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✤ Some significant progress in string phenomenology has been 
based in exploring new and more general string vacua

✤ Classical example: type IIB on a warped Calabi-Yau, threaded 
by background fluxes 
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✤ Some significant progress in string phenomenology has been 
based in exploring new and more general string vacua

✤ Classical example: type IIB on a warped Calabi-Yau, threaded 
by background fluxes

✦ Moduli stabilization

✦ Randall-Sundrum scenario

✦ SUSY-breaking

✦ de Sitter vacua

✦ Inflationary scenarios

Motivation

Dasgupta, Rajesh, Sethi’99
Kachru, Schulz, Trivedy’02

Giddings, Kachru, Polchinski’01

Kachru, Kallosh, Linde, Trivedi’03
Balasubramanian, Berglund, Conlon, Quevedo’05 

Kachru, Kallosh, Linde, Maldacena, McGreevy, Trivedi’03 



✤ In this setup, at the 10D supergravity level

✦ N=1 and N=0 vacua share the same geometry

✦ The flux introduces a new scale mflux

✦ The SUSY-breaking parameter is a geom. quantity G3(0,3) 

✤ By considering N=0 vacua and some stringy effects

✦ D-instantons

✦ α’ corrections

✦ anti-D3-branes

... one may obtain de Sitter vacua

Motivation

Kachru, Kallosh, Linde, Trivedi’03
Balasubramanian, Berglund, Conlon, Quevedo’05 

ds2 = e2Ads2
R1,3 + e−2A+Φds2

X6



✤ If we neglect the warp factor

✦ We can understand 4D physics in terms of the CY light fields, 
Kähler potential, and a flux-induced superpotential 

✦ SUSY-breaking is modulus dominated 

✦ The scalar pot. does not depend on          ⇒ no-scale vacuum

✤ On the other hand the warp factor can have important effects
✦ It will modify the spectrum of light fields

✦ It will modify the Kähler potential

✦ It is essential to create hierarchies, suppress soft terms and to uplift to 
de Sitter via anti-D3-branes

Motivation

Gukov, Vafa, Witten’99

〈FT 〉 #= 0

〈FT 〉

W =
∫

X6

G3 ∧ Ω

see Shiu’s talk



✤ These questions are hard to answer even in supergravity:

✦ We need to solve e.o.m. which are 2nd order

✦ We need to check stability

Motivation

Questions:

Can we find similar families of N=0 vacua?
Are they all no-scale?

Which new features can we obtain?
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Towards new N=0 vacua

✤ Main strategy in the literature: 

✦ Minimize a flux-inspired D=4 effective potential Vflux

✦ Guess the 10D geometry from its minima and K, Wflux

see Camara’s talk



Towards new N=0 vacua

✤ Main strategy in the literature: 

✦ Minimize a flux-inspired D=4 effective potential Vflux

✦ Guess the 10D geometry from its minima and K, Wflux

✤ However:

✦ We are neglecting all kinds of warp factor effects

✦ We do not know if Wflux captures all the light degrees of 
freedom of the theory

⇒ We could be missing important 4D physics!!! 

see Camara’s talk



Towards new N=0 vacua

Idea:

Construct N=0, 10D backgrounds similar to the 
warped Calabi-Yau case

Analyze later on their 4D physics



✤ What is the right way to generalize N=0 warped Calabi-Yau?

✤ Basically, this amounts to take the background “Killing” spinor    
and express it in terms of polyforms

Generalized geometry

⇓
Idea: use generalized complex geometry

ε

ε =
(

ε1
ε2

)
εi = ζi ⊗ ηi + ζ∗i ⊗ η∗i

{η1, η2} ↔ {Ψ1,Ψ2}
{

Ψ1 = ψ0 + ψ2 + ψ4 + ψ6

Ψ2 = ψ1 + ψ3 + ψ5

see Louis’ talk



✤ What is the right way to generalize N=0 warped Calabi-Yau?

✤ Basically, this amounts to take the background “Killing” spinor    
and express it in terms of polyforms

✤ This can be done in N=1 backgrounds and in backgrounds with 
approximate SUSY, like in N=0 wCY/F-theory compactifications

Generalized geometry

⇓
Idea: use generalized complex geometry

ε

see also Graña, Louis, Waldram’05
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✤ The e.o.m. constraints found by GKP are 

GKP from GCG

see also Graña and Polchinski’00

∗6G3 = iG3

∗6deΦ−4A = F5

∂̄τ = 0



✤ The e.o.m. constraints found by GKP are 

✤ These can be rewritten as:

GKP from GCG

see also Graña and Polchinski’00

∗6G3 = iG3

∗6deΦ−4A = F5

∂̄τ = 0

dH

[
e4A−ΦRe

(
eiJ

)]
= e4A∗̃6FRR

J = eΦ−2AJX6

FRR = F1 + F3 + F int
5



✤ The e.o.m. constraints found by GKP are 

✤ These can be rewritten as:

GKP from GCG

see also Graña and Polchinski’00

∗6G3 = iG3

∗6deΦ−4A = F5

∂̄τ = 0

dH

[
e4A−ΦRe

(
eiJ

)]
= e4A∗̃6FRR

dH

[
e4A−ΦReΨ1

]
= e4A∗̃6FRR

J = eΦ−2AJX6

FRR = F1 + F3 + F int
5

ΨwCY
1 = eiJ



✤                                              is a differential condition satisfied 
by general N=1 type II vacua

✤ It has also a nice D=4 interpretation

✦ e4A-Φ Re Ψ1 is a generalized calibration                                  
for space-time filling probe D-branes

✦ This calibration is “closed” when                                            
the condition above is satisfied

➡ A calibrated D-brane minimizes                                          
its energy with respect to any                                  
continuous deformation

GKP from GCG

Graña, Minasian, Petrini, Tomasiello’05

dH

[
e4A−ΦReΨ1

]
= e4A∗̃6FRR

Martucci’06

⇒ BPS lower bound

X
w

V(Σ,F)BPS ≤ V(Σ′,F ′)



✤ BPS bounds for D-branes are usual in N=1 backgrounds,      
but they can also appear in absence of bulk supersymmetry

✤ In the present context 

✤ If the latter is true everything works like in                                        
N=1 backgrounds ⇒ same BPS conditions

✤ In the GKP case ωsf = Re eiJ, so                                                
the BPS D-branes are

✦ D3-branes

✦ D7-branes with F SD = 0

BPS bounds

X
w

BPS bound   ⇔   ∃ gen. calibration ω



✤  What about other kinds of D-branes?

✤ The wCY/F-theory construction implies that

✦ dJX  = d(e2A-Φ J) = 0

✦ H  harm. + b1(X6) = 0 ⇒ H ∧ J = 0

➡  

More GKP from GCG

⇒ 4D strings also develop
a BPS lower bound

X
w

dH

[
e2A−ΦIm

(
eiJ

)]
= 0

⇔

dH

[
e2A−ΦImΨ1

]
≡ dHωst = 0

6



✤ There is a last kind of calibrated D-brane in N=1 vacua :         
4D domain walls

✤ The gen. calibration in this case is

where Ω0 is a closed, holomorphic (3,0)-form

✦ d Ω0 = 0 ⇒ D5-branes wrapping SL’s                                         
are BPS like in N=1 vacua

✦ H ∧ Ω0 = 0 ⇔ H(0,3) = 0 ⇔ G3(0,3) = 0 !!                                           
⇒ D7-branes in coisotropic 5-cycles                                              
are not BPS for N=0 vacua

More GKP from GCG

⇒ BPSness breaks down for 4D DW

X
w

Martucci’06

ωDW = e3A−ΦRe
(
eiθΨ2

)
= e−Φ/2Re

(
eiθΩX6

)
≡ Re

(
eiθΩ0

)

Is dHωDW=0?



✤ For general N=1 backgrounds we have

✤ In a warped Calabi-Yau

Generalized SUSY breaking

Graña, Minasian, Petrini, Tomasiello’05

dH

(
e4A−φReΨ1

)
= e4AFRR

dH

(
e2A−φImΨ1

)
= 0

dH

(
e3A−φΨ2

)
= 0

Equation D=4 interpretation

gauge BPSness

D-string BPSness

Domain Wall BPSness

Martucci’06

ΨwCY
1 = eiJ ΨwCY

2 = Ω0



✤ For an N=0 warped Calabi-Yau

✤ In a warped Calabi-Yau

Generalized SUSY breaking

dH

(
e4A−φReΨ1

)
= e4AFRR

dH

(
e2A−φImΨ1

)
= 0

dH

(
e3A−φΨ2

)
!= 0

Equation D=4 interpretation

gauge BPSness

D-string BPSness

DW  non-BPSness

ΨwCY
1 = eiJ ΨwCY

2 = Ω0



✤ We will focus on N=0 backgrounds that fulfill the gauge and 
D-string BPSness conditions but not the DW BPSness cond.

Generalized SUSY breaking

DWSB backgrounds

X
w

X
w

X
w



✤ We will focus on N=0 backgrounds that fulfill the gauge and 
D-string BPSness conditions but not the DW BPSness cond. 

✤ If such background leads to a D=4 effective theory the 
BPSness conditions will imply

✦ gauge BPSness  ⇒  stable gauge theories, no tachyons

✦ string BPSness  ⇒  no D-terms generated by fluxes

Generalized SUSY breaking

DWSB backgrounds

Koerber and Martucci’07



✤ In terms of gravitino and dilatino var. DWSB gives a constrained, 
but still complicated, SUSY-breaking ansatz. We can consider the 
subansatz

where Λmn is a local O(6) transformation that, in the spinorial rep. 
satisfies

✤ The DW non-BPSness condition then reads

DWSB

δψµ = r Γµζ ⊗
(

η∗1
η∗2

)
+ cc.

δλ′ = −2r ζ ⊗
(

η∗
1

η∗
2

)
+ cc.

δψm = −r ζ ⊗
(

ΛmnΓnη∗1
ΛnmΓnη∗2

)
+ cc.

η1 = iΛη2

dH

(
e3A−φΨ2

)
= ire3A−φ

[
ImΨ1 +

1
2
ΛmnΓm(ImΨ1)Γn

]



✤ We can further simplify things by assuming that Λ has the form of a 
certain “D-brane rotation”

✦  

✦  

✤ The DWSB condition then reads

✦ TΠ is integrable and dR = H|Π ⇒ generalized foliation

✦ A gauge D-brane wrapping Π and with F = R is BPS (aligned)

✦ Because of dH-exactness r cannot be any function

DWSB

TX6 = TΠ ⊕ T⊥Π

R ∈ ΛT ∗Π

}
Λ = 1⊥ − (g|Π + R)−1(g|Π −R)

dH(e3A−ΦΨ2) = 4i r (−)|Ψ2|e3A−Φ

√
det g|Π√

det(g|Π + R)
e−R ∧ σ(dVol⊥)



✤ This subansatz contains the warped Calabi-Yau case

✤ And dH(e3A-Φ Ψ2) = six-form ⇒ Π = point ⇒ aligned D3-branes

✤ In this case, r and Λ are related to 4D quantities

✦ r e-3A ≈ W0 ≈ FT   (T : overall Kähler modulus)

✦ Λmn structure of soft terms on D7-branes

✤ Does this apply to more general DWSB vacua?

GKP as DWSB

ΨwCY
1 = eiJ ΨwCY

2 = Ω0

G(0,3) = − i

2
re−3A Ω̄0 Λmn = gmn



✤ But... are these backgrounds actually vacua?

✤ At the supergravity level, one can check if the 10D e.o.m.’s are 
satisfied by extremizing the effective 4D action

Effective potential

Veff =
∫

X6

dVol6 e4A
{

e−2Φ[−R6 +
1
2
H2 − 4(dΦ)2 + 8∇2A + 20(dA)2]− 1

2
F 2

RR

}

+
∑

i∈loc. sources

τi

( ∫

Σi

e4A−Φ
√

det(g|Σi + Fi)−
∫

Σi

Cel|Σi ∧ eFi

)

Seff =
∫

X4

d4x
√
−g4

(1
2
NR4 − 2πVeff

)warped internal vol.

4D curvature

closed strings

open strings 
+ O-planes



✤ Extremizing Seff one obtains the full set of e.o.m.’s to be imposed 
on a type II flux compactification to 4D of the form

✤ For instance, one can derive that the external 4D space must be 
Einstein, with R4 = 8 π Veff/N 

✤ One can also rewrite Veff in terms of Ψ1 and Ψ2, and check that 
SUSY backgrounds automatically satisfy the e.o.m.’s

✤ For our DWSB subansatz to Minkowski, only the variation of the   
B-field and internal metric give non-trivial constraints, which 
however are automatically satisfied in simple examples

Effective potential

ds2
10 = e2A(y)ds2

X4
+ gmndymdyn

see also Koerber and Tsimpis’07



✤ This effective potential is also useful to exclude the presence of 
tree-level closed string tachyons

✤ For the DWSB subansatz above two conditions need to be 
imposed to make Veff semi-definite positive

✤ Namely, when going off-shell

✦ No vectors under SU(3) x SU(3) must appear in δλ′
✦ X6 must still be a generalized foliation

Tachyons?

dH(e3A−ΦΨ2) = ir̃(Π,R)



✤ We then obtain:

Tachyons?

VDWSB
eff =

1
2

∫

X6

dVol6 e4A
[
FRR − e−4AdH(e4A−ΦReΨ1)

]2

+
1
2

∫

X6

dVol6
[
dH(e2A−ΦImΨ1)

]2

+
1
2

∫

X6

e−2A|r|2
[
〈∗̃6̃(Π,R), ̃(Π,R)〉 −

|〈Ψ1, ̃(Π,R)〉|2

dVol6

]

+
∑

i∈D-branes

τi

∫

X6

e4A−2Φ
(
dVol6 ρloc

i − 〈ReΨ1, ji〉
)
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)

gauge BPS
ness
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✤ We then obtain:
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VGKP
eff =

1
4

∫

X6

dVol6 e4A
∣∣(1 + i∗6)G3

∣∣2

Shiu et al’08



✤ We then obtain:

✤ Notice that on-shell Veff does not depend on r 

Tachyons?

⇒ No-scale structure

VDWSB
eff =
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✤ Without truncating the theory, one may give a 4D interpretation of 
these vacua by using a 4D Weyl invariant formalism 

✤ One then finds a 4D gravitino mass of the form

✤ An F-term proportional to r for a field Δ                               
[“orthogonal” to Δ⊥ ∼ dH(e3A-Φ Ψ2)]

➡ A superpot. W independent of Δ ⇒ no-scale structure

➡ Non-vanishing gaugino masses for all but aligned D-branes 
whose gauge kinetic function depends on Δ⊥

➡ An F-term pattern that can be understood as Δ-dominated, 
quaternionic SUSY breaking in the constant warp factor limit

4D Interpretation

Koerber and Martucci’07

Nm3/2 =
∫

X6

r e3A−2ΦdVol6



✤ The DWSB subansatz contains many classes of vacua beyond the 
GKP class. One can describe their 10D geometry and provide 
explicit examples based on twisted-tori and β-deformed bkgs.

✤ One can compute moduli mediated soft-term masses 
microscopically, by using the fermionic D-brane action

✤ One can include anti-D-branes into these backgrounds and 
compute their effective potential

✤ One can generalize the DWSB ansatz to AdS4 compactifications

✤ One can follow a complementary approach to construct N=0 
vacua, based on integrability techniques, and construct novel 
classes of AdS4 vacua in this way

What else is in the book?



Conclusions
✤ We have discussed a very particular class of N=0 backgrounds, 

where the 4D BPS bounds of N=1 vacua are partially present

✤ We have considered backgrounds which contain the BPS bounds 
for gauge D-branes, with model-building applications in mind

✤ We have also imposed D-flatness in our backgrounds, aiming to 
reproduce the features of warped Calabi-Yau/F-theory N=0 vacua

✤ We have achieved this by considering a very particular subansatz, 
but this is clearly only the tip of the iceberg. Many more vacua with 
different features are out there

✤ Our discussion has remained in the supergravity limit of type II 
theories, but the main idea of classifying vacua via their 4D BPS 
bounds is general. It could be applied to other N=0 vacua!!

Schellekens’ talk


