

LHCb Upgrade

Electronics Status & Outlook

on behalf of the LHCb collaboration

Ken Wyllie, CERN

Upgrade philosophy Electronics Architecture Review of electronics R&D

Existing readout system

Bunch crossing rate	40 MHz *
L0 trigger rate	1 MHz average
L0 trigger latency	4 μ s fixed (160 BXs)
Event readout time	900 ns
Event rate to DAQ	1 MHz

Upgrade architecture

No 'front-end' trigger, Event rate to DAQ nominally 40 MHz

Can we do it?

..... actually, can we afford it?

10Gbit/s

Trends in high speed optical data transmission

40Gbit/s

..... and strong programme for rad-tolerance and trends in embedded links in FPGAs

Upgrade installation in LS2

1Gbit/s

Data compression on front-end driven by cost:

 no compression
 ~ 80,000 links (4.8 Gb/s)
 20 MCHF

 compression
 ~ 12,500 links (cf 8,000 today)
 3.1 MCHF

NB: Compression (zero-suppression) currently done in off-detector FPGAs:

careful balance of complexity vs robustness needed a few iterations get it right !

=> Aim for flexibility + scale-ability in upgrade

New compact link offers combined Data, TFC, ECS

Need UP bandwidth >> DOWN bandwidth => Combine TFC+ECS; Separate Data

Review of electronics R&D (non-exhaustive)

Generic Implementation

VeLo (Si pixels)

26 planes of sensor tiles 5.1mm to beam

FE Electronics in VeloPIX chip:

55 μm pixels, 256 x 256 array 130 nm CMOS Binary readout Development of TimePIX3

VeloPIX data rate

Matrix = 128×64 super-pixels <u># tracks per 25ns</u> Data packet [mm] 110um 30 SP addr 13b Timestamp 9b Hitmap 8b 1.7 1.3 0.8 > 3 7 20 8.5 3.0 1.1 10 2 Super 6 220um Pixel 8.5 1.7 core -10 5 1 3.0 1.3 Hottest chip: -20 4 $\mathbf{0}$ -30 1.1 0.8 16 Gbit/s of data -40 20 -20 40 0 Analog FE x [mm]

Four serialisers per chip @ 5.12 Gbit/s

🙀 Upstream Tracker (Si strips)

4 planes of 16 staves

SALT chip in 130nm CMOS

Prototype 6-bit SAR, 0.35 mW @ 40 MS/s

SciFi Tracker (SiPMs)

RICH (MAPMTs)

4,500 64-channel PMTs

CLARO chip in 0.35 μm

FPGA for digital processing (SRAM)

Low occ. regions => Zero Suppression High occ. regions => no Zero Suppression

8000 PMTs

Calorimeter (PMTs)

ICECAL chip in 0.35 μ m

FPGA for digital processing (FLASH)

Muons (MWPCs)

Re-use front-end ASICs on chambers (CARIOCA + DIALOG)

New 'Off-detector' cards with new chip nSYNC

Generic Link: GBT chips + Versatile Link + commercial components Duplex Master Control Link (2,500)

Common 'readout' board 🖗

GOAL: Generic FPGA-based hardware for many tasks:

- TELL40 for Data
- SOL40 for ECS/TFC
- TRIG40 for LLT

each with different firmware flavours

1st developments focussed on ATCA + AMC R&D close to completion Small production made for lab systems

Example: TELL40

96 inputs @ 4.8 Gb \rightarrow processing in FPGA \rightarrow 48 10G ethernet ports

Move to PCle ?

Use PC memory & processors for event building

Choose network interface at last moment (cheapest)

TELL40 firmware

Project across many groups

Centrally coordinated

Common interfaces

User code for data processing

100 Gbit/s Ethernet or Infiniband

4.8 Gbit/s

10/40 Gbit/s

Ethernet or

Infiniband

LHCb THCp Long distance transmission?

Long distance transmission?

Short fibre

400m OM4 fibre

All data in a box

Clear architecture concept with many common items

R&D for sub-detectors is moving well

We rely on new generic developments (GBT, Versatile Link, DC-DC)

Manpower is improving

Aggressive but feasible schedule...... Shift of LS2 helps!

Motivation for upgrade

At L = 2(+) x 10^{32} cm⁻²s⁻¹, beyond 5 fb⁻¹, statistics don't improve much

Big statistical improvement if:
increase L to 2 x 10³³, AND
improve efficiency of trigger algorithms

BUT with current L0 trigger:

rate & latency limited by electronics $(1 \text{ MHz}, 4 \mu \text{s}) => \text{ saturation}$

BUT.... efficient trigger decisions require:

- long latencies (>> 4 μ s)
- computational power
- data from many (all) sub-detectors (momentum, impact parameter)
- \Rightarrow Trigger in software
- \Rightarrow Use data from every bunch crossing
- \Rightarrow Upgrade electronics + DAQ <u>for LS2</u>

Kick Architecture: more detail 👰

LHCb Triggering doesn't completely disappear

Control with synchronised fast commands eg bunch-counter reset

Latencies will be measured => pre-scaling of commands by S-ODIN Absolute measurement with: pulsed laser cosmics low intensity LHC beam collisions

Ken Wyllie, CERN