CMS Tracker Upgrade:
Requirements and Layout

Stefano Mersi
On behalf of the CMS Collaboration
19 March 2014
ACES 2014
<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survive</td>
<td>$\int L , dt = 3000 \text{ fb}^{-1}$</td>
</tr>
<tr>
<td>Higher L1A rate</td>
<td>$> 500 \text{ kHz}$</td>
</tr>
<tr>
<td>Resolve</td>
<td>$<\mu> = 140 \rightarrow 200$</td>
</tr>
<tr>
<td>Latency</td>
<td>$> 10 \mu s$</td>
</tr>
<tr>
<td>Ensure</td>
<td>experiment lifetime</td>
</tr>
<tr>
<td>Improve tracking</td>
<td>at high pT</td>
</tr>
<tr>
<td>Improve tracking</td>
<td>at low pT</td>
</tr>
<tr>
<td>Reduce</td>
<td>secondary interactions</td>
</tr>
<tr>
<td>Increase</td>
<td>forward acceptance</td>
</tr>
<tr>
<td>Improve</td>
<td>CMS trigger</td>
</tr>
</tbody>
</table>

New outer tracker & new pixel
Total tracker replacement

Pixel & strip replacement: aim at LS3

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Upgrade Details</th>
</tr>
</thead>
</table>
| Survive $\int L \, dt = 3000 \text{ fb}^{-1}$ | **Radiation hardness**
| Higher L1A rate $\rightarrow > 500 \text{ kHz}$ | **Operating cold** (-20°C)
| Resolve $<\mu>/140 \rightarrow 200$ | **Bandwidth!**
| Latency $\rightarrow > 10 \mu s$ | **Higher granularity**
| Ensure **experiment lifetime** | **Larger front-end buffers**
| **Improve tracking** at high pT | **Redundancy** for Outer Tracker
| **Improve tracking** at low pT | Possible **extraction** for Pixels
| Reduce secondary interactions | **Increase granularity**
| Increase forward acceptance | **Reduce material**
| Improve CMS trigger | Mostly through **pixel layout**
| | **Provide tracking to Level-1**
| | 40 MHz output for L1
The challenge

Material amount is limiting current tracker's performance: reduce material

LESS power/material

New technologies
- DC-DC converters
- CO₂ cooling
- Low-power GBT
- Front-ends

MORE power/material

Higher granularity
Bandwidth!

Less layers
Outer Tracker

Challenging requirements:
- Trigger readout (40 MHz)
- Power (=material!)
- Track finding @L1
- ...

Need to ship hits off detector

Ship all hits @ 40 MHz? No

- Bandwidth needed: off by 1 order of magnitude (order of 10 Gbps per module)
- Track reconstruction ~ impossible

Solution: ship only high-pT hits (stubs)

- Threshold of ~ 2 GeV
- Data reduction of one order of magnitude or more

Modules with pT discrimination ("pT modules")

Thanks to CMS 3.8 T magnetic field!

EXP. \(p_T \) cut 2.14 GeV/c
FIT \(p_T \) cut 2.17 GeV/c
FIT \(\sigma(p_T \text{ cut}) \) 0.1 GeV/c
Module design
Concept: integration at the module level

Binary readout: CBC
provides hit-matching (already working prototype)

CO₂ cooling
already used in Phase-1
mass-efficient cooling

Data link:
Low-power GigaBit Transceiver
lpGBT currently under development
integrated at module level

DC/DC converter
already used in Phase-1
10 V lines: lower current, lower material

Hybrid is the key element for module integration
Functional prototypes in hand!
Module design
Only two module types

2 Strip sensors
- Strips: 5 cm × 90 μm
- P = 2.7 W
- ~ 92 cm² active area
 For r > 40 cm

Pixel + Strip sensors
- Strips: 2.5 cm × 100 μm
- Pixels: 1.5 mm × 100 μm
- P = 5.0 W
- ~ 44 cm² active area
 For r > 20 cm
Module design
Only two module types

2 Strip sensors
- Strips: 5 cm × 90 μm
- Strips: 5 cm × 90 μm
- $P = 2.7 \text{ W}$
- $\sim 92 \text{ cm}^2$ active area
- For $r > 40 \text{ cm}$

Pixel + Strip sensors
- Strips: 2.5 cm × 100 μm
- Pixels: 1.5 mm × 100 μm
- $P = 5.0 \text{ W}$
- $\sim 44 \text{ cm}^2$ active area
- For $r > 20 \text{ cm}$

See 11:10 CMS Strips Readout
David Mark Raymond
Module design
Only two module types

2 Strip sensors
Strip: 5 cm × 90 μm
Strip: 5 cm × 90 μm
P = 2.7 W
~ 92 cm² active area
For r > 40 cm

Pixel + Strip sensors
Strip: 2.5 cm × 100 μm
Pixel: 1.5 mm × 100 μm
P = 5.0 W
~ 44 cm² active area
For r > 20 cm

Coarse z information

See 11:10 CMS Strips Readout
David Mark Raymond

See 11:30 CMS Pixel-Strip Project
Kostas Kloukinas
Module design
Concept: integration at the module level

• **Two sensors per module**
 - Mass-effective way of collecting two coordinates
 - Help for pattern recognition (also for HLT)

• **Large bandwidth needed** => **one link per module**
 - Contribution to power: moderate
 - System very simple and elegant (… light!)
 - Almost no electrical connectivity in the tracking volume
 - The module is a self-contained system

The chosen implementation brings many more advantages than drawbacks
Uniform cut
Possible, with tuning

Monte-Carlo CMS Preliminary

Barrel muon efficiency

Need to tune sensor spacings and hit matching windows are required to maintain uniform p_T cut
2S modules

Flex hybrid:
- Technology leap
- Key element for 2-sensor design

4.0 mm version
- Silicon sensor
- Bridge
- Flex PCB hybrid
- 500um CF support
- Foam spacer
- 200um CF stiffener

1.8 mm version
- Silicon sensor
- Bridge
- Flex PCB hybrid
- 500um CF support
- CF stiffener

Mersi - ACES 2014
CMS Tracker Upgrade
layout and requirements
PS modules

Flex hybrid:
- Technology leap
- Key element for 2-sensor design
Providing tracks for trigger

Readout architecture

Level-1 “stubs” are processed in the back-end
Form Level-1 tracks, pT above ~ 2 GeV, contributing to CMS Level-1 trigger

@ 40 MHz – Bunch crossing
@ ~ 500 kHz – CMS Level-1 trigger
Providing tracks for trigger
Readout architecture

See 14:20 CMS Views for the Off-Detector Track Trigger Electronics
Ted Liu

Completely new system component
new sub-project

@ 40 MHz – Bunch crossing
@ ~ 500 kHz – CMS Level-1 trigger
Pixel detector

Challenging requirements:
- Radiation hardness
- Readout bandwidth
- Power (=material!)
- Contribution to trigger?
Pixels: radiation hardness

Sensors and front-ends

- Sensors: Φ up to 2×10^{16} neq cm$^{-2}$ @ r=5 cm

With current CMS pixel @600V
CCE = 50% at 10^{16} neq cm$^{-2}$
• Sensors: Φ up to $2 \times 10^{16} \text{ neq cm}^{-2} @ r=5 \text{ cm}$
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 • $100 \times 25 \mu\text{m}^2$
 • $50 \times 50 \mu\text{m}^2$
Pixels: radiation hardness
Sensors and front-ends

- Sensors: Φ up to 2×10^{16} neq cm$^{-2}$ @ $r=5$ cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - 100×25 μm2
 - 50×50 μm2

- Front-end: up to 10 MGy
 - ROC Chip 65 nm CMOS
 - One chip, footprint compatible with both pixel geometries
• Sensors: Φ up to 2×10^{16} neq cm$^{-2}$ @ $r=5$ cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 • 100×25 μm2
 • 50×50 μm2

• Front-end: up to 10 MGy
 - ROC Chip 65 nm CMOS
 • One chip, footprint compatible with both pixel geometries
 • Same chip compatible also with 100x100 μm2 pixels
 - Radiation hardness? Other electronics?
Pixels: radiation hardness

Sensors and front-ends

- **Sensors:** \(\Phi \) up to \(2 \times 10^{16} \) neq cm\(^{-2} \) @ \(r=5 \) cm
 - Thin planar
 - 3D
 - Resolution? Smaller pixels:
 - \(100 \times 25 \) \(\mu \)m\(^2\)
 - \(50 \times 50 \) \(\mu \)m\(^2\)

- **Front-end:** up to 10 MGy
 - ROC Chip 65 nm CMOS
 - One chip, footprint compatible with both pixel geometries
 - Same chip compatible also with 200x200 \(\mu \)m\(^2\) pixels
 - Radiation hardness? Other electronics?

See 11:50 [RD53](#)
Jorgen Christiansen
Pixels: readout bandwidth

Huge increase w.r.t. present system

- **Present system**
 - Rate → 200 MHz/cm²
 - L1 rate 100 kHz

- **HL-LHC**
 - Rate → 2 GHz/cm²
 - L1 rate 500 kHz (1 MHz)

- Optical on-board readout not possible:
 - Rad-hardness
 - Material/space

- **Electrical links to opto links**

Even more difficult to keep material budget under control.

Out of main acceptance?
Pixel: powering

Mantra: power => material

• Target: O(0.5) W/cm²
• Traditional inductor-based on-board DC/DC not possible:
 - Rad-hardness
 - Material/space
• Possible options:

Serial powering

More complex schemes

Switched-capacitor converters

Inductor-based
Layout and expected performance
Tracker Layout

Lower density
2S modules outside
(~8400 modules)

PS modules middle
z info in trigger
θ info in trigger
(~7100 modules)

Pixel modules inside
accurate impact parameter resolution & forward coverage

More detailed model

No detailed model: using Phase-I detector layout w/ more disks in the forward
• **×4 granularity** in strip sensors
• +3 layers of MacroPixel sensors
 – Unambiguous **3D coordinates** helps track finding in high pile-up
• Up to **10 points** available for track-trigger up to η=2.5
 – Comparable to current tracker's coverage, **but at L1**
• **×4 granularity** in strip sensors
• +3 layers of MacroPixel sensors
 – Unambiguous **3D coordinates** helps track finding in high pile-up
• Up to **10 points** available for track-trigger up to $\eta=2.5$
 – Comparable to current tracker's coverage, **but at L1**
• Hit coverage up to $\eta\approx4$ at L1A
Upgrade overview

<table>
<thead>
<tr>
<th>Current</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer</td>
<td></td>
</tr>
<tr>
<td>~200 m² Silicon</td>
<td>~220 m² Silicon</td>
</tr>
<tr>
<td>9.3 M Strips</td>
<td>47.8 M Strips</td>
</tr>
<tr>
<td>0 MacroPixels</td>
<td>217 M MacroPixels</td>
</tr>
<tr>
<td>15'148 Modules</td>
<td>15'508 Modules</td>
</tr>
<tr>
<td>100 kHz readout rate</td>
<td>40 MHz readout rate*</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel</td>
<td></td>
</tr>
<tr>
<td>~1 m² Silicon</td>
<td>4.6 m² Silicon</td>
</tr>
<tr>
<td>66 M Pixels</td>
<td>O(1) G? Pixels</td>
</tr>
<tr>
<td>1440 Modules</td>
<td>?? Modules</td>
</tr>
<tr>
<td>100 kHz readout rate</td>
<td>>500 kHz readout rate</td>
</tr>
</tbody>
</table>

* only high-pt hits read-out
Tracker material budget

Material Budget in radiation length

CMS Preliminary

- CMS Phase-1
- CMS Phase-2

estimate, if keeping
~ phase-1 pixels material

Phase-1 Pixel
Tracking resolution
pT resolution of single muons

<table>
<thead>
<tr>
<th>Current CMS (simulation)</th>
<th>Upgrade (estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single μ resolution</td>
<td></td>
</tr>
<tr>
<td>pT=10 GeV/c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Less material</td>
</tr>
<tr>
<td></td>
<td>CMS Preliminary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current CMS (simulation)</th>
<th>Upgrade (estimate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single μ resolution</td>
<td></td>
</tr>
<tr>
<td>pT=100 GeV/c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower strip pitch</td>
</tr>
<tr>
<td></td>
<td>CMS Preliminary</td>
</tr>
</tbody>
</table>

Clear improvement expected in the whole pT range
Track-trigger resolution
Potential \(p_T \) resolution using all stub info

Challenge for L1-track finding:
finding precise tracking information

See 14:20 CMS Views for the Off-Detector Track Trigger Electronics
Ted Liu
Thank you!
Total tracker replacement

Pixel & strip replacement: aim at LS3

- **Survive** $\int L \, dt = 3000 \text{ fb}^{-1}$
- **Higher L1A rate** $\rightarrow > 500 \text{ kHz}$
- **Resolve** $<\mu> = 140 \rightarrow 200$
- **Latency** $\rightarrow > 10 \mu s$
- **Ensure** experiment lifetime
- **Improve tracking** at high pT
- **Improve tracking** at low pT
 - Reduce secondary interactions
- **Increase forward acceptance**
- **Improve CMS trigger**

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survive</td>
<td>$\int L , dt = 3000 \text{ fb}^{-1}$</td>
</tr>
<tr>
<td>Higher L1A rate</td>
<td>$> 500 \text{ kHz}$</td>
</tr>
<tr>
<td>Resolve</td>
<td>$<\mu> = 140 \rightarrow 200$</td>
</tr>
<tr>
<td>Latency</td>
<td>$> 10 \mu s$</td>
</tr>
<tr>
<td>Ensure</td>
<td>experiment lifetime</td>
</tr>
<tr>
<td>Improve tracking</td>
<td>at high pT</td>
</tr>
<tr>
<td>Improve tracking</td>
<td>at low pT</td>
</tr>
<tr>
<td></td>
<td>Reduce secondary interactions</td>
</tr>
<tr>
<td>Increase forward acceptance</td>
<td></td>
</tr>
<tr>
<td>Improve CMS trigger</td>
<td></td>
</tr>
<tr>
<td>Radiation hardness</td>
<td>Operating cold (-20°C)</td>
</tr>
<tr>
<td>Bandwidth!</td>
<td></td>
</tr>
<tr>
<td>Higher granularity</td>
<td></td>
</tr>
<tr>
<td>Larger front-end buffers</td>
<td></td>
</tr>
<tr>
<td>Redundancy</td>
<td>for Outer Tracker</td>
</tr>
<tr>
<td></td>
<td>Possible extraction for Pixels</td>
</tr>
<tr>
<td>Increase granularity</td>
<td></td>
</tr>
<tr>
<td>Reduce material</td>
<td></td>
</tr>
<tr>
<td>Mostly through pixel layout</td>
<td></td>
</tr>
<tr>
<td>Provide tracking to Level-1</td>
<td>40 MHz output for L1</td>
</tr>
</tbody>
</table>
Module design
Only two module types

Hit correlation in different chips

Cms Binary Chip (CBC)
- strip readout
- + correlation

MacroPixel ASIC (MPA):
- pixel readout
- + correlation

Readout only
- wire bonds
- bump bonds
Working hypothesis:

- Each sector independent
- Overlap regions function of
 - Luminous region Δz
 - Minimum p_T cut
sensor spacing
must be tuned along with search windows

![Graph showing sensor spacing](image-url)
2S modules

Flex hybrid:
- Technology leap
- Key element for 2-sensor design
Radiation map

CMS Preliminary Simulation
2012 FLUKA geometry

CMS protons 7TeV per beam
Dose at 3000.0 [fb⁻¹]

Dose [Gy]

FLUKA nominal geometry 1.0.0.0
Mersi - ACES 2014
CMS Tracker Upgrade
Layout and requirements