

ALICE upgrade overview

A. Kluge, March 18, 2014

For the ALICE collaboration

Outline

Upgrade specifications

Upgrade overview

Upgrade architecture

Slides taken from:

H. Äppelshauser, J-P. Cachemiche, A. Kluge, G. Martinez,

P. Moreira, L. Musa, W. Riegler, W. Trzaska

ALICE & run 1/2

Upgrade strategy

- High precision measurements of rare probes at low p_t
- Cannot be selected with a trigger
- Require a large sample of events recorded
- Target
 - Pb-Pb $\rightarrow \geq 10 \text{ nb}^{-1} \rightarrow 8 \times 10^{10} \text{ events}$
 - pp (@5.5 TeV) \rightarrow ≥ 6 pb⁻¹ \rightarrow 1.4 x 10¹¹ events
- Gain factor 100 in statistics

Upgrade strategy

Upgrade ALICE read-out and online systems

Upgrade in LS2 2018/19

- Read-out all Pb-Pb interactions at
 - 50 kHz (L = 6×10^{27} cm⁻¹s⁻¹) with min bias trigger
- Online data reduction ← no filtering
 - Reconstruction of clusters and tracks

- Improve vertexing and tracking at low p_t
 - New inner tracking system

LoI & TDR

Inner tracking system

New ITS Layout

PIXEL Chip - technology

Monolithic PIXEL chip using Tower/Jazz 0.18 µm technology

- feature size 180 nm
- gate oxide < 4nm
- metal layers 6
- high resistivity epi-layer
 - thickness 18-40 μm
 - resistivity 1-6 k $\Omega \times cm$
- "special" deep p-well layer to shield PMOS transistors (allows in-pixel truly CMOS circuitry)
- Several prototype architectures
 - ALPIDE self-triggered or global shutter
 - MISTRAL/ASTRAL rolling shutter

Schematic cross-section of CMOS pixel sensor (ALICE ITS Upgrade TDR)

Power density < 50 mW/cm²

New ITS – pixel prototype chips & experimental results

pALPIDE: sizeable prototype of final chip (digital output)

Explorer: prototype chip with analogue output

Measurements at DESY test beam (4.4 Gev electron beam) – Sep 2013

Explorer chip, performance of pixel chip from analogue output, pixel size: 20 x 20 μm²

pALPIDE chip, performance of pixel chip from digital output, pixel size: 22 x 22 μ m²

Threshold / Noise: 20

Detection efficiency: 99.7%

Fake hit rate < 10⁻⁸

Spatial resolution ~ 5μm

Readout – general scheme and data throughput

TPC

TPC upgrade

TPC-present limitation & upgrade

- drift time (electrons) = 100 μs
- after gating grid closed until 280 μs
 - to prevent back drifting ions into drift region
 - and space charge distortion
- → total time 280 µs → 3.5 kHz read-out rate

- avg. interaction rate 50 kHz → 20 µs
- drift time = 100 µs →
- pile-up → continuous trigger-less read-out

multiple GEM principle

- Fast electron signal (polarity!)
- no "ion tail"
- No "coupling to other electrodes"
- → Gas gain about a factor 3 lower than in MWPC

GEMs are made of a copper-kapton-copper sandwich, with holes etched into it

Electron microscope photograph of a GEM foil

4 GEM simulation

TPC front-end card

- ~ 500.000 channels @ 50 kHz read-out rate
- 3400 front-end cards & ~ 17.000 SAMPA ASICs

Muon Forward Tracker - MFT

MFT and Muon-Spectrometer

Silicon pixel tracker in acceptance of Muon Spectrometer

between Interaction Point and Hadron Absorber

MFT concept

Extrapolating back to the vertex region degrades the information on the kinematics

MFT concept

24

Muon tracks are extrapolated and "matched" to the MFT clusters before

High pointing accuracy gained by the muon tracks after matching with the MFT clusters

Maon Speetrometer

A. Kluge

MFT layout

- Based on MAPS: common development with ITS
- Read-out based on GBT links

Muon chambers - MCH

Muon chamber

- ~1.000.000 MWPC
- upgrade to continuous read-out @ 100 kHz hit rate
- Replacement of the front-end by ~ 33.000
 SAMPA ASIC
- Replacement of active patch panels (first level of data concentration)
 - based on GBTs or electrical e-links
- Replacement of data concentrator by CRUs

muon chamber

Fast interaction trigger

Fast interaction trigger - FIT

Fast interaction trigger - FIT

Photonis PLANACON® XP85012 or XP85112

Read-out & Trigger Upgrade architecture

Specifications

- Interaction rate Pb-Pb:
 - from 8 kHz \rightarrow 50 kHz
- Trigger rate Pb-Pb:
 - from $\sim 3.5 \text{ kHz} \rightarrow 50 \text{ kHz}$
- All interactions are read AND recorded
- Interaction and trigger rate pp:
 - \rightarrow 200 kHz
- Data rate driven by Pb-Pb
- TPC is read continuous & trigger less

Run1 and Run2 architecture

Common read-out unit - CRU & long trigger latency

Common read-out unit - CRU & & short trigger latency

Upgrade architecture: det. spec. readout

Upgrade architecture: full read-out system

Upgrade architecture: system components

- DDL
 - common
- Off-detector read-out
 - common readout unit or custom
- Front-end links
 - versatile link (GBT) or custom
- CTP & LTU & TTS
 - fast serial trigger link (FTL)& TTC
- On-detector electronics
 - SAMPA & custom

Common components

Common Readout Unit – CRU & Detector Data Link - DDL

Read-out architecture

- Standard interface to DAQ/DCS
 - Detector Data Links DDL 1, 2 already developed
 - 2.125 and 4.25/5.3125 Gb/s
 - DDL3 based on commercial standard
 - 10 Gb/s GbE or PCle over cable or PCle plug-in cards

• Standard interface to Trigger

CTP LTU

trigger link

On detector elec.

CRU

DDL

O²

MA

O²

MA

O³

O⁴

AMC40

AMC40 (LHCb)

- 4 x AMC40 →
- 1 x motherboard → 14 motherboards →
 1 ATCA crate
- Trigger and timing distribution is via back plane

Common components

Front-end (FE) links & Trigger and Timing Distribution System (TTS) Links

Common components

Front-end (FE) links &

Trigger and Timing Distribution System (TTS) Links

GBT & Versatile link

GBTx

GBT-SCA: slow control adapter

Versatile link components: VTTx & VT

Singlemode EEL/InGaAs Multimode VCSEL/GaAs

On-Detector

Radiation zone

Off-Detector

Radiation-free zone

Multimode VCSEL

Versatile link components: VTTx & VTRx

CRU & GBT

Links

Detector	DDL1	$\mathrm{DDL2}$	DDL3	CRU-FE-links	TTS-FE links
	$2.125~\mathrm{Gb/s}$	4.25-5.3125 Gb/s	$10\mathrm{Gb/s}$	$3.2~\mathrm{Gb/s}$	3.2 Gb/s
TPC			1200	6336	1764
MCH			250	500	500
ITS			*60	*184	0
MID			1	16	16
ZDC			1	1	
TOF		72			
FIT		2			
ACO	1				
TRD			36	1044	0
\mathbf{EMC}		20			
PHO		16			
$_{\mathrm{HMP}}$	14				
Total	15	110	1555	8081	2244

Common components

Central Trigger Processor (CTP) & Local Trigger Processor (LTU)

CTP & LTU

CTP & LTU: based on high performance FPGA processor Logic combinations fully programmable

System description: Trigger signals

Level	Trigger	Trigger	Trigger	contributing
	Input	output	decision	detectors
	to CTP	at CTP	at detector *	
	[ns]	[ns]	[ns]	
\overline{LM}	425	525	775	FIT
L0	1200	1300	1500	ACO, EMC, PHO, TOF, ZDC
L1	[#] 6100	$^{\#}6200$	[#] 6400	EMC, ZDC

- LM .. pretrigger wake up signal for TRD: by FIT only
- L0 .. main trigger signal: by FIT & additional trigger inputs

L1 .. optional EMC-jet and ZDC contribution: long latency

Common components

Common TPC/MCH readout ASIC

SAMPA

- common read-out ASIC
 - TPC & muon chambers

SAMPA

- SAMPA is evolution from PASA / ALTRO & S-ALTRO
- Analog specifications are almost identical

SAMPA

- TPC & muon chambers (MCH)
 - 32 channel amplifier-shaper-ADC-DSP
 - triggerless/continuous & triggered readout
 - < 600 e @ 25 pF (TPC), < 950 e @ 40 p (MCH)
 - bi-polarity input
 - 10 bit ADC 10/20 Msamples/s
 - on ASIC base-line correction and zero suppression
 - 4 x 320 Mbit/s serial outputs
 - 130 nm TSMC CMOS process

Detector Summary

Sub-detector parameter overview

Det	triggered by	Pb-Pb RO	TTS	CRU used
Det				Offo used
	() = optional	rate [kHz]	FTL/TTC	
TPC	(L0 or L1)	50	FTL	у
MCH	(L0 or L1)	100	FTL	у
ITS	L0	100	FTL	*y
MID	L0 or L1	>100	${\rm FTL}$	у
ZDC	L0	>100	FTL	у
TOF	L0 or L1	>100	FTL	\mathbf{n}
${\bf FIT}$	L0 or L1	100	FTL	\mathbf{n}
ACO	L0 or L1	100	TTC	\mathbf{n}
TRD	LM&(L0 or L1)	39	FTL&TTC	у
EMC	$^{\#}\mathrm{L}0\&\mathrm{L}1$	46	TTC	\mathbf{n}
PHO	$^{\#}\mathrm{L}0\&\mathrm{L}1$	46	TTC	n
HMP	$^{\#}\mathrm{L}0\&\mathrm{L}1$	2.5	TTC	\mathbf{n}

Sub-detector upgrade effort

Det	#	Run1&2	upgrade	FE ASIC	FEC	ROC
	channels	RO rate	RO rate			
		$[\mathrm{kHz}]$	$[\mathrm{kHz}]$			
TPC	5×10^5	3.5	50	17000 SAMPA	3400	CRU
MCH	10^{6}	1	100	33000 SAMPA	500	CRU
ITS	25×10^{9}	0.5	100	25000 ASICs	184	CRU
MID	21×10^{3}	1	100	FEERIC	234	CRU
ZDC	22	8	100		commercial&1 ZRC	CRU
TOF	1.6×10^{5}	40	100			72 DRM
FIT	160 + 64	80	100		upgrade	DRM(TOF)
ACO	120	100	100			
TRD	1.2×10^{6}	1	50			CRU
EMC	18×10^{3}	3.7	46			
PHO	17×10^{3}	3.7	46			
$_{\mathrm{HMP}}$	1.6×10^{5}	2.5	2.5			

Summary

- Rate upgrade: 50 kHz
- New ITS & MFT
- TPC GEMs & continuous, trigger-less read-out
- Muon system electronics upgraded
- Common component approach widened

Backup

Radiation Levels

Radiation levels

Element	r	\mathbf{z}	TID	1 MeV neq	>20 MeV had.
	(cm)	(cm)	(krad)	$({\rm cm}^{-2})$	(kHz/cm^2)
ITS L0	2.2	[-13.5, 13.5]	646	9.2×10^{12}	1600
ITS L1	2.8	[-13.5, 13.5]	387	6.0×10^{12}	1000
ITS L2	3.6	[-13.5, 13.5]	216	3.8×10^{12}	500
ITS L3	20	[-42.1, 42.1]	13	5.2×10^{11}	28
ITS L4	22	[-42.1, 42.1]	9	5.0×10^{11}	24
ITS L5	41	[-73.7, 73.7]	6	4.6×10^{11}	10
ITS L5	43	[-73.7, 73.7]	4	4.6×10^{11}	9
MFT D0	2.5	-50	395	6.7×10^{12}	1100
MFT D1	2.5	-58	392	6.4×10^{12}	1040
MFT D2	3.0	-66	767	5.9×10^{12}	760
MFT D3	3.5	-72	427	4.3×10^{12}	520
MFT D4	3.5	-76	541	4.8×10^{12}	560
FIT1	5	-80	181	3.0×10^{12}	280
FIT2	5	340	103	1.4×10^{12}	200
TPC In	79	[-260, 260]	2.1	3.4×10^{11}	3.4
TPC Out	258	[-260, 260]	0.3	5.2×10^{10}	0.7
TRD	290	[-390, 390]	0.4	4.8×10^{10}	0.54
TOF	370	[-370, 370]	0.13	2.6×10^{10}	0.26
EMCAL	430	[-340, 340]	0.06	1.5×10^{10}	0.02
MCH S1	19	-536	0.42	4.2×10^{11}	3
MCH S2	24	-686	0.19	1.4×10^{11}	1
MCH S3	34	-983	0.14	1.6×10^{11}	0.9
MCH S4	45	-1292	0.18	3.0×10^{11}	1
MCH S5	50	-1422	0.91	2.5×10^{11}	0.7
CTP Rack	600	-1295	4.8×10^{-3}	7.8×10^{9}	0.03

Factor 10 safety on TID & neq:
TID/neq numbers factor 2 higher than ALICE-Run1/2 design rates

Factor 2 safety on >20 MeV hadrons: factor 3 higher than ALICE-Run1/2 design rates

Table 3.1: Total Ionizing Dose (TID) and 1 MeV neq hadron fluence for 10nb^{-1} PbPb + $6\text{pb}^{-1}\text{pp} + 50\text{nb}^{-1}\text{pPb}$ collisions (including a safety factor 10) as well as high energy hadron fluence for 50 kHz PbPb collisions (including a safety factor 2).

Radiation

Radiation

Radiation

Detector Summary

Muon identifier

- 21.000 channels (RPC) Sensor
- sor FE-ASIC FEC

- replacement of front-end electronics to slow down aging speed of RPCs
 - by operation in avalanche mode reducing charge produced in the gas
- Front-end ASIC is replaced by FEERIC ASIC
 - with amplification
- Readout out at 100 kHz @ 0 % busy

Muon identifier

- Replacement of 2 levels of data concentrators by 234 new front-end cards and CRUs
- Small scale system with FEERIC will be tested already in run 2

Muon identifier

TRD

1.151.000 channels

- rate upgrade from 8 kHz to 50 kHz with 23 % busy
- triggered operation (LM & L0)
- FE electronics unchanged, but data load reduced with firmware change
 - pre-processed data (tracklets) are transferred only or
 - partial read-out based on electron region candidates
- Data MUX is CRU

TRD

TOF

~160.000 MRPC pads

- rate upgrade from 10s of kHz to 100 kHz PbPb without dead time
 - max limit by HPTDC in FEC is 265 kHz
 - rate limit comes from VME based read-out and data format
- upgrade firmware for data format and VME protocol
- replace 72 2nd level data concentrator boards (DRM)

TOF

Detector developments: ITS

25 G pixels

- complete new detector
 - ASIC, sensor, read-out, mechanics cooling
- triggered @ L0
- Detector module sends data 1 Gb/s links
 - base-line electrical
 - close to detector link interface needed

Detector developments: FIT

• 160 MCP-PMT +

- 64 Scintillators
- Provides interaction trigger
- timing reference for TOF
- multiplicity measurement
- New detector implementation
 - new front-end
 - RO based on TOF read-out scheme

Detector developments: ZDC

22 channels

- Sensor FEC Data DDL 3
- outside of radiation zone
- use NIM, VME and commercial electronics
- provides timing trigger
- upgrade from 8 kHz to 16 kHz by introduction of multi-event buffers in firmware (run 2)
- to 100 kHz without dead time
 - commercial digitizers with on board FPGAs
 - TDC model firmware upgrade
 - replacement of data concentrator card (ZRC) and
 - use CRU

Detector developments: EMC

~ 18.000 channels

FFC

DDL₂

- provides trigger
 - L0 input: sum
 - L1 input: shower and jet
- has already been upgraded to 46 kHz @ 15 % busy
 - front end (ALTRO) limits to 50 kHz
 - data reduction by on-line data evaluation
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)

Detector developments: PHO

~ 17.000 channels

- provides trigger
 - L0 input: sum
- taking same approach as EMC to 46 kHz @ with busy time
 - front end (ALTRO) limits to 50 kHz
 - data reduction sample number reduction
 - replacement of data concentrators by SRU (Scalable Read-out Unit, RD51)
 - replacement of trigger region units (TRU)

Detector developments: HMP

Sensor FEC Data DDL 2 MUX

- ~160.000 channels MWPC
- RO rate to 2,5 kHz
- No detector/electronics change