String Junctions, Abelian Fibrations and Flux/Geometry Duality

Michael Schulz Bryn Mawr College

CERN TH Institute on String Phenomenology 31 July 2008

Work performed in collaboration with R. Donagi and P. Gao.

Goal

- The IIB T^6/Z_2 orientifold w. $\mathcal{N}=2$ flux has purely geometric IIA CY duals with no flux. We wish to construct the dual manifolds explicitly.
 - Many properties were deduced by classical sugra dualities (T-duality + M-theory circle swap).
 - We now provide two explicit constructions:
 - Monodromy/junction based description:
 - analogous to F-theory description of K3, but with T^4 rather than T^2 fibers.
 - Explicit algebro-geometric construction (related to D(imensional) duality).
- Relation of CYs to one another? to connected web?

Motivations

- The T^6/Z_2 orientifold is the simplest IIB flux compactification. Any insight into this background is likely to shed light on flux compactifications in general (e.g., early analyses of moduli stabilization).
- The CY duals $X_{m,n}$ have $\pi_1 = Z_n \times Z_n$ for n = 1, 2, 3, 4. ⇒ useful for Heterotic phenomenology. Few CYs with nontrivial π_1 are known (cf. recent work by M. Gross).
- D3 instantons in T^6/Z_2 (with $\mathcal{N}=2$ flux) map to WS instantons wrapping P^1 sections of dual CY.
 - ⇒ Nice check of our understanding of D3 instantons & zero mode counting, both at and away from O-planes.

Motivations (continued)

ullet approx CY metric (valid for small fiber), precisely dual to classical sugra description of T^6/Z_2 .

Harmonic forms and low lying massive modes can be given explicitly in this approx CY metric. ⇒ Can in principle deduce warped KK reduction of the dual flux compactification using the duality (cf. recent work by Shiu, Torroba, Underwood, Douglas [STUD]).

- ▶ Flux breaks $\mathcal{N}=4$ to $\mathcal{N}=2$. ⇒ Precise parametrization of extended SUSY breaking by CY topology. IIA on CY as an SU(2) structure compactification (cf. Spanjaard)
- Connection to D(imensional) duality: string theory on Riemann surfaces of genus $g \leftrightarrow$ string theory on their Jacobian tori T^{2g} (Green, Lawrence, McGreevy, Morrison, Silverstein).

Known properties of IIA CY duals $X_{m,n}$

- Abelian surface (T^4) fibration over P^1 , with 8+N singular fibers. $(N = \text{number of D3-branes in } T^6/Z_2)$.
- Hodge #'s: $h^{11} = h^{21} = N + 2$, where N + 4mn = 16. ($F_3 \sim 2m, \ H_3 \sim 2n, \ N_{\rm D3} + \int H \wedge F = \frac{1}{4}N_{\rm O3}$ in dual.)
- Generic D_N lattice of sections (mod torsion) (since N D-branes + O-plane can coalesce to SO(2N) in T^6/Z_2 dual).
- $\pi_1=Z_n\times Z_n$, isometry $=Z_m\times Z_m$. (For nonminimal flux m,n, higgsing only partially breaks sugra U(1)s in T^6/Z_2).
- The case m = n = 0 gives K3× T^2 instead of CY.

Known properties (continued)

- Polarization: $J_{\rm fiber} \propto m dx^1 \wedge dx^2 + n dx^3 \wedge dx^4$.
- Intersections: $H^2 \cdot A = 2mn$, $H \cdot \mathcal{E}_I \cdot \mathcal{E}_J = -m\delta_{IJ}$ (from sugra EFT or explicit harmonic forms).
- \blacksquare $H \cdot c_2 = 8 + N$ (from F_1 topological amplitude and Green-Schwarz).
- Approximate metric, harmonic forms (small parameter = fiber/base).

Known properties (continued)

 \blacksquare Approximate metric is twisted product of Gibbons-Hawking and T^2 :

$$ds_{\text{CY}}^{2} = Z\left(\frac{v_{B}}{\text{Im }\tau_{1}} \left| dx^{1} + \tau dx^{2} \right|^{2} + R_{3}^{2} (dx^{3})^{2}\right) + Z^{-1} R_{4}^{2} (dx^{4} + A^{4})^{2} + \frac{v_{F}}{\text{Im }\tau_{3}} \left| \eta^{5} + \tau_{1} \eta^{6} \right|^{2}, \qquad R_{3} R_{4} = (n/m) v_{F},$$

 $\mathsf{mod}\ \mathbb{Z}_2(x^{1,2,3,4}).$

- ▶ For m, n = 0: ▶ 1st line (Gibbons-Hawking) approximates K3 metric,
 - 2nd line is a T^2 metric.
- For $m, n \neq 0$, the two pieces are twisted:

$$dA^{4} = R_{4} *_{3} dZ - 2m(dx^{1} \wedge \eta^{6} - dx^{2} \wedge \eta^{5}),$$

$$d\eta^{5} = 2ndx^{1} \wedge dx^{3}, \quad d\eta^{6} = 2ndx^{2} \wedge dx^{3}.$$

ullet Can interpret metric as that of a $T^4_{\{3,4,5,6\}}$ fibration over $T^2_{\{1,2\}}/Z_2\cong P^1$.

Construction 1:

Monodromy/junction based description

Warm-up: F-theory on K3

Recall IIB encoding of the geometry of a T^2 fibration over P^1 (e.g., K3):

- $\oint_{\gamma} F_1 = 1$ unit RR charge au o au + 1 about γ ($au = C_0 + i/g_s$ dilaton-axion)
 - Here D7 = object on which fundamental strings can end.
- Similarly (p,q) 7-brane = object on which (p,q) string can end.

- $\tau = \text{cpx modulus of } T^2$ $\tau \to \tau + 1 \text{ about } \gamma.$
- $a\alpha + b\beta \text{ cycle in } T^2 \colon \binom{a}{b} \to K\binom{a}{b},$ $K = \binom{0}{1} \binom{-1}{1} \text{ monodromy matrix.}$
- $p\alpha + q\beta \text{ (instead of }\alpha\text{) cycle shrinks,}$ $K_{[p,q]} = {1+pq \ -p^2 \choose q^2 \ 1-pq}.$

F-theory on K3 = IIB on T^2/Z_2

- **•** Let (p,q) charges A = (1,0), B = (1,-1) and C = (1,1).
- ▶ Perturbative description of T^2/Z_2 orientifold: 16 D7s + 4 O7s.
- Nonperturbative description: each O7 resolves to BC pair. (B,C 7-branes are determined [up to equivalences] by factorization of $K_{\rm O7}$ into $K_{[p,q]}$'s.)
- So, F-theory manifold: base $P^1 \cong T^2/Z_2$ and 24 singular fibers $A^{16} \, BC \, BC \, BC \, BC$, with monodromies

$$K_A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \quad K_B = \begin{pmatrix} 1 & -1 \\ 1 & 2 \end{pmatrix}, \quad K_C = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}.$$

These nonperturbative IIB data define the topology of K3.

CY duals of T^6/Z_2 are abelian fibrations

CY duals $X_{m,n}$ are T^4 fibration over P^1 . Why?

No flux:

$$T^6/Z_2$$
 orientifold \leftrightarrow IIA on K3 \times T^2 (K3 = T^2 fibration over P^1)

(both dual to type I or het-SO on T^6).

• With $\mathcal{N}=2$ flux $F_3\sim 2m, H_3\sim 2n$:

$$T^6/Z_2$$
 orientifold \leftrightarrow IIA on CY $X_{m,n}$
$$(X_{m,n}=T^4 \text{ fibration over } P^1)$$

Roughly, twists mix previous T^2 factor with T^2 fiber of K3.

Monodromy matrices for CY duals

$$N$$
 D3s + O3s of $T^6/Z_2 \leftrightarrow A^N B_1 C_1 B_2 C_2 B_3 C_3 B_4 C_4$ singular T^4 fibers of $X_{m,n}$.

Can again determine the monodromy matrices explicitly. We find

$$K_A = \left(\begin{array}{ccc} 1 & -1 & | & & \\ -1 & 1 & | & -1 \\ -1 & 1 & 1 \end{array}\right) = (\mathsf{old}\ K_A) \otimes (\mathsf{identity}) \ \mathsf{on}\ T^2 \times T^2,$$

but B_i, C_i differ for i = 1, 2, 3, 4. For example,

$$K_{B_1} = \begin{pmatrix} -1 & | & -m \\ 1 & 2 & | & m \\ -- & -- & -- & -- \\ -n & -n & | & 1 & -mn \\ | & & 1 \end{pmatrix} = (\text{old } K_B) \otimes (\text{identity}) \text{ on } T^2 \times T^2 + m, n \text{ twists.}$$

The monodromies uniquely determine the topology of $X_{m,n}$.

CY dual interpretation of RR tadpole

- Since the base of $X_{m,n}$ is P^1 , a loop that encloses all singular fibers is contractible (to the point at infinity).
 - ⇒ Total monodromy must be unity:

$$1 = K_{\text{total}}$$

$$= K_{C_4} K_{B_4} \dots K_{C_1} K_{B_1} K_A^N$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ & 1 & -\frac{Q}{Q} & 0 \\ & & 1 & 0 \\ & & & 1 \end{pmatrix},$$

where Q = N - 16 + 4mn.

■ Topological constraint reproduces T^6/Z_2 D3 charge constraint Q=0.

String junctions & Mordell-Weil lattice

String junctions:

are W-bosons of 7-brane gauge theory,

(DeWolfe et al.)

encode homology of F-theory elliptic fibration,

equivalence classes (charges) form lattice.

 H_2 is generated by:

- generic fiber,
- components of singular fibers,
- sections. \leftarrow string junctions, $H^1(\mathbb{P}^1, R^1\pi_*\mathbb{Z})$

Mordell-Weil lattice of sections = junction lattice/null loops (Fukae et al.).

MW and junction lattice for $X_{m,n}$

- In CY $X_{m,n}$: a (p,q,r,s) 1-cycle in T^4 fiber shrinks at each A, B_i , C_i .
- Obtain 2-cycles in $X_{m,n}$ from $S^1_{[p,q,r,s]}$ fibration over (p,q,r,s) junction graphs in base P^1 .
- Again, MW lattice of sections = junction lattice/null loops.

$$A^N \prod_{i=1}^4 B_i C_i \implies \text{Obtain } D_N \text{ from } A^N B_i C_i \quad (A + A = B_i + C_i)$$

but not E_{N+1} from $A^N B_i C_i C_i \quad (C_i \neq C_i)$.

 $D_N =$ free part of MW lattice.

$$\begin{bmatrix}
A^{N} & \stackrel{4}{\Pi} & B_{1} & C_{1} \\
A^{N} & \stackrel{1}{\Pi} & B_{2} & C_{2} \\
A^{N} & \stackrel{1}{\Pi} & B_{3} & C_{4}
\end{bmatrix} = m \begin{bmatrix}
A^{N} & B_{1} & C_{1} & B_{2} & C_{2} & B_{3} & C_{3} & B_{4} & C_{4}
\end{bmatrix}$$
(similarly for (0,0,0,1) loop).

• $Z_m \times Z_m = \text{torsion part of MW lattice} = \text{isometry group.}$

Relations between CYs

- ullet N+4mn=16. Complete set of 8 $X_{m,n}$ is $\{X_{1,1},X_{m,1},X_{1,n},X_{2,2}\}$.
- ullet Relations: ullet $X_{m,1}$ $\xrightarrow{\text{quotient by}} X_{1,m}$, for m=2,3,

- When singular fibers coalesce, additional isometries can develop. Have new MW torsion from "weakly integer" junctions. For example, a (1,0) string can end on a coalesced A^2 pair: "(1/2,0) on each."
- Quotienting by these isometries gives new CY manifolds (with nontrivial π_1 if action is free).
- Do not appear to have extremal transitions to other interesting CYs. (Cpx def away from singular loci → new section; Kähler resolution → new Kodaira component; same Hodge numbers either way.)

Construction 2:

Explicit algebro-geometric construction

Relative Jacobian of a complex surface

- \blacksquare Restrict to m, n = 1, 1 (principle polarization).
- Idea: complex surfaces much easier than 3-folds.
- To every genus-g curve, can associate a principally polarized Jacobian torus T^{2g} with the same H_1 (same space of 1-cycles (p, q, r, s)):

$$g=2:$$
 Abel-Jacobi map $T^4.$

- So, can try to realize CY $X_{1,1}$ as the fiberwise Jacobian of a surface S, where S is a genus-2 fibration over P^1 .
- S could be made physical if desired via a D(imensional)-duality type solution that interpolates between S and X_{1,1}.
 (Green, Lawrence, McGreevy, Morrison, Silverstein)

Construction of the surface S

▶ A genus-2 curve = double cover of \mathbb{P}^1 with 6 branch points.

- \Rightarrow $S \equiv$ genus-2 fibration over $\mathbb{P}^1_{(1)}$ = branched double cover of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$.
- Degree of branch curve $B \subset S$ is (a,6)(for 6 branch pts in generic fiber of $S \to \mathbb{P}^1_{(2)}$, i.e., for genus-2). If you like, can view as S as 2-fold section of $\mathcal{O}(a/2,3)$.
- For a=2, obtain a candidate for $X_{1,1}$ from $\operatorname{Jacobian}(S/\mathbb{P}^1)$ (construction first studied by Saito).

Checks

- $c_1(X_{1,1}) = 0, \quad h^{1,1} = h^{2,1} = 14.$
- **2**0 degenerations of genus-2 fiber $f_2 \Rightarrow$ also of T^4 fibration $X_{1,1}$.
- $c_2 = 20$ elliptic curves (singular loci of special fibers).
- Sections of S

Other projection $S \to \mathbb{P}^1_{(2)}$ has genus-0 fibers C_0 ($2\mathbb{P}^1 - 2$ br pts) with 12 degenerations: $C_0 \to \mathbf{2} \, \mathbb{P}^1$ s ℓ_I, ℓ_I' meeting at a point ($I = 1, \dots, 12$).

- $\Rightarrow 2 \times 12$ sections of genus-2 fibration (w. relations $\ell_I + \ell_I' = C_0$).
- lacksquare Sections of $X_{1,1}$

Given a choice of zero section $\sigma_0 \in \{\ell_I, \ell_I'\}$,

 $\mathrm{MW}(X_{1,1})\cong \langle \sigma_0,f_2\rangle^{\perp}$ (with S intersection pairing).

 \Rightarrow 12 dimensional lattice, D_{12} .

Checks (continued)

- Intersections:
 - $\ell_I \subset S \mapsto$ "theta surface" $\Theta_I \subset X_{1,1}$.
 - Writing

A= abelian fiber, $\mathcal{E}_I=\frac{1}{2}\big(\Theta_I-\Theta_I'\big), \quad H=\frac{1}{2}\big(\Theta_I+\Theta_I'\big)-\frac{1}{6}A,$ gives the quoted intersections.

- (N.B. Basis A, \mathcal{E}_I, H from sugra duality is not an integer basis:
 - $\frac{1}{2}$'s are expected (roots versus half roots of D_N).
 - ullet follows from correct definition of warped volume of T^6/Z_2 .)
- So, can apply Wall's classification theorem: c_1 , c_2 , intersections \Rightarrow unique CY up to homotopy type.

Conclusions

- ullet We have seen two explicit constructions of the IIA CY duals of T^6/Z_2 :
 - 1. Monodromy/junction description (analog of F-theory for T^4 fibers),
 - 2. Relative Jacobian of a genus-2 fibered surface S (for m, n = 1, 1).
- In each case, we have computed the Mordell-Weil lattice of sections, to obtain the required D_N lattice (using junctions, and sections S, resp.).
 - **■** In Case 1, D3 tadpole condition \Leftrightarrow total monodromy = 1.
 - All criteria for Wall's theorem (c_1, c_2, C_{IJK}) satisfied in Case 2.
- Related projects in progress:
 - Map between D3 instantons in T^6/Z_2 and WS instantons in CY dual.
 - Warped KK reduction of T^6/Z_2 using approximate CY metric, which is an exact dual to the classical sugra description of T^6/Z_2 .