mostly through pixel layout
Improve CMS trigger	Provide tracking to Level-1 40 MHz output for L1

sensor spacing must be tuned along with search windows

Mersi – ACES 2014 CMS Tracker Upgrade **37** layout and requirements

Radiation map

Mersi – ACES 2014 CMS Tracker Upgrade **39** layout and requirements

States of States and States

