Approximate Content

- o Excuses
- o Executive summary
- o Parameter space
- o Detector Readout
- o Event Building
- o Technology
- o (another) Summary

As always fruitful discussions with Pierre, Beat & Frans

□ See also presentations DAQ@LHC (2013) — sister event to ACES

Poor excuses

Concentrate on the hardware DataFlow

□ Software ...

o Dataflow, Control, Configuration, Monitoring, etc ...

... is a separate >1 hr presentation

Storage and infrastructure

o Have their challenges too: data organisation over the disks, recovery from failures

□ Compute power ... nothing new to say

Executive Summary

□ Run 3 (2020–2022)

- o ATLAS and CMS: No major upgrades in the DAQ systems currently foreseen
 - Beyond the standard 5-year replacement cycle—impact of newer technologies
- o ALICE and LHCb: Major upgrades
 - ALICE: ~2 orders of magnitude higher data rates, raw event size ~23 Mbyte
 - o Continuous un-triggered read-out of the TPC— contributes ~90% of event
 - o ALL interactions recorded (50 kHz)
 - o Storage bandwidth limited to ~20 GByte/s (averaged over fill)
 - o Strategy: Retain ONLY online fully reconstructed events—DISCARD raw data
 - o Evolution of Run 1 strategy where, for the TPC, only clusters were retained
 - o Online computing becomes an ALICE Online & Offline computing centre—O²
 - LHCb: ~40 times higher data rate
 - o No custom-hardware trigger Levels foreseen
 - o Dedicated event building network/infrastructure foreseen at 40 MHz!

Executive Summary ... cont.

□ Run 4 (mid. 2025–2028)

o ALICE and LHCb: No upgrades in the DAQ systems currently foreseen

o ATLAS and CMS

- 200–1000 kHz (Level-1) detector readout rates (cf. today's 100 kHz)
- 10 kHz x ~5 Mbyte/s to storage
- ATLAS: Piece meal event-building??
- CMS: full building event building at Level-1 rate

□ Run 5 etc ...

o Not on anyones radar ... yet

□ Timelines and/or reading list

All experiments actively discussing & planning their upgrades

o Some Upgrades being implemented now

Driving parameters

□ Today (Run 2)

	# of	Level-x		Event	Network	Storage	
	Trigger levels	Rate	(kHz)	Size (MB)	BW (GB/s)	GB/s	kHz
ALICE (Pb-Pb)	2	Lvl-1 HLT	0.5 0.5	30	12.5	15	0.5
ATLAS	2	Lvl-1 HLT	100 1	2	50	1	1
CMS	2	Lvl-1 HLT	100 1	~1	100	1	1
LHCb	3	LvI-0 HLT-1 HLT-2	1000 200 12.5	0.055	55	0.7	12.5

Note

o ALICE event size is after the Level-1 selection, i.e. events with TPC

o Bandwidth includes compression factors

Driving parameters ... cont.

□ Tomorrow (Run 3)

	# of	Level-x		Event	Network	Storage	
	Trigger levels	Rate (kHz)		Size (MB)	BW (GB/s)	GB/s	kHz
ALICE (Pb-Pb)	1	Lvl-1 <mark>O</mark> ²	50	23	230	80	50
ATLAS	2	LvI-1 HLT	100 1	2	50	1	1
CMS	2	LvI-1 HLT	100 1	~1	100	1	1
LHCb	2	LLT HLT	40000– 20000 40	0.100	4000	5	50

Note

- o ALICE: reconstructed event gives a factor five reduction in event size
- o LHCb: Low-Level-Trigger (LLT)
- o ATLAS and CMS: No major upgrades in the DAQ systems currently foreseen

Driving parameters ... cont.

□ Next Week (Run 4)

	# of	Level-x		Event	Network	Storage	
	Trigger levels	Rate (kHz)		Size (MB)	BW (GB/s)	GB/s	kHz
ALICE (Pb-Pb)	1	LvI-1 <mark>O</mark> 2	50	23	230	80	50
ATLAS	3	LvI-1 HLT	> 200 10	~5	1000	50	10
CMS	2	LvI-1 HLT	1000 10	~5	5000	50	10
LHCb	2	LLT HLT	40000– 20000 40	0.100	4000	5	50

Note

o ATLAS: Two stage hardware trigger (Level-0 and Level-1)

- See this presentation in this workshop
- o CMS: Numbers for feasibility studies ... not yet design parameters

ACES: DAQ Plans for Upgrades LHCb Run 1-2

ACES: DAQ Plans for Upgrades Multi-layered data network "Event Building" ALICE Run 3

□ Technology

□ Squeeze even further the use of custom hardware in DAQ systems

- o Reduce to interfacing of front-end links, i.e. GBT, to commodity links
- o Reduce complexity and need for "in house expertise on custom hardware"

Increased deployment of industry standards

- o PC (servers) clusters, PCIe & Multi-Gigabit Ethernet and/or Infiniband networks
 - and / or their replacements
- o C++, TCP/IP, UDP, distributed file systems, Web services etc.

Do the minimum at Level-1

o Maximise Detector ReadOut bandwidth

□ Summary

o Drawing pictures is easy hides the enormous amount of detailed work required

- and then there is the installation/commissioning
- o Apologise again, to colleagues for not covering Control/Configuration/Monitoring
 - Whether it be Dataflow or Control/configuration/Monitoring
- o GBT predominant ...
- o CMS: Distributed File system ... this is cool
 - Coupled with event building at Level-1 rate, de-couples DAQ system from HLT
- o Online computing systems no longer exclusively used for Online
 - LHCb & ATLAS: Using the online farm as Tier–1 during non-beam
 - LHCb: also use Online farm for deferred trigger processing

 Targeting usage of 80% ".. we are not quite yet there for Run2 ... on good track"
- o ALICE going further with with O²
- o Increased use of Commodity hardware
 - Transit as early as possible from custom rad-hard links to commodity network o See PCIe40, Tell40 and FELIX in LHCb, ALICE and ATLAS

Commodity Technology continues to gain grounds ...

... ideas and performance of DAQ systems too!