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Introduction I: Motivations

Two main different paths to heterotic string phenomenology

. Orbifold:
Orb!f()ld : a space flat everywhere but in some
compactifications

singular points where (mostly) SUSY
breaking, gauge symmetry breaking and
chiral matter reside.

String theory on orbifolds:
Pure CFT approach (strong link with

similar “non-geometric’” approaches).

Some good properties:
- Exact quantization of the string;

- Allow for systematic (computer assisted) searches;

- VCI'Y successfull Talk by A. Wingerter
Some disadvantages:

- Specitic point in the moduli space (the orbifold point);

- Singular space! Difficult to make use of the net of dualities;

- Ditticult to disentangle Mgur from Mpianck.



Introduction I: Motivations

Two main different paths to heterotic string phenomenology

String theory on a smooth CY: .
Pure SUGRA approach (KK reduction | Smooth manifold

in the presence of gauge fluxes). compactifications

Some good properties:

- Properties of the model (gauge group,
# of families etc) “easily” linked to
topological properties of the model;

- Generic point in moduli space
(introduction of tluxes, torsion, moduli stabilization mechanisms);

- Naturally embedded in the net of dualities with other strings;

- Mgur naturally linked to some internal volumes different from the
string scale (but perturbativity requires volumes to be “not too large™);

- Eg x Eg string: hidden sector “well hidden™.
Talks by R. Tatar, V. Braun, B. Ovrut

Some disadvantages:
- SUGRA approach;
- Ditficult to get good CY’s, good gauge tluxes etc.



Introduction I: Motivations

'Two main different paths to heterotic string phenomenology

Orbifold Smooth manifold
compactifications compactifications
My task:

—>
Reconciliate
them!

Reproduce the orbifold models as
- compactifications of 10d SUGRA/SYM
- on smooth manifolds (blown-up orbifolds)
- in the presence of gauge fluxes.




Introduction II: the Spirit

I - Resolve the orbifold geometry

Ia - Given the orbifold m

Ib - Cut apart each singularity and resolve it:

characterize the local geometric structure “hidden” in
the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved sing{ﬂarities:

characterize the to]pology of the whole CY space
(non-localized cycles)

Get a smooth compact CY space
(having the original orbifold as singular limit)




IT - Compactify 10d SUGRA/SYM on the smooth CY

- A crucial detail:
Orbifold action g embedded in the

Orbifold models: gauge degrees of freedom.
P

The freedom in doing this
generates a vast set of models!

SUGRA models:

Gauge flux wrapped on the
new localizes cycles, to be embedded in SO(32) or Eg x Es.
The freedom in the embedding generates a vast set of models

Reproduce each string orbifold model as a
compactification of 10d SUGRA + SYM on a smooth CY
embedding the “right” gauge flux




Introduction III - Outline

1) Getting the smooth CY space (toric geometry)
- Local resolution of orbifold singularities
- Gluing the resolved singularities

2) 10d SUGRA on the smooth CY space

- Consistency conditions (flux quantization, SYM e.o.m, ... )
- Matching the orbifold models: local & global informations

3) An example: T*/Z;

4) Conclusions, outlook and working plan




1 - Orbifold resolution
Some definitions Lust, Reffert, Scheidegger, Stieberger ‘07

Divisors

- Given a complex n-dim space (parameters zY), a divisor X is
locally an analytic hypersurface (e.g. z! = 0).

- To each divisor X we can associate a complex line bundle.

Linear equivalence

- Given two divisors X and Y we say that they are equivalent
X~Y it the associated line bundles ditfer by a trivial one.

- The set of divisors corresponds, modulo linear equivalence,
to the (1,1)-forms on the space.

Intersection of divisors

- An intersection of divisors defines curves in the space.

- Intersecting n divisors we get points, the intersecting number
X1 Xz ... Xn = p means that the hypersurface X intersects the
curve Xz ... X, in p points (or that Xs intersects ... ).

- Equivalently, we can read Xi X5 ... Xy = p as the integral of
the (1,1)-form Xjon Xz ... X, (or the integral of X; on ...).



Resolution of local singularities
- Each singularity (we treat) has form C®/Zy,, with parameters 2\,

- Before resolution, the space has n divisors Dj, the surfaces z' = 0.

- The singularity 1s resolved
- adding new exceptional divisors, E’s to the set of D’s
- specifying the n linear relations between E’s and D’s: Dj ~ ajj Ei.
- fixing the intersection numbers between D’s and E’s

Gluing together the singularities into T%*/Z,,

- FHach resolved singularity 1s equipped with
- a set of divisors {Dj, Ei};
- a set of linear equivalences Dj ~ aj E;;
- the local intersection numbers.
- Gluing:
““put together” the divisors in a single set (add the T?* divisors Rj)
- extend the linear equivalences to include all the objects
- compute the intersections among the various divisors.



A heuristic picture

- The R’s are the T?" inherited (1,1)-forms/cycles.

r—

- The D’s are auxiliary objects, defined in order to deal with
the local case (where no R 1s there): they have fixed point index.
- Betfore ot the resolution, the linear equivalence looks like
Ri~ n D%
where n 1s the order of the orbifold, and there is an equivalence
per each different D.
- The resolution is the introduction of the localized (hidden)
topological objetcs, the E’s. They do not come with extra

equivalence relations, rather they modify the old equivalence
relations.




2 - Gauge bundles on the resolved space

Consistency conditions
1) Flux quantization: / Fel
.

2) Equations of motion/SUSY:
- F'must be a (1,1)-form, tulfilling the DUY condition

3) The Bianchi Identity for H must be fulfilled
/O (RAR—FAF)=0

In the language of divisors:
- ' can be written as F'= F; VI H!
- E; the localized (1,1)-forms (flux invisible in blow-down)
- H! elements in the Cartan algebra of SO(32) or Egx Eg
- Quantization: Vi' must be integers (half-integers)
- E.o.m.: conditions on the Kaehler moduli
- Bianchi Identity: use the splitting principle and the intersections
model dependent conditions

Spectrum: from the Dirac index.



Matching the orbifolds: local informations

Basic idea:

- on the orbifold side there are non-trivial identifications “going
“round” the singularity, dictated by the embedding of
the orbifold action in the gauge degrees of freedom
o T eZm’HI Vi/n T e—ZniHI Vi/n B
- on the bundle side the same
identifications are generated by the
presence of the tlux (depending on how
it 1s embedded in SO(32) or Eg x Eg)
“Trivial” example: C°/Z;
- the resolution 1s obtained adding a single exceptional divisor E.
- take then F = V}g H'E/3, quantization fixes the vector to integer
or half integer values, the boundary etffect (and identification) is

Ve Vi 1%
F = —LH' ED,D; = —H'~ —H!
DDy 3 3 3

N.B. The Bianchi identity is V¢ > =12, to be compared with the
modular invariance condition V? = 0 mod 6 !



Less trivial example: C*/Z3

- the resolution needs two exceptional divisors Fq and Fo.
- we have then two possible shift vectors, since we can have
F = VEH E1/3+ VS H E»/3
- but we also have two different identifications (in the previous

case we had three, but all equivalent), so we still have a single
choice (up to SO(32) or Egx Eg lattice elements)

V~VS~-V§
- again we can check the Bianchi identity and see
VS 4 V8 L VEVE L V8% = 8
1 2 172 1
that should be compared with the modular invariance condition
V2 =2mod6

again, the introduction of SO(32) / Eg x Eg lattice vectors plays
an important role in the matching (these are irrelevant from the
orbifold perspective).



Another example: C°/Z,4

- complex coordinates z1, z2, 73
- Z.4 t1xed points: singular case, only 3 D;j divisors, planes z=0.

Ds




Another example: C°/Z,4

- complex coordinates z1. z2. z3
5 b

- Z4 tixed points: resolved case, add Ei1 and Ez, with E1 compact
D- and E» extending in the z3 direction -- shared
with other singularities in the third torus.




Another example: C°/Z,4

- complex coordinates z1. z2. z3
5 b

- Z4 tixed points: resolved case, add Ei1 and Ez, with E1 compact
D- and E» extending in the z3 direction -- shared
with other singularities in the third torus.

Dl EZ D2

- Point: in T®/Z4 there are Z; fixed points:
singular case, two divisors D1, D>

D Do




Another example: C°/Z,4

- complex coordinates z1. z2. z3
d d

- Z4 tixed points: resolved case, add Ei1 and Ez, with E1 compact
D- and E» extending in the z3 direction -- shared
with other singularities in the third torus.

Dl EZ D2

- Point: in T®/Z4 there are Z; fixed points: resolved case, add E,
compact from the Z; perspective, but extending in the third torus

D1 ]'3 Do

- The Z4 singularity contains informations on the gauge embedding
of the Z4 and of the Z; orbifold rotation!



Another example: C°/Z,4

- 1n detail, take F = }LElVf - H + %EzVi - H

- we have the Z4 identification

1 1
—VZ4-H~f7—‘=f7-‘:—V§-H
4 D1 D5 D;,Ds 4

- and the Z» identification

1 1
—VZJHNfT: F=5(Vi-V;y)-H
2 D1E, D:Ey 2

- but the orbifold vectors are not independent!

8 8
Vg, ~ V8 ~ =V

- The orbifold identification highly constrains the possible models!



More complicated example: C3/Zg.11
in progress with S. Groot Nibbelink, J. Held, F. Ruehle

- there are 4 exceptional divisors
- we have Zg, Z.3 and Z.2 1dentifications




More complicated example: C3/Zg.11
in progress with S. Groot Nibbelink, J. Held, F. Ruehle

- there are 4 exceptional divisors
- we have Zg, Z.3 and Z.2 1dentifications
- we have 5 different possible resolutions!




Matching the orbifolds: global informations
- When we glue together the various singularity in a compact
manifold we have
1) More choices for the flux
Ex. T4/Z3
local case: F = Vfll—ll E{/3+ VIgZHI E,/3

3
1
global case: F = e Z (ngb -HEﬁb n Vggb -HEgb)
a,b=1
all shift the same: no discrete Wilson lines
different shifts: discrete Wilson lines there!

2) More compact 4-cycles: more conditions from the
Bianchi identity
- Simple resolutions: easy to introduce the new Bianchi’s
keeping a local study
- T®/Ze.11: need a genuine global study (in progtess)



3 - T4/Z; orbifold

in progress with S. Groot Nibbelink & Felipe Paccetti
- T4 = T?x T? complex coordinates z1, z>.

- Z3 has 3 x 3 equivalent fixed points (singularities).

Local information:

- Each singularity has form C%/Z3, with 2 divisors (pre-resolution):
D1 corresponding to z!=0 (fills the second C-plane)

D> corresponding to z2=0 (fills the first C-plane)
- Resolution: add two exceptional divisors Eiand Fo.

Linear equivalences: 0 ~3 D1+ E1 + 2

O~3D>)+ Ey,+ 2
2 = EoF1 = E4D2 =1
1 — D2E2 =0 E1E1 — EzEz = -2

2
1

eslles

Intersections: 1!

D]

(L1 (L]



Gluing:
1) “Assign fixed point indices”

- The E’s are “localized” in the singularities, named 117, 12°) 327 ...

o3 03
C Y U YA
o1 o

for each E; we assign two extra indices: B

- D1 extends in the second torus and 1s localized in the first:
we assign an extra index: D}, similarly for Da: Di.

- The D’s are shared among various fixed points!

2) Include the inherited divisors:
- The R’s and D’s are linked, on the singular space: Ri~3D:.
- This link is the same for each of the D’ : Ry ~ 3D}, Ry ~ 3D}

- After resolutlon this linear equivalence is modlﬁed as

RZNSDJJrZ(E +2E7) R1~3D1+Z(E +2EY )




3) Compute the global set of intersections:
- Use of the local information
- Input on the intersection of the R’s
EVERY = §Pgi'e | EVEPY = EVEDY = —24%§i'Y
RiRy =3, RiR; = RRy =0, RiE™ = 0.

Outcome:
- Number of (1,1)-forms:
9 x 2 exceptional divisors
+ 2 x 3 “normal divisors”™
— 2x 3 equivalences
+ 2 inherited divisors
= 20

- Characteristic classes (sylitting principle)
3 3 3

c(R)=(1+R)A+R) JT1+DY) TTA+D)H T TT (1 +EV)(1+EY)

=1 9'=1' 1=1 5=1'
from linear equivalence and intersections:

((R) =0, ca(R) = 24.




Gauge bundles ;

- 1n general we have ¥ = % Z (ngb H E?b N Vggb -HEgb)
a,b=1
- given the orbifold identification we can choose Vg”b Vgab

- assuming no Wilson lines we can take the same ﬂux in all the

fixed points 1
F ==-Vs. ab ab
3 Ve -H Eb 1 E ~ E; )

- and consider the Bianchi Identity, using the intersections given

before :

& vs2 | } ) Vs>
N 7= 9 ;‘ (Elb - Ezb)‘ = 79(]52 + E2 — 2]51]52) — _p/82

that means ng — 8



Matching the orbifold models
1) Orbifold shifts vs. line bundle embeddings;

1% VE=V+A | Vi=-V+ A
(12, 014) (22, 014) _(22, 014)
(2,1,01%) (1,-1,0%)
(2, 14, 011) (2, 14’ Oll) _(2, 14, 011)
(18, 08) (18, 08) _(18, 08)
(114, 02) %(114’ 32) _ % (114, 32)
(2,1%,0) /I /I




2) Gauge group and matter: an example

orbifold resolution
V = (1,07 V=113 ~V, Vi =-V¢$
U(14) x SO(4) U(14) x U(2)
(14,4) + (91,1) + 2(1, 1) (91,1) + 11(14, 2) + 45(1, 1)
9(1,1) + 9(14,2,) + 18(1,2.)
higgsing
(91,1) + 11(14, 2) + 45(1, 1)
in the blow-down regime we can have gauge enhancement

ot, in the blow-up there 1s a gauge symmetry breaking).



4 - Conclusions & working plan

1) We show how to resolve the C*/Zy, and C*/Zmx Z;,

singularities, how to wrap U(1) tlux on them and match
heterotic orbifold models, at the gauge group/chiral

spectrum level S. Groot Nibbelink, M'T, M. Walter;
T.-W. Ha, S. Groot Nibbelink, MT.

2) Using toric geometry we can glue the singularities and

recover compact T?/Zy, and T/ Zm x Z,, orbifolds.

3) Study of compact heterotic models
- done the T®/Z3 model.

S. Groot Nibbelink, D. Klevers, F Ploger, MT, P. Vaudrevenge
- 1n progress: the K3 models S. Groot Nibbelink, F. Paccetti, MT

- reobtain the results of G. Honecker, MT with explicit
control on the line bundles

- tool for a study of Heterotic/ITA duality
- in progtress: the appealing T®/Ze.nm model
S. Groot Nibbelink, MT, J.Held, E£ Ruehle

4) Non-abelian bundle case
- 1n PIrogress: the K3 models S. Groot Nibbelink, F. Paccetti, MT




