GBT Project: Present & Future

Paulo Moreira
On Behalf of the GBT Project Collaboration
18 March 2014
CERN, Switzerland
Outline

• Radiation Hard Optical Link Architecture
• The GBT System
• GBT Chipset:
 – Status
 – Schedule
• GBT-FPGA Status
• GBT Building Blocks Status
• LpGBTX:
 – Architecture
 – SerDes (Resources optimization)
 – Power Consumption
 – Footprint
 – Project effort
Radiation Hard Optical Link Architecture

On-Detector
Radiation Hard Electronics

Off-Detector
Commercial Off-The-Shelf (COTS)

Custom ASICs

Timing & Trigger
DAQ
Slow Control

Timing & Trigger
DAQ
Slow Control

GBTX

GBTIA

GBLD

PD

LD

FPGA
The GBT System

- FE Module
- GBTX
- Phase - Shifter
- CLK Reference/xPLL
- ePLLx
- DEC/SCR
- SCR/ENC
- SER
- CDR
- CLK Manager
- ePLLtx
- CDR
- JTAG
- I2C Slave
- I2C Master
- Control Logic
- Configuration (e-Fuses + reg-Bank)
- JTAG Port
- I2C Port

External clock reference

Clock[7:0]

80, 160 and 320 Mb/s ports

One 80 Mb/s port

data-down

data-up

clock

http://cern.ch/proj-gbt

Paulo.Moreira@cern.ch
GBLD Status

GBLD V4.1

• Main Specs
 – Bit rate 5 Gb/s (min)
 – Modulation:
 • Current sink
 • Single-ended/differential
 – Laser modulation current: 2 to 24 mA
 – Laser bias: 2 to 43 mA
 – Equalization:
 • Pre-emphasis/de-emphasis
 • Independently programmable for rising/falling edges
 – Supply voltage: 2.5 V
 – Die size: 2 mm × 2 mm
 – I2C programming interface

• Status
 – Available in small quantities
 • Integrated in the VTRx and VTTx
 – Fully functional
 – Excellent performance
 – Radiation hardness proved (total dose)
 – Heavy Ion and Neutron SEU tests:
 • Revealed “some sensitivity” of the configuration registers
 • Proton tests shown no upsets
 • Majority of the errors related with reset function (not triplicated) can be easily improved.
 – Technology: 130 nm DM metal stack
 – Device is production ready

4.8 Gb/s, pre-emphasis on

Total jitter: ≈ 25 ps

http://cern.ch/proj-gbt
Paulo.Moreira@cern.ch
GBTIA V2.0 / V2.1

• **Main specs:**
 - Bit rate 5 Gb/s (min)
 - Sensitivity: 20 μA P-P (10^{-12} BER)
 - Total jitter: < 40 ps P-P
 - Input overload: 1.6 mA (max)
 - Dark current: 0 to 1 mA
 - Supply voltage: 2.5 V
 - Power consumption: 250 mW
 - Die size: 0.75 mm × 1.25 mm

• **Status:**
 - Fully functional
 - Integrated in the VTRx
 - Excellent performance
 - Radiation hardness proved
 • Tested up to 200 Mrad (SiO₂)
 - Device is production ready
 • LM metal stack

http://cern.ch/proj-gbt

Paulo.Moreira@cern.ch

6
GBTX Status

• **Main specs:**
 - 4.8 Gb/s transceiver
 - User bandwidth:
 - 3.28 Gb/s up/down-links, GBT mode
 - 3.52 Gb/s up-link, 8B/10B mode
 - 4.48 Gb/s up-link, wide-bus mode

• **Status:**
 - Chip is fully functional
 - A few modifications will be introduced in the production version:
 - XPLL will be adapted for a higher value of the motional resistance of the quartz crystal
 - Tolerance to SEUs of the e-link programing register will be improved
 - Startup state machine expanded
 - Prototypes availability:
 - 22 + 32 (drilled) GBTX available
 - Additional 240 will be available in August

Total height including solder balls: ~3 mm

http://cern.ch/proj-gbt
Paulo.Moreira@cern.ch
GBT Slow Control Adapter:
• ASIC dedicated to slow control functions.
• System Upgrades for SLHC detectors.
• “Replacement” for the CCU & DCU ASICs
• Flexible enough to match the needs of different Front-End systems.

Key Features:
• Dual redundant e-Ports for GBTX e-links.
• 16 I2C master controllers @ 100k/s or 1 Mb/s.
• 1 SPI master controller
• 1 JTAG master controller
• 32 multiplexed ADC channels:
 – 12-bit dual slope integrating ADC @ 3.5KHz
• 4 DAC channels
• 32 Digital I/O lines individually programmable.
• 8-bit memory bus
• 4 Interrupt inputs
• Technology: CMOS 130nm using radiation tolerant techniques.

Status:
• Chip ready for prototyping:
 – Tapout May 2014

http://cern.ch/proj-gbt
Paulo.Moreira@cern.ch
GBT Chipset Schedule

“Scenario 1” – MPW followed by production

- 19 May 2014 – MOSIS MPW
 - GBTX
 - GBT - SCA
 - GBLD
- Q3 – 2014
 - Chips available from the foundry
 - ASIC Packaging
- Q4 – 2014
 - Prototypes medium quantities: ~200
 - Samples distributed to the users
- Q1 – 2015:
 - Launch the production
- Q3 – 2015:
 - Production quantities available

“Scenario 2” – Production only

- Q2 – 2014 (May)
 - Split Engineering Run to produce in quantities:
 - GBTX
 - GBTIA
 - GBLD V4
 - GBT - SCA
- Q3 – 2014
 - Chips available from the foundry
 - ASIC Packaging
- Q4 – 2014
 - ASIC production testing
 - First production ASICs distributed to the users
GBT – FPGA Status

• **Aim:**
 - Implement the GBT serial link in all its flavours as an IP core for most of the current FPGAs used on Back-End boards for upgrades

• **Firmware versions**
 - Serial link encoding schemes
 - Reed-Solomon (aka “GBT frame”),
 - 8b/10b (to be done)
 - Wide-bus
 - Standard and Fixed latency versions

• **Targeted FPGA and reference design**
 - **Altera:**
 - Cyclone V GT
 - Eval kit & GBTx-SAT board
 - Stratix V
 - AMC 40
 - **Xilinx:**
 - Virtex 6
 - ML605 & GLIB
 - Kintex 7
 - KC705
 - Virtex 7
 - VC705

• **Project Resources**
 - 50% of one Fellow since last summer
 - More than 85 users registered
 - A sharepoint site: https://espace.cern.ch/GBT-Project/GBT-FPGA/default.aspx

• **A SVN repository:**
 - https://svnweb.cern.ch/cern/wsvn/phys/ese/be/gbt_fpga

• **Contact us:**
 - Sophie.Baron@cern.ch
 - Manoel.Barros.Marin@cern.ch

MAJOR RELEASE 11 APRIL 2014

See poster by Manoel Barros for further information on the GBT – FPGA
Available “IP” to facilitate the implementation of e-Link transceivers in the frontend ASICs:

- **SLVS Receiver**
 - Wire-bond, DM metal stack
 - C4, LM metal stack
- **SLVS Driver**
 - Wire-bond, DM metal stack
 - C4, LM metal stack
- **SLVS Bi-directional**
 - C4, LM metal stack
- **HDLC transceiver**
 - Synthesizable Verilog
- **7B/8B CODEC**
 - Synthesizable Verilog
- **ePLL-FM**
 - Frequency Multiplier PLL
 - Radiation Hard
 - 130 nm CMOS technology with the DM metal stack (3-2-3).
 - Input frequencies: 40/80/160 MHz
 - Output frequencies: 160/320 MHz regardless the input frequency
 - Programmable phase of the output clocks with a resolution of 11.25° for the 160 MHz clock and 22.5° for the 320 MHz clock
 - Programmable charge pump current, loop filter resistance and capacitance to optimize the loop dynamics
 - Supply voltage: 1.2 V - 1.5 V
 - Nominal power consumption: 20 mW @ 1.2 V - 30 mW @1.5 V
 - Operating temperature range: -30°C to 100°C
- **ePLL-CDR (currently under testing)**
 - Data rate: 40/80/160/320 Mbit/s
 - Output clocks: data clock + 40/80/160/320 MHz with programmable phase
 - Internal or external calibration of the VCO frequency
 - Possibility to use it as a frequency multiplier PLL without applying input data
 - Programmable charge pump current, loop filter resistance and capacitance to optimize the loop dynamics
 - Supply voltage: 1.2 V - 1.5 V
 - Operating temperature range: -30°C to 100°C
 - Prototype fabrication: May 2013
The LpGBTX

- **Low Power Dissipation and Small Footprint:**
 - Critical for pixel detectors
 - Critical for tracker/triggering detectors

- **Bandwidth:**
 - Low-Power mode
 - 4.8 Gb/s for Up and Down links
 - High-Speed mode:
 - 9.8 Gb/s for the Up-link
 - 4.8 Gb/s for the Down-link

- **e-Links:**
 - 80, 160 and 320 Mb/s for down-links
 - Low-Power Mode:
 - 80, 160 and 320 Mb/s for up-links
 - High-Speed Mode:
 - 160, 320 and 640 Mb/s for up-links
 - Programmable: Single-ended / differential

- **Functionality:**
 - “Replica” of the GBTX
 - Small subset of the GBT-SAC functionality will be included
LpGBTX Architecture

- **Downlink**: 4.8 Gb/s
 - GBT mode
- **Uplink**: 4.8/9.6 Gb/s
 - GBT / Wide-Bus / 8B/10B
- **EC link**: 80 Mb/s
- **SCA functionality added**
- **Output e-Links**:
 - 80/160/320 Mb/s → 40 e-Links (max)
- **Phase programmable clocks**:
 - 40/80/160/320/640 MHz → 8 Clocks (max)
- **Output e-Clocks**:
 - 40/80/160/320 Mb/s → 40 e-Clocks (max)
- **Input-Links**:
 - 80/160/320 Mb/s @ 4.8 Gb/s
 - 160/320/640 Mb/s @ 9.6 Gb/s
 - GBT mode → 40 e-Links (max)
 - Wide-bus mode → 56 e-Links (max)

“Idle & data headers” could be used to distinguish between the “odd and even frames” when operating at 9.6 Gb/s!
SerDes Optimization

For efficiency the SER and DES have to be co-designed

- 1 high frequency PLL drives the CDR and SER:
 - Half Rate CDR (same architecture as GBTX)
 - Serializer:
 - Full rate @ 4.8 Gb/s
 - Half rate @ 9.6 Gb/s
- PLL can work as:
 - CDR
 - Frequency Multiplier
 - This enables: TX, RX and TRANS

Clock Divider
- For the e-Links the clock frequencies are:
 - 40/80/160/320/640 MHz
- Half rate CDR requires:
 - 2.4 GHz
 - I and Q phases
 - Differential for CML
- Serializer: Half rate 9.8 Gbps / Full rate 4.8 Gbps
 - 4.8 GHz

http://cern.ch/proj-gbt

Paulo.Moreira@cern.ch
LpGBTX: Power (1/2)

LpGBTX power estimate

<table>
<thead>
<tr>
<th>Component</th>
<th>Power [mW]</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>548</td>
<td>54%</td>
</tr>
<tr>
<td>SERDES</td>
<td>157</td>
<td>15%</td>
</tr>
<tr>
<td>CORE</td>
<td>121</td>
<td>12%</td>
</tr>
<tr>
<td>Phase-Shifter</td>
<td>120</td>
<td>12%</td>
</tr>
<tr>
<td>Clock Manager</td>
<td>73</td>
<td>7%</td>
</tr>
<tr>
<td>Total (max)</td>
<td>1019</td>
<td></td>
</tr>
</tbody>
</table>

- **Assumes:**
 - 65 nm CMOS technology
 - Supply voltage: 1.2V
 - Merged SerDes architecture
 - 4.8 Gb/s on both up and down links
 - e-Links with 200 mV signaling
 - “SCA” functionality not taken into account in this preliminary study

Preliminary & Non-Binding!
Case study:

- **Hypothetical** configuration:
 - **E-Links:**
 - 20 × Data-In @ 160 Mb/s
 - 1 × Clock @ 160 MHz
 - 2 × Data-Out @ 160 Mb/s
 - **Phase-Adjustable clocks:**
 - 2 × Clock @ 40 MHz
 - 2 × Clock @ 160 MHz

<table>
<thead>
<tr>
<th>Mode:</th>
<th>TRANSCEIVER</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-Links:</td>
<td></td>
</tr>
<tr>
<td>Data rate [Mb/s]:</td>
<td>160</td>
</tr>
<tr>
<td># Data outputs:</td>
<td>2</td>
</tr>
<tr>
<td># Clock outputs:</td>
<td>1</td>
</tr>
<tr>
<td># Data inputs:</td>
<td>20</td>
</tr>
<tr>
<td>EC-Channel:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td>Disabled</td>
</tr>
<tr>
<td>Phase-Shifter:</td>
<td></td>
</tr>
<tr>
<td>State:</td>
<td>Enabled</td>
</tr>
<tr>
<td># Channels</td>
<td>4</td>
</tr>
<tr>
<td>Circuit:</td>
<td>Power [mW]</td>
</tr>
<tr>
<td>SERDES:</td>
<td></td>
</tr>
<tr>
<td>Clock Manager</td>
<td></td>
</tr>
<tr>
<td>E-PLL:</td>
<td>33</td>
</tr>
<tr>
<td>XPLL:</td>
<td>40</td>
</tr>
<tr>
<td>Total:</td>
<td>73</td>
</tr>
<tr>
<td>Phase-Shifter:</td>
<td></td>
</tr>
<tr>
<td>PLL:</td>
<td>17</td>
</tr>
<tr>
<td>Channel:</td>
<td>26</td>
</tr>
<tr>
<td>SLVS-TX:</td>
<td>26</td>
</tr>
<tr>
<td>Total:</td>
<td>69</td>
</tr>
<tr>
<td>I/O:</td>
<td></td>
</tr>
<tr>
<td>Data SLVS-Tx:</td>
<td>13</td>
</tr>
<tr>
<td>CLK SLVS-Tx:</td>
<td>7</td>
</tr>
<tr>
<td>Data SLVS-Rx:</td>
<td>5</td>
</tr>
<tr>
<td>Total:</td>
<td>24</td>
</tr>
<tr>
<td>CORE:</td>
<td></td>
</tr>
<tr>
<td>Standard Cells:</td>
<td>110</td>
</tr>
<tr>
<td>Phase-Aligners:</td>
<td>6</td>
</tr>
<tr>
<td>Total:</td>
<td>115</td>
</tr>
<tr>
<td>Total Power [mW]:</td>
<td>439</td>
</tr>
</tbody>
</table>
LpGBTX: Footprint

Tracker Specific Development (Single-ended I/O only)

General Purpose LpGBTX with programmable I/O (Single-ended /Differential)

Two ASICs:
• LpGBT-SerDes (tracker specific)!
• LpGBTX (general purpose)
Although many functions are the same in the two ASICs, these are effectively two projects!
• Almost doubles the budget and the manpower needs!

Preliminary & Non-Binding!

• Pin-count: ≈ 150 (to be confirmed)
• BGA pitch: 0.65 mm
• Package Size: ≈ 10 mm × 10 mm

• Pin-count: = 500
• BGA pitch: 0.65 mm
• Package Size: ≈ 16 mm × 16 mm
LpGBTX: 2014 – and beyond, Activities / Manpower / Budget

2014
• Q3: First draft of LpGBTX specifications
• Q3: Discussions with the Experiments
• Q4: LpGBTX final specifications

2015 and beyond
• LpGBTIA
 – (The GBTIA is already relatively low power. Perhaps the LpGBTIA is not a strictly necessary development...)
 – Technology: 65 nm CMOS
 – Manpower: 2 MY (design and testing)
• LpGBLD10
 – (Some work already going on)
 – Technology: 130 nm CMOS
 – Manpower: 2 MY (design, packaging and testing)
• LpGBTX
 – Technology: 65 nm CMOS
 – Two packaging flavours:
 • “Tracker” & “General Purpose”
 – Manpower:
 • Design: 8 MY
 • Packaging: 1 MY
 • Testing: 2 MY
 – We have to seriously consider “building” a stable LpGBT team if a LpGBT chipset is to be a reality in useful time!
 – The move to 65 nm and Low Power is not just a “copy-paste exercise”!!!
• The LpGBT has not yet been defined as an approved “project” or “common project”:
 – Effort going on to secure budget and manpower for the project!

Total manpower: 15 MY
Extra Slides
EportRx: phase-aligner (set to maximum and minimum; FE position dependant)
EportTx: no phase align necessary on GBTx

Flags are latched with e-link's clock and triggered by the e-links data
E-LINK SERDES

GBT-FPGA

GLIB

CLOCK

29 ns

21 ns

GBT-FPGA

TX

MGT TX

SFP

GBTx SAT board

Cyclone V

PLL

4 ns

29 ns

30.6 ns

51.2 ns

18/03/2014

M. Barros Marin, P. Leitao, S. Baron
UPSTREAM LATENCY

<table>
<thead>
<tr>
<th>Encoding</th>
<th>E-link speed</th>
<th>All</th>
<th>All - passive</th>
<th>All - passive - GBT_FPGA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT Frame</td>
<td>80MHz</td>
<td>224 ns</td>
<td>214 ns</td>
<td>~9 BC</td>
</tr>
<tr>
<td></td>
<td>237 ns</td>
<td>227 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160MHz</td>
<td>190 ns</td>
<td>180 ns</td>
<td>~8 BC</td>
</tr>
<tr>
<td></td>
<td>202 ns</td>
<td>192 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Bus Frame</td>
<td>80MHz</td>
<td>224 ns</td>
<td>214 ns</td>
<td>~9 BC</td>
</tr>
<tr>
<td></td>
<td>237 ns</td>
<td>227 ns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>160MHz</td>
<td>190 ns</td>
<td>180 ns</td>
<td>~8 BC</td>
</tr>
<tr>
<td></td>
<td>202 ns</td>
<td>192 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remaining: MGT, SFPs, GBTx
Downstream Latency

<table>
<thead>
<tr>
<th>Encoding</th>
<th>E-link speed</th>
<th>All</th>
<th>All - passive</th>
<th>All – passive - GBT_FPGA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBT Frame</td>
<td>80MHz</td>
<td>174 ns</td>
<td>164 ns</td>
<td>~7 BC</td>
</tr>
<tr>
<td></td>
<td>160MHz</td>
<td>173 ns</td>
<td>163 ns</td>
<td>~7 BC</td>
</tr>
</tbody>
</table>

Remaining: MGT, SFPs, GBTx