
ACES2014

Common ATLAS-CMS Electronics Workshop for LHC Upgrades

Wrap-Up Session Introduction

Some General Comments

- There were about 150 registrations but we have not seen everybody at the same time in the room
 - Significant changes in attendance (who is attending what) with the sessions
 - Might limit the goal of having large exchange between people...
- ACES has been (is still being) webcasted
 - Statistics for days 1 and 2 (total connections/simultaneous connections):
 - ▶ 71/30 and 57/42
 - A good fraction from inside CERN
- ▶ We got a complete overview of the on-going developments
 - We also saw from the ATLAS and CMS overall plans that the upgrade program is very ambitious

Points of Concerns

As Identified by the Organising Committee

- High speed low power links
- IC technos availability and 65 nm plans
- Radiation qualification
- ► TTC

- Schedule
- Concurrent developments
- Power
- Level-1 rates and Latency
- Tracking trigger

High Speed - Low Power Links (1)

- ► Current GBT version
 - Development reaching an end
 - Production schedule still to be finalised
 - ► MPW or direct ER (see Paulo's slides)
 - ▶ Impact on CMS HCAL HE upgrades to be clarified
 - VTXx ready for production
- Both ATLAS and CMS require a new version
 - Low Power and High Speed version
 - Plan for a single development is attracting
 - Specifications to be defined and frozen this year
 - ▶ With the two experiments
 - CERN to secure resources

High Speed - Low Power Links (2)

- Versatile link currrent version
 - ▶ Ready for production
- New low profile up to 4 channels proposal
 - See François' slides
 - Could be available within 3 years
 - Meaning usable for phase-1
- Other developments on-going
 - Amount of R&D and qualification work not to be underestimated
 - ▶ ATLAS had "experiences" in the past

IC Technologies and 65 nm

- Cannot do so much with respect to techno availability
 - Keep our eyes opened
 - Try to have back-up solutions if possible
 - ► Knowing that a change of techno is not for free in terms of work
- ▶ 65 nm
 - Developments starting and frame contract almost in place
 - Radiation hardness should not be taken as granted
 - Still some qualification work and studies to understand and overcome weakness to be done

Radiation Qualification

- Although not so much addressed during the workshop we now have a much better understanding of the radiation levels in the detector
 - Meaning safety factors can be reduced
- Could we define a common testing/qualification procedure?
- Dealing with SEE at different stages (ASIC, FPGA, systems) addressed differently in sub-detectors
 - Would benefit from sharing experience

- Question during ACES: why is ATLAS not upgrading its TTC system now as is CMS doing?
 - TTC techno unchanged
 - CMS needed more partitions and flexibility
 - ▶ ATLAS is introducing during LS1 additional "global partitions"
- ► TTC-PON project made some progress
 - Project to go on but experiments encouraged to study the proposal and communicate their needs/requirements

Schedule

- Still a bit fuzzy as usual
- Not clear whether the production schedules for phase 2 are similar for ATLAS and CMS
 - It would be good to have a look at that as this has implications on the schedule of common devices

Concurrent Developments

- We always complain about lack of resources but still we have concurrent developments of very similar devices
- A few examples:
 - 3 ADC 12-bit 40 MHz developments in ATLAS
 - Several xxx7 boards in CMS
 - Variant of optical links
- Always a delicate subject as we have to find a working space for everyone but it might be really good to coordinate (including with industry participation) in view of getting better devices
 - Such as a 14-16 bit ADC with 11-12 ENOB to avoid multigain systems
 - One or 2 FPGA platforms with a good framework for the firmware development

Non-concurrent Developments

- Several time we heard about using devices developed by others for other purposes
 - Meaning it's feasible
 - Examples: MP7 in CMS, calorimeter back-end electronics for muon
- RD53 is a good example of possible successful collaboration

Power

- Rad-hard and magnetic tolerant POL
 - Development for phase-1 reaching an end
 - Delivery of complete DC-DC modules or of components and expertise for adhoc integration
 - Need improvement on radiation hardness for phase 2 trackers
 - Very likely adhoc integration needed
- Commercial POLs
 - We see a number of tests going on with commercial devices
 - An inventory of the target needs and of the results would be useful
- Not yet addressed but the power schemes require also "bulk" DC-DC delivering 12, 24 or 48 V
 - Collaboration with industry necessary
 - ▶ It took a lot of time for the current detectors so we should start looking at it with 2 – 3 years (?)
 - Need to have finalised power schemes

LO/L1, L1 rates and latencies

- ► It appeared clearly that these numbers are still not final
 - Huge impact on the readout designs
- Discrepancies between ATLAS and CMS
 - Wesley discussed them
 - 20 years ago when we were defining the experiments readout systems we had identical numbers
- What are the maximum reachable latencies?
 - We squeeze ourselves in difficult corners because of legacy
 FE electronics we hope (dream) will be running smoothly
 until 2035 2040
 - Limit for tracker front-ends because of power consumption

Tracking Triggers

- ► Two different philosophies in trigger scheme and how to integrate tracking
- ATLAS put a bit of confusion in mentioning wish or need for at least some self-seeded trigger
 - The detector layout is not adapted to this
 - The impact on FE electronics is huge
- Off-detector track finding
 - The proposed schemes need to be demonstrated with a small scale system
 - Note that ATLAS FTK is certainly a good demonstrator for the associative memory scheme
 - Would be good to understand how the available latency impact the complexity and cost of this system

Time for discussion...

or potatoes to fly

Before you start we would like to thank you again for your participation