Toric resolution of Heterotic orbifolds

Michele Trapletti

LPT - Université Paris-Sud 11, CPHT - École Polytechnique

UNIVERSITÉ
PARIS-SUD 11

Based on:
hep-th/0707.1597

+ work in progress
In collaboration with:
Stefan Groot Nibbelink, Tae Won Ha
Felipe Paccetti, Johannes Held, Fabian Ruehle

Introduction I: Motivations

Two main different paths to heterotic string phenomenology

Some good properties:

Orbifold:

a space flat everywhere but in some singular points where (mostly) SUSY breaking, gauge symmetry breaking and chiral matter reside.
String theory on orbifolds:
Pure CFT approach (strong link with similar "non-geometric" approaches).

- Exact quantization of the string;
- Allow for systematic (computer assisted) searches;
- Very successful!

Some disadvantages:

- Specific point in the moduli space (the orbifold point);
- Singular space! Difficult to make use of the net of dualities;
- Difficult to disentangle $\mathrm{M}_{\text {Gut }}$ from $\mathrm{M}_{\text {planck }}$.

Introduction I: Motivations

Two main different paths to heterotic string phenomenology String theory on a smooth CY:
Pure SUGRA approach (KK reduction in the presence of gauge fluxes).
Some good properties:

- Properties of the model (gauge group, \# of families etc) "easily" linked to topological properties of the model;

- Generic point in moduli space (introduction of fluxes, torsion, moduli stabilization mechanisms);
- Naturally embedded in the net of dualities with other strings;
- MGut naturally linked to some internal volumes different from the string scale (but perturbativity requires volumes to be "not too large");
- $\mathrm{E}_{8} \times \mathrm{E}_{8}$ string: hidden sector "well hidden".

Some disadvantages:
Talks by R. Tatar, V. Braun, B. Ovrut

- SUGRA approach;
- Difficult to get good CY's, good gauge fluxes etc.

Introduction I: Motivations

Two main different paths to heterotic string phenomenology

Reproduce the orbifold models as

- compactifications of 10d SUGRA/SYM
- on smooth manifolds (blown-up orbifolds)
- in the presence of gauge fluxes.

Introduction II: the Spirit

I - Resolve the orbifold geometry

Ia - Given the orbifold

Ib - Cut apart each singularity and resolve it: characterize the local geometric structure "hidden" in the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved singularities: characterize the topology of the whole CY space (non-localized cycles)

Get a smooth compact CY space (having the original orbifold as singular limit)

II - Compactify 10d SUGRA/SYM on the smooth CY

- A crucial detail:

Orbifold models:
Orbifold action g embedded in the gauge degrees of freedom.

The freedom in doing this generates a vast set of models!

SUGRA models:
Gauge flux wrapped on the

new localizes cycles, to be embedded in $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$.
The freedom in the embedding generates a vast set of models
Reproduce each string orbifold model as a
compactification of 10d SUGRA + SYM on a smooth CY embedding the "right" gauge flux

Introduction III - Outline

1) Getting the smooth CY space (toric geometry)

- Local resolution of orbifold singularities
- Gluing the resolved singularities

2) 10d SUGRA on the smooth CY space

- Consistency conditions (flux quantization, SYM e.o.m, ...)
- Matching the orbifold models: local \& global informations

3) An example: T^{4} / Z_{3}
4) Conclusions, outlook and working plan

1 - Orbifold resolution

Some definitions

Divisors

- Given a complex n-dim space (parameters z^{i}), a divisor X is locally an analytic hypersurface (e.g. $z^{1}=0$).
- To each divisor X we can associate a complex line bundle.

Linear equivalence

- Given two divisors X and Y we say that they are equivalent $\mathrm{X} \sim \mathrm{Y}$ if the associated line bundles differ by a trivial one.
- The set of divisors corresponds, modulo linear equivalence, to the (1,1)-forms on the space.

Intersection of divisors

- An intersection of divisors defines curves in the space.
- Intersecting n divisors we get points, the intersecting number $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}=\mathrm{p}$ means that the hypersurface X_{1} intersects the curve $\mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ in p points (or that X_{2} intersects ...).
- Equivalently, we can read $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}=\mathrm{p}$ as the integral of the (1,1)-form X_{1} on $\mathrm{X}_{2} \ldots \mathrm{X}_{\mathrm{n}}$ (or the integral of X_{2} on ...).

Resolution of local singularities

- Each singularity (we treat) has form $\mathbf{C}^{n} / \mathbf{Z}_{\mathrm{m}}$, with parameters z^{i}.
- Before resolution, the space has n divisors D_{i}, the surfaces $z^{\mathrm{i}}=0$.
- The singularity is resolved
- adding new exceptional divisors, E's to the set of D's
- specifying the n linear relations between E's and D's: $D_{i} \sim a_{i j} E_{j}$.
- fixing the intersection numbers between D's and E's

Gluing together the singularities into $\mathrm{T}^{2 n} / \mathrm{Z}_{\mathrm{m}}$

- Each resolved singularity is equipped with
- a set of divisors $\left\{\mathrm{D}_{\mathrm{i}}, \mathrm{E}_{\mathrm{j}}\right\}$;
- a set of linear equivalences $D_{i} \sim a_{i j} E_{j}$;
- the local intersection numbers.
- Gluing:
-"put together" the divisors in a single set (add the $\mathrm{T}^{2 n}$ divisors R_{i})
- extend the linear equivalences to include all the objects
- compute the intersections among the various divisors.

A heuristic picture

- The R's are the $\mathbf{T}^{2 \mathrm{n}}$ inherited (1,1)-forms/cycles.
- The D's are auxiliary objects, defined in order to deal with the local case (where no R is there): they have fixed point index.
- Before of the resolution, the linear equivalence looks like

$$
\mathrm{R}_{\mathrm{i}} \sim \mathrm{n} \mathrm{D}_{\mathrm{i}}^{\mathrm{a}_{\mathrm{i}}}
$$

where n is the order of the orbifold, and there is an equivalence per each different D.

- The resolution is the introduction of the localized (hidden) topological objetcs, the E's. They do not come with extra equivalence relations, rather they modify the old equivalence relations.

2 - Gauge bundles on the resolved space

Consistency conditions

1) Flux quantization: $\int_{\gamma} F \in \mathbb{Z}$
2) Equations of motion/SUSY:

- F must be a $(1,1)$-form, fulfilling the DUY condition

3) The Bianchi Identity for H must be fulfilled

$$
\int_{C_{2}}(\mathcal{R} \wedge \mathcal{R}-F \wedge F)=0
$$

In the language of divisors:

- F can be written as $F=\mathrm{E}_{\mathrm{i}} \mathrm{V}^{\mathrm{il}} \mathrm{H}^{\mathrm{I}}$
- E_{i} the localized (1,1)-forms (flux invisible in blow-down)
- H^{I} elements in the Cartan algebra of $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$
- Quantization: $\mathrm{V}_{\mathrm{i}} \mathrm{I}$ must be integers (half-integers)
- E.o.m.: conditions on the Kaehler moduli
- Bianchi Identity: use the splitting principle and the intersections model dependent conditions
Spectrum: from the Dirac index.

Matching the orbifolds: local informations

Basic idea:

- on the orbifold side there are non-trivial identifications "going "round" the singularity, dictated by the embedding of the orbifold action in the gauge degrees of freedom

$$
\mathrm{g}: T^{a} \rightarrow e^{2 \pi i H^{I} V_{I} / n} T^{a} e^{-2 \pi i H^{I} V_{I} / n}
$$

- on the bundle side the same identifications are generated by the presence of the flux (depending on how it is embedded in $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$)
"Trivial" example: C^{3} / Z_{3}
- the resolution is obtained adding a single exceptional divisor E .
- take then $\mathcal{F}=V_{I}^{8} H^{I} E / 3$, quantization fixes the vector to integer or half integer values, the boundary effect (and identification) is

$$
\int_{D_{2} D_{3}} \mathcal{F}=\frac{V_{I}^{g}}{3} H^{I} E D_{2} D_{3}=\frac{V_{I}^{g}}{3} H^{I} \sim \frac{V_{I}}{3} H^{I}
$$

N.B. The Bianchi identity is $V^{g^{2}}=12$, to be compared with the modular invariance condition $V^{2}=0 \bmod 6$!

Less trivial example: C^{2} / Z_{3}

- the resolution needs two exceptional divisors E_{1} and E_{2}.
- we have then two possible shift vectors, since we can have

$$
\mathcal{F}=V_{I 1}^{g} H^{I} E_{1} / 3+V_{I 2}^{g} H^{I} E_{2} / 3
$$

- but we also have two different identifications (in the previous case we had three, but all equivalent), so we still have a single choice (up to $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$ lattice elements)

$$
V \sim V_{2}^{g} \sim-V_{1}^{g}
$$

- again we can check the Bianchi identity and see

$$
V_{1}^{g^{2}}+V_{2}^{g^{2}}+V_{1}^{g} V_{2}^{g} \sim V_{1}^{g^{2}}=8
$$

that should be compared with the modular invariance condition

$$
V^{2}=2 \bmod 6
$$

again, the introduction of $\mathrm{SO}(32) / \mathrm{E}_{8} \times \mathrm{E}_{8}$ lattice vectors plays an important role in the matching (these are irrelevant from the orbifold perspective).

Another example: $\mathrm{C}^{3} / \mathrm{Z}_{4}$

- complex coordinates z_{1}, z_{2}, z_{3}
- Z_{4} fixed points: singular case, only $3 \mathrm{D}_{\mathrm{i}}$ divisors, planes $\mathrm{z}_{\mathrm{i}}=0$.

Another example: $\mathrm{C}^{3} / \mathrm{Z}_{4}$

- complex coordinates z_{1}, z_{2}, z_{3}
- Z_{4} fixed points: resolved case, add E_{1} and E_{2}, with E_{1} compact

Another example: $\mathrm{C}^{3} / \mathrm{Z}_{4}$

- complex coordinates z_{1}, z_{2}, z_{3}
- Z_{4} fixed points: resolved case, add E_{1} and E_{2}, with E_{1} compact $D_{3} \quad$ and E_{2} extending in the z_{3} direction -- shared

- Point: in T^{6} / Z_{4} there are Z_{2} fixed points: singular case, two divisors $\mathrm{D}_{1}, \mathrm{D}_{2}$
$\mathrm{D}_{1} \mathrm{D}_{2}$

Another example: $\mathrm{C}^{3} / \mathbb{Z}_{4}$

- complex coordinates $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$
- Z_{4} fixed points: resolved case, add E_{1} and E_{2}, with E_{1} compact

- Point: in T^{6} / Z_{4} there are \mathbf{Z}_{2} fixed points: resolved case, add E , compact from the \mathbf{Z}_{2} perspective, but extending in the third torus

- The \mathbf{Z}_{4} singularity contains informations on the gauge embedding of the \mathbf{Z}_{4} and of the $\mathbf{Z}_{\mathbf{2}}$ orbifold rotation!

Another example: $\mathrm{C}^{3} / \mathrm{Z}_{4}$

- in detail, take $\mathcal{F}=\frac{1}{4} E_{1} V_{1}^{g} \cdot H+\frac{1}{2} E_{2} V_{2}^{g} \cdot H$
- we have the \mathbf{Z}_{4} identification

$$
\frac{1}{4} V_{Z_{4}} \cdot H \sim \int_{D_{1} D_{3}} \mathcal{F}=\int_{D_{2} D_{3}} \mathcal{F}=\frac{1}{4} V_{1}^{g} \cdot H
$$

- and the \mathbf{Z}_{2} identification

$$
\frac{1}{2} V_{Z_{2}} \cdot H \sim \int_{D_{1} E_{2}} \mathcal{F}=\int_{D_{2} E_{2}} \mathcal{F}=\frac{1}{2}\left(V_{1}^{g}-V_{2}^{g}\right) \cdot H
$$

- but the orbifold vectors are not independent!

$$
V_{Z_{4}} \sim V_{1}^{g} \sim-V_{2}^{g}
$$

- The orbifold identification highly constrains the possible models!

More complicated example: $\mathrm{C}^{3} / \mathbb{Z}_{6 \text {-II }}$

More complicated example: $\mathrm{C}^{3} / \mathbf{Z}_{6-\text { II }}$

Matching the orbifolds: global informations

- When we glue together the various singularity in a compact manifold we have

1) More choices for the flux

Ex. $\mathrm{T}^{4} / \mathrm{Z}_{3}$
local case: $\mathcal{F}=V_{I 1}^{g} H^{I} E_{1} / 3+V_{I 2}^{g} H^{I} E_{2} / 3$
global case: $\mathcal{F}=\frac{1}{3} \sum_{a, b=1}^{3}\left(V_{1}^{g a b} \cdot H E_{1}^{a b}+V_{2}^{g a b} \cdot H E_{2}^{a b}\right)$
all shift the same: no discrete Wilson lines different shifts: discrete Wilson lines there!
2) More compact 4-cycles: more conditions from the Bianchi identity

- Simple resolutions: easy to introduce the new Bianchi's keeping a local study
- $\mathbf{T}^{6} / \mathbf{Z}_{6 \text {-II: }}$ need a genuine global study (in progress)

3- $\mathrm{T}^{4} / \mathrm{Z}_{3}$ orbifold

in progress with S. Groot Nibbelink \& Felipe Paccetti

- $\mathbf{T}^{4}=\mathbf{T}^{2} \times \mathbf{T}^{2}$, complex coordinates $\mathrm{z}_{1}, \mathrm{z}_{2}$.
$-Z_{3}$ has 3×3 equivalent fixed points (singularities).

Local information:

- Each singularity has form \mathbf{C}^{2} / Z_{3}, with 2 divisors (pre-resolution):
D_{1} corresponding to $\mathrm{z}^{1}=0$ (fills the second \mathbf{C}-plane)
D_{2} corresponding to $\mathrm{z}^{2}=0$ (fills the first \mathbf{C}-plane)
- Resolution: add two exceptional divisors E_{1} and E_{2}.

Linear equivalences: $0 \sim 3 \mathrm{D}_{1}+\mathrm{E}_{1}+2 \mathrm{E}_{2}$
$0 \sim 3 \mathrm{D}_{2}+\mathrm{E}_{2}+2 \mathrm{E}_{1}$
Intersections: $\mathrm{D}_{1} \mathrm{E}_{2}=\mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{E}_{1} \mathrm{D}_{2}=1$

$$
\mathrm{D}_{1} \mathrm{E}_{1}=\mathrm{D}_{2} \mathrm{E}_{2}=0 \quad \mathrm{E}_{1} \mathrm{E}_{1}=\mathrm{E}_{2} \mathrm{E}_{2}=-2
$$

Gluing:

1) "Assign fixed point indices"

- The Eis are "localized" in the singularities, named 11', 12', 32', ...

for each E_{i} we assign two extra indices: $\mathrm{E}_{\mathrm{i}}^{\mathrm{j}{ }^{\prime}}$.
- D_{1} extends in the second torus and is localized in the first: we assign an extra index: D_{1}^{i}, similarly for $D_{2}: D_{2}^{j^{\prime}}$.
- The D's are shared among various fixed points!

2) Include the inherited divisors:

- The R's and D's are linked, on the singular space: $\mathrm{R}_{\mathrm{i}} \sim 3 \mathrm{D}_{\mathrm{i}}$.
- This link is the same for each of the D's : $R_{1} \sim 3 D_{1}^{i}, R_{2} \sim 3 D_{2}^{j^{\prime}}$
- After resolution this linear equivalence is modified as

$$
\mathrm{R}_{2} \sim 3 \mathrm{D}_{2}^{\mathrm{j}^{\prime}}+\sum_{\mathrm{i}=1}^{3}\left(\mathrm{E}_{2}^{\mathrm{ij}{ }^{\prime}}+2 \mathrm{E}_{1}^{\mathrm{ij}^{\prime}}\right), \mathrm{R}_{1} \sim 3 \mathrm{D}_{1}^{\mathrm{i}}+\sum_{\mathrm{j}^{\prime}=1^{\prime}}^{3^{\prime}}\left(\mathrm{E}_{1}^{\mathrm{ij} \mathrm{j}^{\prime}}+2 \mathrm{E}_{2}^{\mathrm{ij}{ }^{\prime}}\right)
$$

3) Compute the global set of intersections:

- Use of the local information
- Input on the intersection of the R's
$\mathrm{E}_{1}^{\mathrm{ij}{ }^{\prime}} \mathrm{E}_{2}^{\mathrm{pq}}=\delta^{\mathrm{ip}} \delta^{\mathrm{j}^{\prime} \mathrm{q}^{\prime}}, \quad \mathrm{E}_{1}^{\mathrm{ij}{ }^{\prime}} \mathrm{E}_{1}^{\mathrm{pq}}=\mathrm{E}_{2}^{\mathrm{ij}} \mathrm{E}_{2}^{\mathrm{pq}}{ }^{\prime}=-2 \delta^{\mathrm{ip}} \delta^{j^{\prime} \mathrm{q}^{\prime}}$,
$\mathrm{R}_{1} \mathrm{R}_{2}=3, \quad \mathrm{R}_{1} \mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{R}_{2}=0, \mathrm{R}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}^{\mathrm{pq}}=0$.
Outcome:
- Number of (1,1)-forms:
9×2 exceptional divisors
+ 2×3 "normal divisors"
-2×3 equivalences
$+\quad 2$ inherited divisors
$=20$
- Characteristic classes (splitting principle)
$c(\mathcal{R})=\left(1+\mathrm{R}_{1}\right)\left(1+\mathrm{R}_{2}\right) \prod_{i=1}^{3}\left(1+\mathrm{D}_{2}^{i}\right) \prod_{j^{\prime}=1^{\prime}}^{3^{\prime}}\left(1+\mathrm{D}_{1}^{j^{\prime}}\right) \prod_{i=1}^{3} \prod_{j=1^{\prime}}^{3^{\prime}}\left(1+\mathrm{E}_{1}^{i j^{\prime}}\right)\left(1+\mathrm{E}_{2}^{i j^{\prime}}\right)$
from linear equivalence and intersections:

$$
c_{1}(\mathcal{R})=0, c_{2}(\mathcal{R})=24
$$

Gauge bundles

- in general we have $\mathcal{F}=\frac{1}{3} \sum_{a, b=1}^{3}\left(V_{1}^{g a b} \cdot H E_{1}^{a b}+V_{2}^{g a b} \cdot H E_{2}^{a b}\right), ~\left(V_{1}\right)$
- given the orbifold identification we can choose $V_{1}^{g a b}=-V_{2}^{g a b}$
- assuming no Wilson lines we can take the same flux in all the fixed points $\quad \mathcal{F}=\frac{1}{3} V^{g} \cdot H \sum_{a, b=1}^{3}\left(E_{1}^{a b}-E_{2}^{a b}\right)$
- and consider the Bianchi Identity, using the intersections given before
$\int \mathcal{F}^{2}=\frac{V^{g^{2}}}{9}\left[\sum_{a b}\left(E_{1}^{a b}-E_{2}^{a b}\right)\right]^{2}=\frac{V^{g^{2}}}{9} 9\left(E_{1}^{2}+E_{2}^{2}-2 E_{1} E_{2}\right)=-6 V^{g^{2}}$
that means $V^{g 2}=8$

Matching the orbifold models

1) Orbifold shifts vs. line bundle embeddings;

V	$V_{1}^{g}=V+\Lambda_{1}$	$V_{2}^{g}=-V+\Lambda_{2}$
$\left(1^{2}, 0^{14}\right)$	$\left(2^{2}, 0^{14}\right)$	$-\left(2^{2}, 0^{14}\right)$
	$\left(2,1,0^{14}\right)$	$\left(1,-1,0^{14}\right)$
$\left(2,1^{4}, 0^{11}\right)$	$\left(2,1^{4}, 0^{11}\right)$	$-\left(2,1^{4}, 0^{11}\right)$
$\left(1^{8}, 0^{8}\right)$	$\left(1^{8}, 0^{8}\right)$	$-\left(1^{8}, 0^{8}\right)$
$\left(1^{14}, 0^{2}\right)$	$\frac{1}{2}\left(1^{14}, 3^{2}\right)$	$-\frac{1}{2}\left(1^{14}, 3^{2}\right)$
$\left(2,1^{10}, 0^{5}\right)$	$/ /$	$/ /$

2) Gauge group and matter: an example

orbifold	resolution
$V=\left(1^{14}, 0^{2}\right)$	$V_{1}^{g}=\frac{1}{2}\left(1^{14}, 3^{2}\right) \sim V, V_{2}^{g}=-V_{1}^{g}$
$\mathrm{U}(14) \times \mathrm{SO}(4)$	$\mathrm{U}(14) \times \mathrm{U}(2)$
$(14,4)+(91,1)+2(1,1)$	$(91,1)+11(14,2)+45(1,1)$
$9(1,1)+9\left(14,2_{+}\right)+18\left(1,2_{-}\right)$	
higgsing	
$(91,1)+11(14,2)+45(1,1)$	

in the blow-down regime we can have gauge enhancement or, in the blow-up there is a gauge symmetry breaking).

4 - Conclusions \& working plan

1) We show how to resolve the $\mathbf{C}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}}$ and $\mathbf{C}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}} \mathbf{x} \mathbf{Z}_{\mathrm{p}}$ singularities, how to wrap $\mathrm{U}(1)$ flux on them and match heterotic orbifold models, at the gauge group/chiral spectrum level
S. Groot Nibbelink, MT, M. Walter; T.-W. Ha, S. Groot Nibbelink, MT.
2) Using toric geometry we can glue the singularities and recover compact $\mathbf{T}^{\mathbf{n}} / \mathbf{Z}_{\mathrm{m}}$ and $\mathbf{T}^{\mathrm{n}} / \mathbf{Z}_{\mathrm{m}} \mathbf{x} \mathbf{Z}_{\mathbf{p}}$ orbifolds.
3) Study of compact heterotic models

- done the $\mathbf{T}^{6} / \mathbf{Z}_{3}$ model.
S. Groot Nibbelink, D. Klevers, F. Ploger, MT, P. Vaudrevenge
- in progress: the K3 models S. Groot Nibbelink, F. Paccetti, MT
- reobtain the results of G. Honecker, MT with explicit control on the line bundles
- tool for a study of Heterotic/IIA duality
- in progress: the appealing $\mathbf{T}^{6} / \mathbf{Z}_{6-\text { II }}$ model
S. Groot Nibbelink, MT, J.Held, F. Ruehle

4) Non-abelian bundle case

- in progress: the K3 models s. Groot Nibbelink, F. Paccetti, MT

