ACES 2014

CERN, March 18 2014

CMS upgrades overview

D. Contardo - IPN Lyon

Phase 1: Complete LHC physics program at luminosity up to $\ge 2 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ Prepare for 50 PU, through LS3, with margin up to 70 PU Detectors can sustain up to 500 fb⁻¹

Phase 2: HL-LHC program for 3000fb⁻¹ integrated luminosity Solve detector aging, high occupancy and radiation hardness issues, target performance at 5 x 10³⁴ cm⁻²s⁻¹ (with leveling) for ~125-140 pile-up with operation margin up to ~200 for higher luminosity if performance allows

CMS Phase 1 Upgrades

Endcap Calorimeters staged from LS1 to LS2

New HF and HCAL Frontend and Backend

Muons in LS1

- Consolidate DT read-out
- Complete CSC and RPC in forward - 4th station
- Increase granularity in CSC forward 1st station

Trigger commissioning in parallel to operation in 2015

 High processing power and bandwidth

New Pixel installed in YETS end 2016

CMS Phase 1 Pixel detector

- 4 layers/3 disks (1 more space-point extended range from lower to larger radius)
 - 3 cm to 16 cm radius
- New readout chip (no data loss)
 - Tolerate rates up to PU 100
- Less material: CO2 cooling, new cabling & DC/DC powering
 - Weight divided by a factor 2.5 in barrel
- Similar technology as current detector for sensors and FE chip
 - Survive Integrated Luminosity of 500 fb⁻¹ (5x 10¹⁵ neq/cm²) with layer 1 exchange after 250 fb⁻¹

 \rightarrow Reduced γ conversion - higher efficiency, lower fake rate - improved IP resolution

4

CMS Phase 1 HCAL upgrade

- New PMTs multi-anode for HF (3<η<5)
- Replace HPDs with SiPMs in HO/HB/HE improved S/N
- Replace Front-End and BackEnd electronics
 - Improved background rejection using timing with new FE chip
 - Higher granularity allows depth segmentation to access the longitudinal shower development
 - Improved calibration improved shower reconstruction for neutral energy, improved isolation in trigger and offline analyses

Single to dual readout PMTs

QIE10 (HF) QIE11 (HBHE)

New µTCA Back-end

HCAL TDR http://cds.cern.ch/record/1481837?In=en

CMS Phase 1 L1-Trigger upgrade

- Modern FPGAs and µTCA backplane technology for high bandwidth and processing power
- New architecture for calorimeter with a full event in one processor
 - Higher calorimeter granularity, earlier combination of muon systems and improved algorithms
 - e, γ and μ isolation with PU subtraction
 - Jet finding with PU subtraction
 - Tau finding with much narrower cone
 - Global trigger with more inputs and algorithms correlated quantities (e.g. invariant mass)

Calorimeter Trigger

MP7 board Virtex 7 and 72 I/O links at 10Gpbs

Demonstrator of Calorimeter trigger in μ TCA crate

CMS upgrades for HL-LHC (Phase 2)

Driving requirements for upgrades at HL-LHC

Example of tracking performance degradation with Phase 1 detector when increasing PU

Example of CMS Phase 1 Pixel performance benefit

- Need to maintain/improve the performance at high pile-up
 - \rightarrow Improves track reconstruction efficiency and resolution on track origin
 - \rightarrow Improves association of tracks at primary vertex and secondary vertices

Driving requirements for upgrades at HL-LHC

- Performance aspects
 - Physics events acceptance critical to measure rare processes:
 - Need improved trigger: increased bandwidth precision of inputs sophisticated algorithms

Example of the thresholds improvements with the CMS hardware trigger level upgrade for 50 PU (Phase 1) and impact on physics channel acceptance

→ These levels of thresholds must be maintained at HL-LHC despite rate and PU increase

Driving requirements for upgrades at HL-LHC

- $\circ~$ Operation aspects
 - Longevity of detector components and radiation tolerance:
 - Replace detectors as needed with new technologies - an opportunity to improve performance
 - Data flow:
 - Need high readout bandwidth and fast processing - replace fraction of read-out
- And constraints
 - Integration in present CMS
 - Duration and logistics of work in LS
 - Radiation levels in LS
 - Schedule and cost
 - Collaboration involved in Phase 1 upgrades, data taking and analyses

Preliminary study of fluence in CMS tracker after 3/ab

Preliminary study of dose in CMS tracker and Endcap calorimeters after 3/ab

CMS Phase 2 Upgrades

Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace DT FE electronics
- Complete RPC in forward region with new technology
- Investigate Muon-tagging up

to η ~ 4

Endcap Calorimeters

- Radiation tolerant higher granularity
- Investigate coverage up to η ~ 4
- Barrel ECAL
- Replace FE electronics

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 500 kHz to 1 MHz
- Latency $\geq 10 \mu s$
- HLT output up to 10 kHz

https://cds.cern.ch/record/1605208/files/CERN-RRB-2013-124.pdf

CMS Phase 2 Tracker

CMS Phase 2 Tracker main features

- High Granularity with short strips and small pixels
 - Strip pitch ~ 80-90 μm & length ~ 2.5 to 5 cm
 - Pixel pitch ~ 25-30 μm and ~ 100 μm length
- Light detector with DC/DC powering, CO2 cooling, light module assembly
- Powerful concept to implement tracks in hardware trigger
 - 2 sensor modules to select track "stubs" of Pt≥2GeV for trigger readout (40MHz)
 Strip-Strip (SS) in outer layers and Macro Pixel-Strip (PS) in inner (z meas.)
- $\circ~$ Extension of Pixel coverage up to $|\eta|$ ~ 4
 - Reduce rate of fake jets due to PU for VBF/VBS physics

- Silicon sensors
 - Sizable campaign of irradiation test selected n-in-p type sensors (also ATLAS)
 - Optimizing material, thickness, layout & evaluating production on 8" wafers
- Readout
 - Architecture defined Optimizing data format/BW
 - CBC 130 nm (SS-module) full size version
 - SSA/MPA 65 nm (PS-module) being designed
 - Concentrator 130 and/or 65 nm (SS/PS module)
 FPGA emulation of SS module is implemented
 - GBT (OL ASIC) need 65 nm low power
 - Versatile Link (OL) need small size packaging
 - DC-DC powering based on phase 1 upgrades
 - High Density Hybrid commercial approach started first prototypes in hand

Based on common LHC experiments developments

Silicon-Strip Outer Tracker

Light module assembly - validated with FEA - building mock-up

2 prototypes tested at DESY - 2 CBC chips - FPGA emulation of concentrator and of GBT on GLIB prototype DAQ board - validate concept of selective RO

Mechanical structures

- Concept for outer barrel and endcap is selected
- Decide inner barrel concept in 2014

$\circ~$ CO2 cooling

- Need 100kW build on pixel Phase 1 common development with ATLAS
- $\,\circ\,$ Back-end electronics for trigger track reconstruction
 - Pattern recognition with Associative Memories or propagation from layer to layer in FPGA followed by fit in FPGA

- demonstrators being developed - build on ATLAS FTK - existing high BW/ processing boards - generic R&D on custom AM ASICs

• DAQ building on Phase 1 board developments for Pixel and Trigger

Pixel detector

- Silicon sensor
 - Planar n-in-n or n-in-p and 3D technologies are good candidates to sustain radiation
 - Need design optimization and compare performance
- Readout
 - Pixel ASIC 65 nm RD53 common project with ATLAS starting - qualify radiation tolerance - develop chip blocks and final architecture
 - High BW low mass electrical link needed for inner pixel layers

CMS Phase 2 Calorimeter upgrades

- $\circ~$ New ECAL barrel FE electronics
- New Endcap Calorimetry presently three concepts considered:
 - Shashlik EE + HE-rebuild tower geometry as present CMS
 - Combined Forward CALorimeter (CFCAL) based on DREAM/RD52 concept
 - High Granulaity CALorimeter (HGCAL) based on CALICE concept
- Investigating benefit of precise timing & following generic R&D

Phase 2 ECAL Barrel FE electronics

- VFE board with improved shaping noise/PU mitigation, spike rejection
- $\,\circ\,\,$ FE board with data transfer at 40 MHz and crystal granularity for trigger
 - Investigating commercial versus custom design
 - Need to develop 10Gbps GBTx to minimize cost

Replacement of Electromagnetic calorimeter with Shashlik

- EE Shashlik provides a similar structure to the current electromagnetic calorimeters
 - With more compact design higher granularity
- R&D to demonstrate radiation tolerance
 - Crystals LYSO/CeF3
 - Wave-Length Shifter solutions
 - Quartz capillaries...
 - Photo-detector technology GaInP/SiPM
 - Readout chip based on HCAL Phase 1
 QIE10 developments
- A 3x3 prototype is being built for beam test in June

12 MeV electron source

Rebuild of Hadronic Calorimeter

- Rebuild HE with:
 - Radiation tolerant material
 - Higher granularity (η/ϕ longitudinal)
 - Closer to IP behind EE Shashlik or HGCAL
- R&D to demonstrate radiation
 - Different geometry (finger tiles)
 - And different materials liquid scintillator and other options (fibers for inner region as for CFCAL)
 - Readout with Phase 1 upgrade electronics
- Ongoing irradiation campaign of scintillating yields and transmission damage with present tiles and various scintillators
- Prepare megatile with fingers for irradiation test at PS late 2014

- Combined Forward CALorimeter integrates ECAL & HCAL, based on readout of Cherenkov and scintillating fibers which run full-depth of calorimeter
 - e/ γ /hadron identified from Cherenkov/scintillator ratio, and pulse shape sampling at 5 GHz
- R&D to demonstrate radiation tolerance
 - Scintillating fibers Quartz/Glass/Crystal Ce3 doped
 - Photo-detectors as for Shashlik EE
 - Readout chip need high speed digitizer

GaInP sensor

High-Granularity Calorimeter (HGCAL)

- Silicon-lead ECAL & 4λ silicon-brass shower-max HCAL
 - Fine-grained pads from 0.9 cm^2 to 1.8 cm^2 in ECAL
 - Fine depth segmentation ~ 31/12 planes in ECAL/ SiHCAL
 - Full shower topology to mitigate PU effects
- \circ Back HCAL as HE-rebuild (lower radiation level)
- R&D sensors, cooling, reconstruction & electronics
 - Build on ILC/CLIC & CALICE developments
 - Many common areas of R&D with tracker and other systems upgrades
 - Si sensors 320µm 8" wafers with 200µm & 100µm depletion
 - Readout chain service

Event #12

50 GeV hadron and 140 pileup With threshold of 10 mips

Tiling of 8" hexagonal Si-sensors modules

Precision timing

- Time of flight measurement could provide PU mitigation for neutrals
 - precision of ~ 10 ps allows energy deposit association to vertex in the range of ~ 1 cm
- o Generic R&D on
 - PMT-MCP or "Ionization-MCP"
 - Silicon sensors : highly doped Si sensor
 - SiPM, HAPD

Could allow implementation in preshower or embedded layer or full calorimeter signal

 Current ECAL barrel timing performance (~ 100 ps with APD and 40 ns shaping) can be optimized with new VFE electronics

Prototype waveform digitizer on a LAPPD mockup, 15 GSa/s

CMS Phase 2 Muon upgrades

- $\,\circ\,\,$ Current detectors are expected to survive 3000 fb^{-1}
 - Studies on long term operation & aging mitigations are ongoing
 - DT new FE electronics resistant to SEU & 40MHz read-out for trigger
- New Forward Muon Detectors
 - GEM RPC bakelite/glass with low resistivity

Existing muon detectors - longevity & readout

- Common plans (DT, CSC, RPC):
 - Detector and electronics radiation tests at GIF++ (source and beam) late-2014
 - Neutron and/or proton beams for electronics SEU
- Specific plans:
 - DT replacement of FE electronics
 - CSC verify FEB rate capabilities at various latencies with data
 - RPC R&D on freon-less gas mixtures (LHC- and CERN-wide project) includes tests at GIF++

New Forward Muon Detector

GEM detectors

- Assembly technique is optimized GE1/1
 - GE2/1 but 2x larger, ME0 same size more layers
- FE: VFAT3 (analog/digital) being designed
- Back-end, DAQ, & trigger electronics being prepared for slice test installed in 2016 YETS

Improved RPC detectors

- Glass:
 - Production of low resistivity glass
 - Large size chamber assembly 6 prototypes at GIF++ late 2014
- Bakelite:
 - Low resistivity smaller gap for low HV CMS-ATLAS-ALICE 2014-16
- New electronics improved timing

CMS Phase 2 Trigger/DAQ upgrade

Trigger/DAQ upgrades for HL-LHC

○ L1-trigger, Hardware

- Tracker information (Pt≥2) at 40 MHz Crystal granularity in ECAL
 - Pattern recognition with Custom ASIC Associative Memory chip (as developed for ATLAS FTK in phase 1) or track propagation using FPGA followed by a track fit in a FPGA for precision & cleaning of multiple tracks
- Level 1 in \geq 10 μs up to ~1 MHz input to computing level (HLT)
- Computing trigger level
 - HLT input ~32 Tb/s output up to ~10 kHz similar rejection as present syst.

- CMS Phase 1 upgrades construction for Pixels, HCAL and Trigger is making good progress and proceeding within the expected schedule
- The CMS collaboration is preparing a Technical Proposal for Phase 2 for the September 2014 LHCC meeting - it will include supporting performance simulation studies
- Critical R&D for Phase 2 are well identified and the effort is ramping-up with good progress in selecting technologies and preparing prototypes