

ATLAS Level-1 Calorimeter Upgrade for Phase 1

ACES 2014 - CERN

David Sankey, Thursday, 20 March 2014

with special thanks to Ian Brawn

Overview

A personal canter through the Phase 1 L1Calo system

History

• Run 1, Run 2

Phase 1 overview

eFEX – e, γ and τ

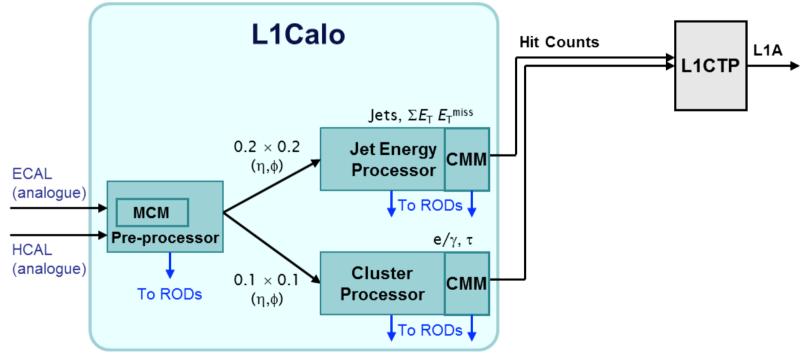
New algorithms

- · lateral R_{η} relating central core to immediate surroundings
- depth f_3 relating back sampling to whole

jFEX – jets, ΣE_{T} , ΣE_{T}^{miss}

Link speed

Beyond Phase 1


Run 1 system

Analogue towers from calorimeters

- · tower granularity 0.1 × 0.1 in η and ϕ for e, γ and τ
- 0.2 × 0.2 for jets, ΣE_{T} , ΣE_{T}^{miss}

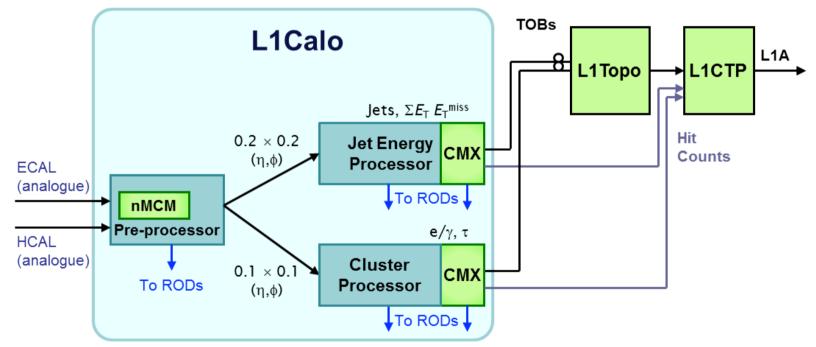
Trigger decision formed in CTP on basis of hit counts

· total Level 1 latency ~2.5µs to get decision back to detectors

Tuned and tweaked over the years

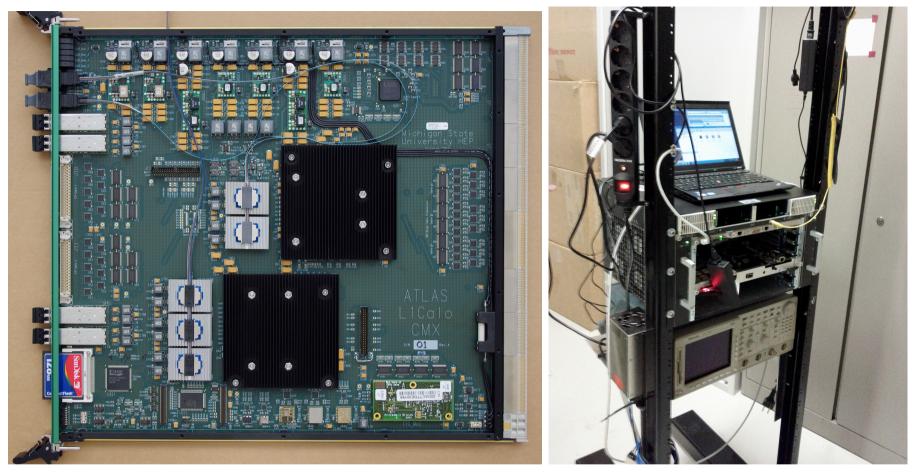
• for example adding missing E_{T} significance, XS

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 3 of 22


Run 2 system

Same granularity as Run 1

Upgraded digitisation and digital filtering


· reduce sensitivity to pileup and bunch structure, lower noise

Trigger decisions based on trigger objects

(new systems in green)

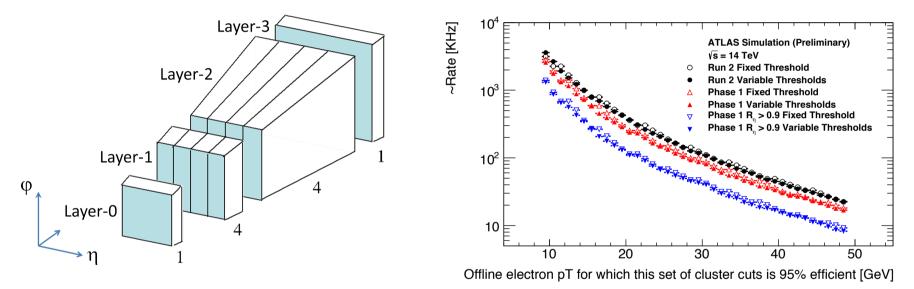
Selection of new Run 2 modules

New CMX (custom 9U module)

• merges trigger objects from existing processor modules

L1Topo ATCA module

· all objects on single module


ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 5 of 22

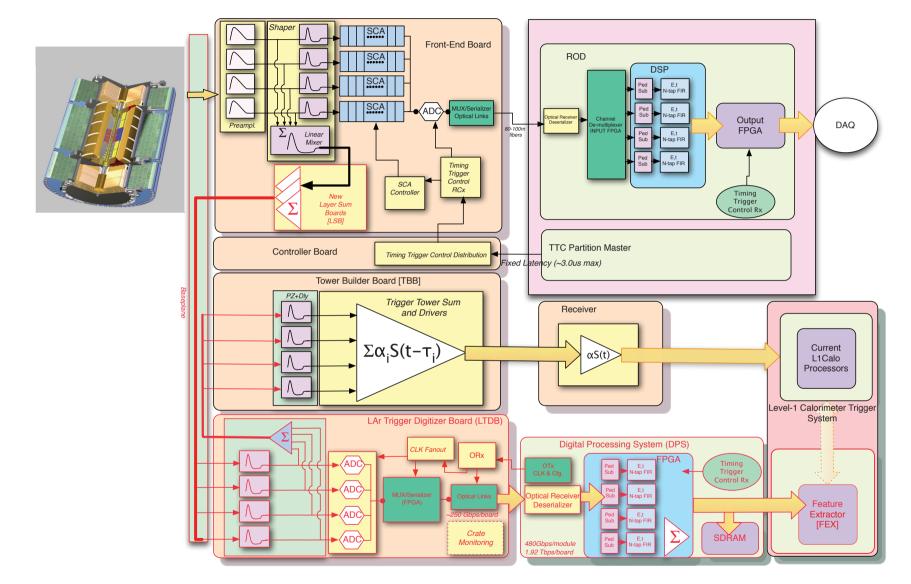
Phase 1 (Run 3) system

Same latency for trigger decision

Higher granularity information and segmentation in depth from Liquid Argon

• granularity 0.025 × 0.1 in η and ϕ for *e*, γ and τ in middle layers in depth

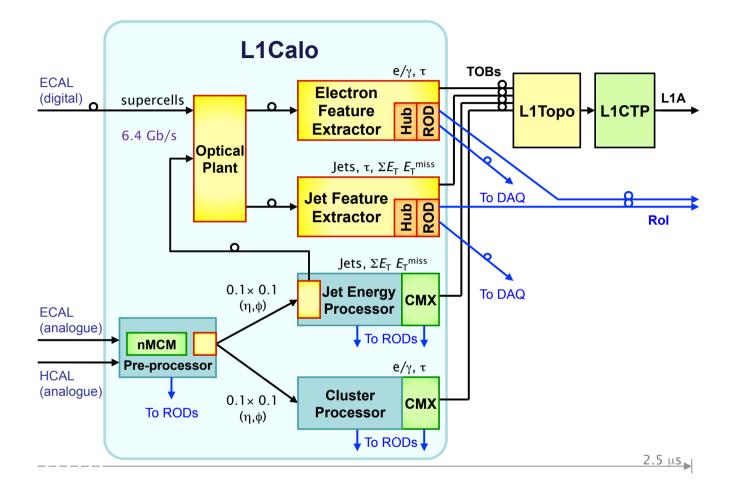
Allows shower shape cuts for e, γ and τ


- · lateral R_n relating central core to immediate surroundings
- depth f_3 relating back sampling to whole

0.1 × 0.1 granularity higher precision energies for jets, ΣE_{τ} , ΣE_{τ}^{miss}

• improved noise rejection and allows Gaussian weighting etc.

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 6 of 22


Phase 1 Liquid Argon upgrades

(new components in red)

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 7 of 22

Phase 1 system (initial)

(new systems in yellow and orange)

Run 2 system initially continues in parallel

• then gracefully retired, removing CP system and old inputs to L1Topo

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 8 of 22

New systems

Inputs from 124 LTDB in Liquid Argon (maximum of 124 DPS AMCs) and 32 JEMs

• too many links for all data in a single FPGA...

eFEX

Processes *e*, γ and τ in window size of 0.3 × 0.3

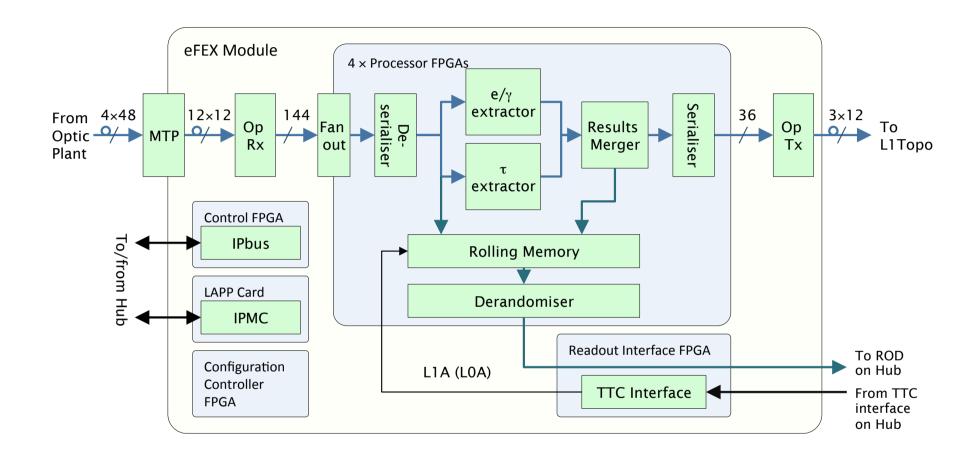
Digital Super Cells from Liquid Argon and hadronic Towers via original L1Calo

- ~34000 Super Cells @ 10 bit precision, ~3000 Towers @ 10 bit
- over 1/3 Mbit/event before duplication

jFEX

Processes jets, ΣE_{T} , ΣE_{T}^{miss}

 0.1×0.1 granularity, jets up to 0.9×0.9


(gFEX

- 0.2×0.2 granularity
 - jets up to 1.8×1.8
 - $\cdot ~\eta$ rings for improved pileup subtraction

Under consideration as separate modules or as equivalent functionality in jFEX)

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 9 of 22

eFEX overview

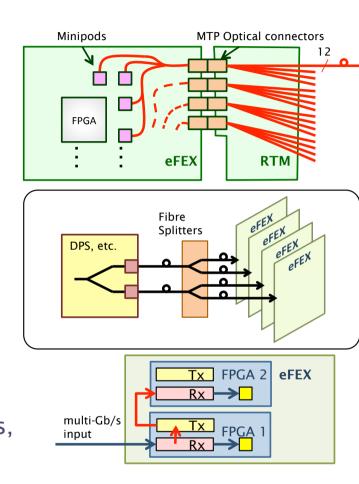
Data input to eFEX

ECAL fibres

- 1-4-4-1 Super Cells per 0.1 × 0.1 ($\eta \times \phi$) Tower
- BCMUX \Rightarrow 2 × 1 ($\eta \times \phi$) Towers / fibre

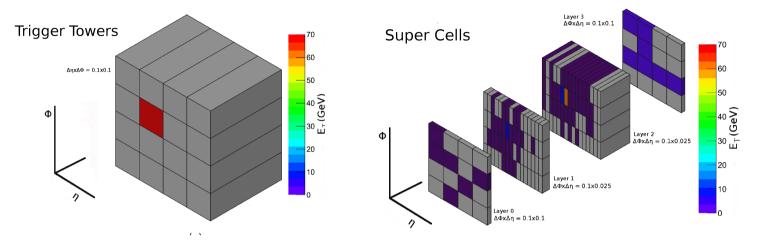
HCAL fibres

- \cdot Towers of 0.1 \times 0.1 summed in depth
- 4 × 2 ($\eta \times \phi$) towers/fibre

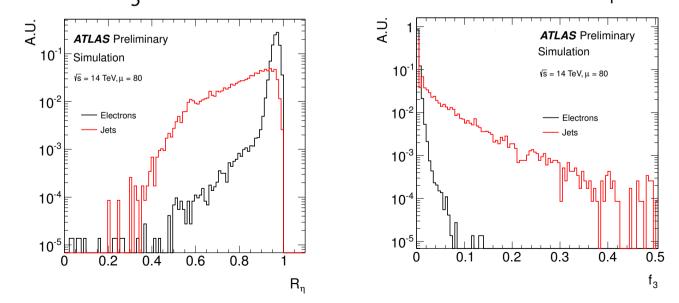

Overlapping windows \Rightarrow data sharing...

Fan out between modules and crates

- · 2-1 fan out at source (ECAL DPS + HCAL solution)
- · 4-1 fan out via 2-1 passive optical splitting

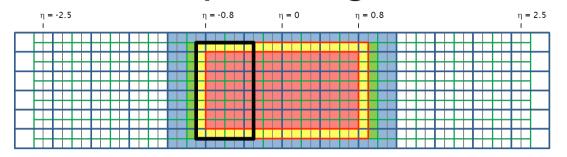

Fan out between FPGAs

- · 2-1 fan out via PMA loopback in FPGA transceivers, retransmitted after equalisation, before decoding
- 4-1 fan out via discrete high-speed buffers improved signal quality & latency
- use latter for all on-board fan out if density allows



eFEX algorithms

70 GeV electron hitting a single Tower in current L1Calo and in Phase 1 L1Calo



Lateral R_{η} and depth f_{3} discriminants for electrons and jets with $p_{\tau} > 20$ GeV

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 12 of 22

eFEX processing area

eFEX processes maximum core area of $1.6-1.7 \times 0.8$ ($\eta \times \phi$)

- · window size of $0.3 \times 0.3 \Rightarrow$ module environment of 1.8×1.0
- 2×1 ($\eta \times \phi$) ECAL towers/fibre: 100 fibres from ECAL = 9 Minipods
- 4×2 ($\eta \times \phi$) HCAL towers/fibre: 36 fibres from HCAL = 3 Minipods

4 FPGAs, each processing environment of 0.6 \times 1.0 (η \times ϕ)

- per FPGA: 40 ECAL fibres + 18 HCAL fibres + 2 spares = 60
- spares: extra resources for regions where input mapping more complex

Target device = XC7VX550T-FFG1927: 80 GTH

Fan out between FPGAs

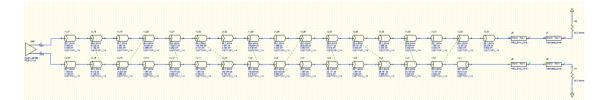
- $60 \rightarrow 1$ FPGA (including 8 spares)
- $72 \rightarrow 2 FPGAs$
- $12 \rightarrow 3$ FPGAs

230 multi-Gb/s input tracks on PCB

ATLAS Level-1 Calorimeter Upgrade for Phase 1 Page 13 of 22

Link speed

Ideally all links should be run as fast as possible

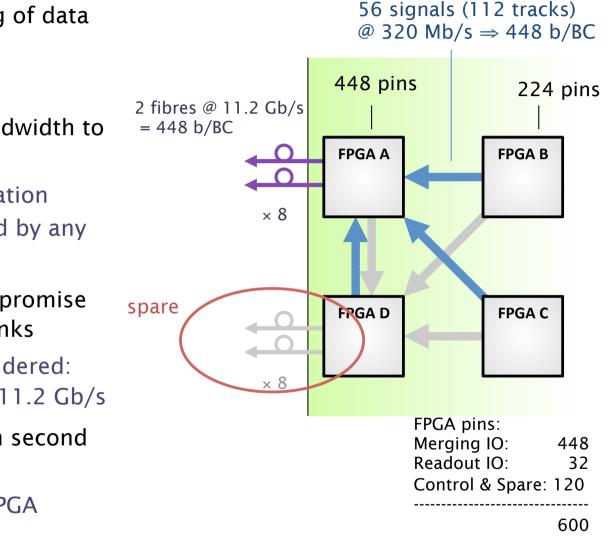

link speed directly affects input mapping

Constraint comes from the many fan-out tracks on PCB

hence baseline input link speed of 6.4 Gb/s

High Speed Demonstrator with many SMA connectors built to allow structured investigation into high-speed design

compare simulation with measurements


Results suggest that higher input link speeds will be possible

• but must be verified in hardware

System tests of first prototypes scheduled in latter half of 2015

Decision on link speed only possible after this

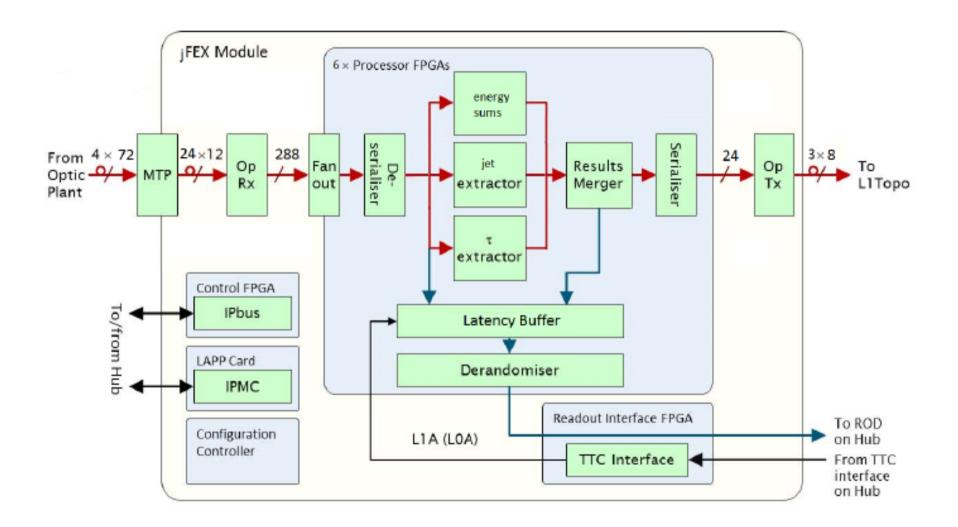
eFEX output to L1Topo

 $Merging \Rightarrow prioritisation \ \& \ sorting \ of \ data$

- complexity to be defined
- latency constraint

Ensure eFEX can populate full bandwidth to L1Topo with useful data

- \cdot merge all data in single location
- allow all data to be provided by any 1 FPGA


Speed of FPGA—FPGA links is compromise between latency and number of links

• most demanding case considered: 2 fibres \rightarrow L1Topo FPGA @ 11.2 Gb/s

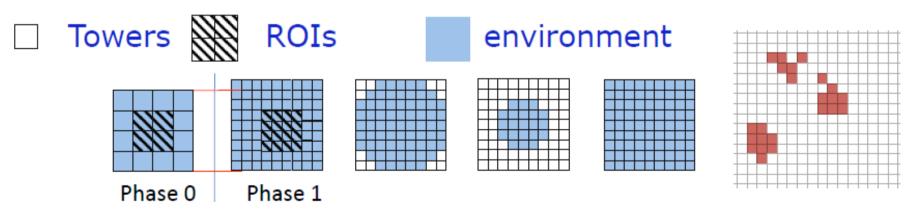
Upgrade path: 2 spare fibres from second FPGA

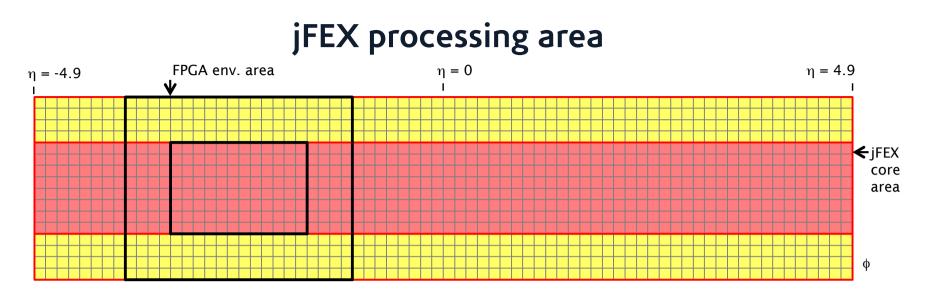
- \cdot too demanding for single FPGA
- · dual star network on board

jFEX overview

jFEX algorithms

Calculate energy sums: E_{T} , E_{t}^{miss}


Identify jet and fat τ candidates


Compared to current JEP system

- · increased dynamic range
- granularity \times 4
- allows flexibility in jet definition (non-square, Gaussian filter, ...)

Increased jet environment

- $\leq 0.9 \times 0.9 \; (\eta \times \phi)$
- increases with higher bandwidth or pre-clustering in jFEX, large jets at L1Topo

jFEX module processes full ϕ strips (η rings in 'gFEX mode') with large overlap area

- · window size $0.9 \times 0.9 \Rightarrow$ environment of 9.8×1.6 ($\eta \times \phi$)
- · fan-out between modules at source
- fan-out within module between FPGAs using PMA loopback

8 towers/fibre from ECAL + HCAL: $72 \times 16 \times 2 / 8 = 288$ fibres

- · 24 × 12-way Micropods
- 4 × 72-way MPO/MTP optical connectors

6 FPGAs, each processing core of 1.2×0.8 ($\eta \times \phi$), environment of 2.0×1.6 ($\eta \times \phi$)

• Per FPGA: 40 ECAL fibres + 40 HCAL fibres = 80

Target devices = XC7VX690T (4) + XC7VX1140T (2 for overlap region)

jFEX high speed option

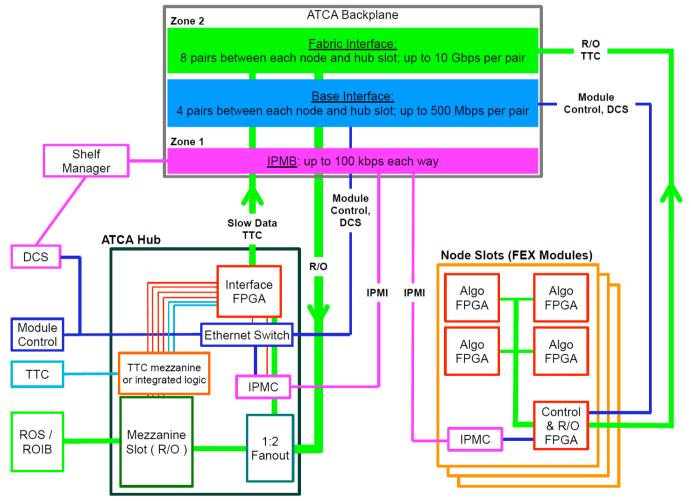
Advantages of increasing bandwidth

- · larger environment: $\pm 0.4 \rightarrow \pm 0.8 \ \eta/\phi$
- · larger jets: 1.7 x 1.7 ($\eta \times \phi$)

@ 10Gb/s: 16 towers/fibre and DPS fan-out \rightarrow 3 jFEX

Simplification in jFEX hardware

- · 288 Incoming fibres: \rightarrow 186
- · 24 Micropods \rightarrow 16
- MPO/MTP: $4 \rightarrow 3 \times 72$ -way
- 4 large FPGAs per module
 - XC7VX1140T
 - $\cdot \leq$ 96 high speed links
 - core of 1.6×0.8 ($\eta \times \phi$) (central region)
 - environment \rightarrow 2.4 × 1.6 ($\eta \times \phi$)

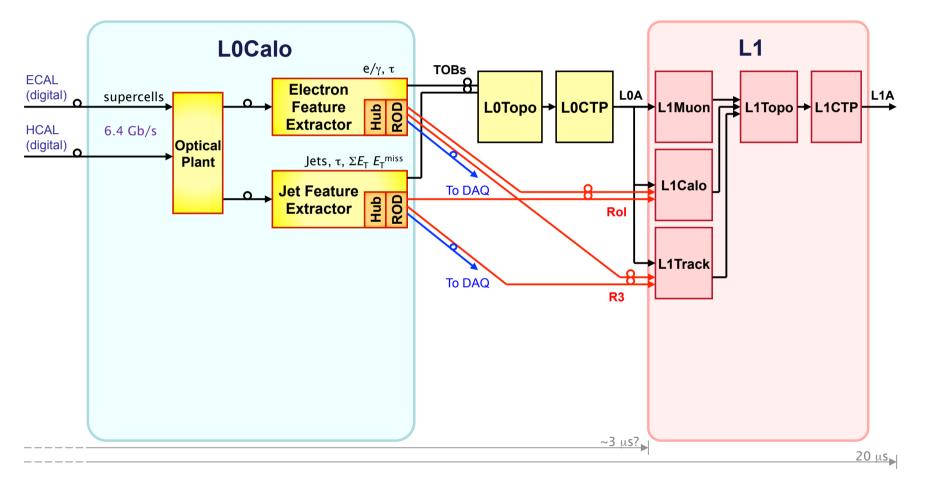

Higher transmission rate strongly favoured by jFEX team

Also strongly preferred for jFEX in gFEX ϕ -ring mode

ATCA shelf infrastructure

Hub module providing distributed clock and TTC and aggregated read-out

- custom network on Fabric Interface
- ethernet on Base Interface for module control using IPbus



and beyond

· mai paits or original system are retired

• all inputs become digital...

Science & Technology Facilities Council

Round up

Upgrades to Pre-Phase 1 systems proceeding apace

Specification of eFEX and jFEX is in process

• eFEX prototype PDR last month

Module design for eFEX maturing

Design for jFEX strongly affected by link speed

- · and whether ϕ strips or η rings
- · Xilinx UltraScale vs V7

Investigation of optimal pile-up correction using jFEX + L1Topo is in progress

Desire for link speeds ~ 10 Gb/s

- $\cdot \quad bandwidth \rightarrow L1Topo$
- · jets up to 1.8×1.8 in jFEX
- \cdot η rings for improved pileup subtraction in jFEX

But baseline is 6.4 Gb/s

These are complex boards and we need to prove prototypes

Prototypes ready for system tests mid 2015