ATLAS Level-1 Trigger for HL-LHC, Requirements, Architecture and Issues

- Requirements
- MDT Readout logic
- Rates with/without Track Trigger
- Architecture
 - L0Calo
 - L0 Muon: RPC, TGC, MDT
 - L0CT
 - L1Calo
 - L1Track
 - L1CT
- Latency
- Issues
- Common Features
- Summary

Much of this material is taken from Norman Gee, Stefan Haas, Yasuyuki Horii, Francesca Pastore, Robert Richter, Osamu Sasaki, Andre Schoening, Mark Sutton, Mark Thomson and Riccardo Vari, with thanks.
Physics Requirements

• Design driven by physics goals
• Strong desire to trigger on leptons at electroweak scale
• Aim:
 – maintain current thresholds for single isolated leptons
 – Maintain trigger efficiency for 20 GeV electrons & muons
 – Manage rates to include jet, missing ET, ...
• Need flexibility

EM20 with Phase-I h/w at Phase II
(L ~ 4 x 10^{34} cm^{-2}s^{-1}, 95% efficiency)
Rate → ~ 200 kHz
Hardware Requirements (1)

- These are determined by readout electronics at front end
- Constraints published in ATLAS Phase-II Upgrade LoI:

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Max Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDT</td>
<td>~200 kHz</td>
<td>~20 μs</td>
</tr>
<tr>
<td>LAr</td>
<td>any</td>
<td>Any</td>
</tr>
<tr>
<td>Tile</td>
<td>>300 kHz</td>
<td>Any</td>
</tr>
<tr>
<td>ITK</td>
<td>>200 kHz</td>
<td>< 500 μs</td>
</tr>
</tbody>
</table>

- MDT system is limiting case in rate and latency
Hardware Requirements (2)

• Most can be replaced
 – Readout capability determined primarily by cost
• Exception is Muon MDTs
 – 30% of electronics very hard to change or inaccessible
• Front end of present MDT ("mezzanine card"):

 ![Diagram](image)

 - Hit data comprise leading & trailing edges of pulse
 - Digitised, time stamped...
 - Data-driven pipeline, held for latency of L1A
 - Length of pipeline \rightarrow latency constraint
 - Max. output rate across link \rightarrow trigger rate constraint
 - Exceed these, data lost

 To USA15 via Chamber Service Module
MDT Data Output

• 2 modes of reading out MDT:

• **Edge Mode**
 - Data
 - Status | Tube ID | Not Used | Absolute Time, Leading Edge
 - Status | Tube ID | Not Used | Absolute Time, Trailing Edge
 - Used in LoI calculations

• **Pair Mode**
 - Data
 - Status | Tube ID | Pulse Width | Absolute Time, Leading Edge
 - Not currently used because TDC fails to recognise trailing edge of short (noise) pulses – locks channel
 - ~ once in tens of minutes
 - Proposal to overcome by issuing periodic reset every few seconds

• With no loss of information, pair mode halves occupancy of buffer + readout bandwidth
MDT Constraints

• Average occupancy of L1 buffer

<table>
<thead>
<tr>
<th>Latency / μs</th>
<th>3 μs</th>
<th>20 μs</th>
<th>30 μs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge mode</td>
<td>6%</td>
<td>38%</td>
<td>56%</td>
</tr>
<tr>
<td>Pair mode</td>
<td>3%</td>
<td>19%</td>
<td>28%</td>
</tr>
</tbody>
</table>

• Average Occupancy of readout link
 – (80 Mb/s)

<table>
<thead>
<tr>
<th>L1A Rate</th>
<th>100 kHz</th>
<th>200 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge mode</td>
<td>35%</td>
<td>70%</td>
</tr>
<tr>
<td>Pair mode</td>
<td>24%</td>
<td>49%</td>
</tr>
</tbody>
</table>

• 60–70% is occupancy limit in buffer and readout link
 – Beyond this data get lost at instantaneous peaks

• Trigger requirements summary: **20 GeV isolated leptons, 200 KHz, ~20–25 μs**
 – (cf 20 us LoI)
Rate Estimates

- **Estimate of HL-LHC rates based on phase 1 system**
 - Trigger rate at least 500 kHz

<table>
<thead>
<tr>
<th>Object(s)</th>
<th>Trigger</th>
<th>Estimated Rate No L1Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>EM20</td>
<td>200 kHz</td>
</tr>
<tr>
<td>γ</td>
<td>EM40</td>
<td>20 kHz</td>
</tr>
<tr>
<td>μ</td>
<td>MU20</td>
<td>> 40 kHz</td>
</tr>
<tr>
<td>τ</td>
<td>TAU50</td>
<td>50 kHz</td>
</tr>
<tr>
<td>ee</td>
<td>2EM10</td>
<td>40 kHz</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>2EM10</td>
<td>as above</td>
</tr>
<tr>
<td>$e\mu$</td>
<td>EM10_MU6</td>
<td>30 kHz</td>
</tr>
<tr>
<td>$\mu\mu$</td>
<td>2MU10</td>
<td>4 kHz</td>
</tr>
<tr>
<td>$\tau\tau$</td>
<td>2TAU15I</td>
<td>40 kHz</td>
</tr>
<tr>
<td>Other</td>
<td>JET + MET</td>
<td>~100 kHz</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>~500 kHz</td>
</tr>
</tbody>
</table>
Rate Estimates

- Estimate of HL-LHC rates based on phase 1 system
 - Trigger rate at least 500 kHz without track trigger

<table>
<thead>
<tr>
<th>Object(s)</th>
<th>Trigger</th>
<th>Estimated Rate No L1Track</th>
<th>With L1Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>EM20</td>
<td>200 kHz</td>
<td>40 kHz</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>EM40</td>
<td>20 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>(\mu)</td>
<td>MU20</td>
<td>> 40 kHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>(\tau)</td>
<td>TAU50</td>
<td>50 kHz</td>
<td>20 kHz</td>
</tr>
<tr>
<td>ee</td>
<td>2EM10</td>
<td>40 kHz</td>
<td>< 1 kHz</td>
</tr>
<tr>
<td>(\gamma \gamma)</td>
<td>2EM10</td>
<td>as above</td>
<td>~5 kHz</td>
</tr>
<tr>
<td>e(\mu)</td>
<td>EM10_MU6</td>
<td>30 kHz</td>
<td>< 1 kHz</td>
</tr>
<tr>
<td>(\mu \mu)</td>
<td>2MU10</td>
<td>4 kHz</td>
<td>< 1 kHz</td>
</tr>
<tr>
<td>(\tau \tau)</td>
<td>2TAU15I</td>
<td>40 kHz</td>
<td>2 kHz</td>
</tr>
<tr>
<td>Other</td>
<td>JET + MET</td>
<td>~100 kHz</td>
<td>~100 kHz</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>~500 kHz</td>
<td>~200 kHz</td>
</tr>
</tbody>
</table>

Meets MDT requirement
Track Trigger Options

• **Self-seeded L1Track**
 - Front end initiates own readout
 - **Pros:**
 - Reduces impact on Level 1 architecture
 - **Cons:**
 - Challenging:
 - Data volume
 - connection between stave layers

• **RoI-based**
 - Seeded by RoIs from Muon + Calo triggers
 - **Pros:**
 - Reduces impact on tracker
 - **Cons:**
 - More complicated trigger: L0/L1 split
 - Latency
 - ATLAS Baseline
Phase-II Trigger Architecture

Front End
- Muon
 - MDT
 - Barrel
 - Endcap/N8W

Tracker
- ITK RODs

Calorimeters
- DPS/TBB
- Calo RODs

Level-0
- Muon Trigger Logic
- Barrel Logic
- Endcap Sector Logic

Level-1
- MuCTPi
- Level 0 Topo/CTP
- Level 1 Topo/CTP
- MDT Trigger
- L1Track
- L1Calo

Central Trigger

~6 μs latency (← MDT trigger)
500 KHz rate (← Phase-I L1)

~20–25 μs (← MDT readout)
200 kHz rate (← MDT readout)

20 March 2014
Ian Brawn, ACES 2014
Buffering

- 2 Options for Detector electronics:
 - Single L1A:
 - Synchronous, Fixed latency
 - L0A + L1A:
 - More complex
 - Data sparsified: total buffer ~1/4 single L1 scheme
L0Calo

- Uses hardware installed in Phase-1 (eFEXs, jFEXs, gFEX(?), RODs)
 - Digital input from all calorimeters
 - Current h/w retired

- Minor changes
 - Timing & Control Interface:
 - L0A, L1A
 - Daughter board
 - Firmware
 - FEX algorithms?
 - ROD
 - RoI data to L1Calo (+ L1Muon?)
 - Regional Read-out Request (R3) to L1Track

- R3 path
 - Critical latency path
 - Near real-time
 - asynchronous, low latency within defined envelope
 - Fast, dedicated point—point links

20 March 2014
Ian Brawn, ACES 2014
Muon Triggers

• Currently, many fake triggers in muon system
 - Muon tracks not originating at point of interaction
 - Muons of $P_T <$ threshold
 • \leftarrow Slope of turn-on curve
 • \leftarrow P_T resolution
 • \leftarrow Spatial resolution

• Muon systems
 - TGC (Endcap)
 - RPC (Barrel)
 - MDT (Endcap + Barrel)
 • Not used in L1 before Phase-II Upgrade

Muon acceptance at L1
L0Muon Barrel (RPC)

- New inner layer of RPCs?
 - Improves redundancy
 - coverage 73 → 86%

- Readout electronics upgraded
- Trigger logic
 - On detector:
 - FE board: TOT:
 - Pulse width
 → charge distribution
 → position
 - DCT (Data Collector & Transmitter)
 - Digitise, sync to LHC clock, zero suppress
 - 832 GBT links @ 10 Gb/s to USA15
 - (+ 416 for new inner layer?)
 - Trigger + ROD share link?

- Majority of trigger logic moved off detector – FPGAs
 - Track finding, P_T calculation...

20 March 2014
Ian Brawn, ACES 2014
L0Muon Endcap (TGC)

• Phase I:
 – nSW TGC chambers:
 • vectors eliminate non-PI tracks

• Phase II:
 – Replace inner-layer Big Wheel TGCs with high-resolution chambers developed for nSW?
 • Not feasible for Outer Big Wheel
 – Too many chambers
 – Rely on MDT trigger to increase resolution

• Readout electronics upgraded
• Trigger logic moved off detector
 • On detector: digitise, zero suppress
 • 5000 GBT links @ 6.4 Gb/s to Sector Logic
 – Carry Trigger + RO data
Muon MDT Overview

- Upgrade of readout electronics: add parallel fast readout path

- **Front End**
 - Synchronous, fixed, low latency
 - TDC clock 40 (80) MHz
 - cf 1.28 GHz in slower path
 - 0.5 (0.25) mm precision
 - × 10 better than TGC & RPC
 - Digitise, BCID

- **USA15**
 - Decode, fit tracks, calc. P_T...
 - FPGAs
 - Quality ~ current L2 MuFast algorithm

Tubes → TDC → L1 Buffer → L0 Trigger → Readout

BCID

~ 5000 @ 6.4 Gb/s

20 March 2014

Ian Brawn, ACES 2014
Muon MDT Options

• RoI based
 - RoI from RPC + TGC
 - Minimises bandwidth off detector & data volume to process
 - Latency ~ 4 µs

• Not RoI based
 - Latency ~ 2.4 µs
 - Increased volume of data to transport & process
 - Viable in endcap
 • Toroid field
 - Little deflection for high-P_T muons
 → Narrow search cones

• L0 or L1?
 - LoI (& hence most diagrams) shows as part of L1, but
 - L0 latency of 6 µs allows MDT to be part of L0 trigger
L0 Central Trigger

- Requirements not yet well defined
- Functionality will include
 - Concentrating muon data
 - Topological processing
 - Bottleneck?
 - Flexible, fast combination of objects → triggers
 - Pre-scaling
 - Deadtime
 - Simple – 1 BC? (~1%, Peak rate 20 MHz)
 - Complex (leaky bucket)
 - Detector requirements?
 - Generation of L0A
- FPGA-based implementation

~4 Tb/s

RPC → MuCTPi → Topo → CTP
ttt

TGC
(MDT)

Calo
L1Track Implementation (1)

• Matching tracks with Calo + Muon TOBs
 – 3–10 reduction in rate of TOBs
• Can’t read all data – no. links, detector mass, power
• Self Seeded
 – Filter data on cluster size (momentum)
 • Algorithm implemented on ABCn130 prototype
 – Identify coincident hit pairs (inner/outer stave layers)
 – Output ~ 4 Gb/s stave → USA 15
 – Reconstruct all high-P_T tracks using subset of strip layers

• RoI Driven
 – Baseline
 – RoI from L0Muon + L0Calo
 → Regional Readout Request [R3]
 – Buffer all data on detector (ABCn130)
 – R3 data ~10% data in L1 pipeline
 • 1 GBT per stave/petal
L1Track Implementation (2), RoI-Driven, Cont.

• ID Readout (to trigger)
 – Limited by strip readout
 • Daisy chain
 • Queuing problem
 – Barrel: 95% data within 6 μs
 – Endcap: some areas problematic
 • Spare GBT bandwidth & redundant FE links
 ⇒ 95% data within 5 μs
 – Links shared with L1A data – must prioritise

• Track Finder (USA15)
 – Latency constraint ~ 6 μs
 → highly parallel pattern matching
 – AM ASICs as in FTK?
 • Many more patterns required
 → development needed
 – Other technologies to be explored
L1Calo

• On L0A, Calo RODs send data for RoIs to L1Calo
 - ~ 2Tb/s (4Mbit @ 500 kHz) on ~ 1000 x 10 Gb/s optical links
• Full granularity cal. Data (e.g., x4 L0Calo in layer 2)

• New cluster algorithms reduce rates
 - Sharper turn-on curves
 - More precise spatial location
• π^0 (calorimeter Layer-1 strips)
• Improved jet algorithms? (e.g., iterative within max. latency)
• Output: TOBs ~2 Gb/s (40 kb @ 200 kHz)

• USA 15
 • FPGA based
 - Latency potentially ~ 3 μs

• Send list of rejected L0 RoIs (R3s) to L1track?
• Send RoIs (R3s) to L1Track only after L1Calo?
 - Reduces tracking load
L1 Central Trigger

• Requirements not yet well defined

• Functionality:
 - Match Calo & Muon objects to tracks
 - Topological processing
 - Pre-scaling
 - Deadtime…
 - Generation of L1A

• Share crate with L0CT?
 - Both drive Accepts → distribution

• Use generic hardware with dedicated firmware?
 - High-bandwidth optical links, large FPGAs…
Latency

- Shown is L0/L1 model
- Sparsify L1Track data further to reduce latency?
 - Filter on cluster size as per self-seeded option?
 - L1Calo data?
Open Issues

• R&D
 – Accuracy of TOT for RPCs, various Front End ASICs, AM ASICs for L1Track…

• Big questions
 – Architecture
 • Track Trigger RoI-driven ?
 • L0/L1 split?
 • MDT: L0? L1? RoI driven?
 – Latency & rates at L0 and L1
 – Deadtime
 – Algorithms
 • Feature extraction, zero suppression...

• Items defining schedule
 – Design of Front End ASICs
 – Trigger hardware installed in Phase I

Impact on bandwidth
High Bandwidth Signals

• Motivation: bottlenecks at module & component interfaces

• Optical links ~10 Gb/s (or greater)
 – COTS not a problem
 – Rad hard? Latency?
 • LpGBT required

• High Bandwidth PCB tracks
 – Potentially greater challenge
 – Some systems require more than short, point-point tracks
 – Crosstalk, reflection, attenuation, differential skew…
 – Advanced PCB materials
 – Simulation, manufacturing, testing
 • Issue in Phase I, compounded at Phase II

• Direct optical links to FPGAs?
Common Features

• Movement of trigger logic off detector
 – Relaxes rad-hard requirements
 – Allows FPGA implementation – flexibility
 – Ease of maintenance and operation

• High-bandwidth optical links

• Many of trigger boards will comprise large FPGAs + high-bandwidth optical links
 – Employ common hardware across subsystems?
 • Pro: cost
 • Cons: design compromises, increased complexity, diminished skills base
Summary

• Number of solid proposals of how trigger requirements at HL-LHC can be met

• Track trigger is the key development

• Baseline proposal is L0/L1 architecture
 – L1 RoI driven

• Technology R & D programmes underway

• Key parameters to be fixed