

Minimal Anomalous U(1) Extension of the MSSM

Pascal Anastasopoulos INFN, Roma "Tor Vergata"

Based on works with:

M. Bianchi, E. Dudas, E. Kiritsis

F. Fucito, A. Lionetto, G. Pradisi, A. Racioppi, Ya. Stanev

Plan of the talk

- Introduction
- Anomalous U(1)'s
- Generalized Chern-Simons terms
- Anomalous U(1) extension of the MSSM
- Decays and LHC
- Conclusions

Typical D-brane Standard Models

• In open string vacua the Standard Model is located on some stacks of branes (intersecting or not):

Standard Model with many U(1)'s

- Up to now, there is no D-brane model that successfully describes <u>all</u> the characteristics of the Standard Model. We are working on this...
- However, if there is such D-brane model then it predicts several U(1)'s (as many as the number of the stack of D-branes that participate).
- From these U(1)'s:
 - One is the Hypercharge (massless and anomaly-free)
 - The rest are typically superficially anomalous (?!)

Anomalous U(1)'s

Consider a chiral gauge theory:

$$\mathcal{L} = -\frac{1}{4g_A^2}F^2 - \frac{1}{4g_G^2}Tr[G^2] + chiral\ fermions$$

$$\delta \mathcal{L}_{1-loop} = \epsilon \zeta \, Tr[G \wedge G]$$

If $\zeta = Tr[QT^aT^a] \neq 0$, the U(1) is anomalous and gauge symmetry is broken due to the 1-loop diagram:

Therefore under $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \epsilon$:

To cancel the anomaly we add an axion:

$$\mathcal{L}_{axion} = \frac{1}{2} (\partial_{\mu} a + M A_{\mu})^2 + \frac{\zeta}{M} \ a \ Tr[G \wedge G]$$

$$\delta \mathcal{L}_{axion} = -\epsilon \zeta \, Tr[G \wedge G]$$

which also transforms as: $a \to a - M\epsilon$, therefore: and the anomaly is cancelled.

Anomalous U(1)'s are massive

- The axion which mixes with the anomalous U(1)'s is a field emerging from the closed string sector (twisted RR field).
- The U(1)'s become massive due to the couplings with the axion:

$$A_{\mu}$$
 A_{ν} A_{ν}

■ These UV mass-term has been computed from a string 1-loop diagram:

Anomalous U(1)'s and F-I terms

• The masses of the anomalous U(1)s are proportional to the internal volumes. If "D" the brane where the U(1) is attached and "P" the O-plane where the axion is localized:

$$M_{phys}^2=g^2M_s^2\sim \frac{M_s^2}{V_{D-D\cap P}V_{P-D\cap P}}$$
 There are D-term like potentials of the form:
$$V\sim \left(s+\sum_i q_i\phi_i^2\right)^2$$

where s is a bulk modulus. In SUSY models, they are the chiral partners of the axions. If we are on the O-pane, $\langle s \rangle = 0$ and the global U(1) symmetry remains intact.

Hypercharge & anomalous U(1)'s

For the Hypercharge Y^{μ} , we have:

$$Tr[Y] = Tr[Y^3] = Tr[YT^aT^a] = 0$$

However, there might be mixed anomalies of Y^{μ} with the anomalous U(1)'s (ex: the Peccei-Quinn A^{μ}_{PQ}) due to:

$$Tr[Q^3] = c_3$$
 $Tr[Q^2Y] = c_2$ $Tr[QY^2] = c_1$ $Tr[QT^aT^a] = \xi$

These diagrams:

break the gauge symmetries:

$$A^{\mu}_{PQ} \rightarrow A^{\mu}_{PQ} + \partial^{\mu} \epsilon Y^{\mu} \rightarrow Y^{\mu} + \partial^{\mu} \zeta$$

$$\delta \mathcal{L}_{1-loop} = \epsilon \left[\frac{c_3}{3} F^{PQ} \wedge F^{PQ} + c_2 F^{PQ} \wedge F^Y + c_1 F^Y \wedge F^Y + \xi Tr[G \wedge G] \right]$$

$$- \left[c_2 F^{PQ} \wedge F^{PQ} + c_1 F^{PQ} \wedge F^Y \right]$$

Axionic terms are not enough

$$\delta \mathcal{L}_{1-loop} = \epsilon \left[\frac{c_3}{3} F^{PQ} \wedge F^{PQ} + c_2 F^{PQ} \wedge F^Y + c_1 F^Y \wedge F^Y + \xi Tr[G \wedge G] \right]$$
$$+ \zeta \left[c_2 F^{PQ} \wedge F^{PQ} + c_1 F^{PQ} \wedge F^Y \right] \qquad ?$$

To cancel the anomalies we add axions as before:

$$\mathcal{L}_{class} \sim -\frac{1}{4g_{PQ}^2} F_{PQ}^2 - \frac{1}{4g_Y^2} F_Y^2 + \frac{1}{2} (\partial^{\mu} a + M A_{PQ}^{\mu})^2$$

$$+ D_0 \ a \ Tr[G \wedge G] + D_1 \ a \ F^{PQ} \wedge F^{PQ} + D_2 \ a \ F^{PQ} \wedge F^Y + D_3 \ a \ F^Y \wedge F^Y$$

However, the axionic transformation $a \to a - M\epsilon$ does not cancel all the anomalies. The above action is Y^{μ} -gauge invariant.

We need non-invariant terms: Generalized Chern – Simons.

Chern-Simons terms

We need non-invariant terms:

the variation

the variation

$$\mathcal{L}_{CS} = \left[D_4 \ Y \wedge A_{PQ} \wedge F_{PQ} - D_5 \ A_{PQ} \wedge Y \wedge F_Y \right]$$

Now, a combination of the axionic and the GCS-terms cancel the anomalies:

$$\delta \mathcal{L}_{1-loop} = \epsilon \left[\frac{c_3}{3} F^{PQ} \wedge F^{PQ} + c_2 F^{PQ} \wedge F^Y + c_1 F^Y \wedge F^Y + \xi Tr[G \wedge G] \right]$$
$$+ \zeta \left[c_2 F^{PQ} \wedge F^{PQ} + c_1 F^{PQ} \wedge F^Y \right]$$

To cancel the anomalies we obtain:

$$D_0 = \xi$$
, $D_1 = \frac{c_3}{3}$, $D_2 = 2c_2$, $D_3 = 2c_1$, $D_4 = c_2$, $D_5 = c_1$

The anomalies fix the coefficients of the GCS-terms in the effective action.

The General Case

Consider the general Lagrangian:

It is easy to show that: $E \sim$

$$\mathcal{L} = -\frac{1}{4g_i^2} F_i^2 - \frac{1}{4g_a^2} Tr[G_a^2] + chiral \ fermions$$

$$-\frac{1}{2} \sum_{I} (\partial_{\mu} a^I + \sum_{i} M_i^I A_{\mu}^i)^2$$

$$+ \sum_{I,j,k} C_{Ijk} a^I F^j \wedge F^k + \sum_{I,a} D_{ia} a^I \ Tr[G^a \wedge G^a]$$

$$+ \sum_{i,j,k} E_{ijk} A^i \wedge A^j \wedge F^k$$

General Anomaly Cancellation

Under $A^i_{\mu} \to A^i_{\mu} + \partial_{\mu} \epsilon^i$ and $a^I \to a^I - M^I_i \epsilon^i$, the anomaly cancellation conditions are:

Special Cases: 1. No fermions.

2. Only one anomalous U(1).

Andrianapoli Ferrara Lledo

Ibanez Rabadan Uranga Marchesano Antoniadis Kiritsis Rizos etc

String Computation of GCS

$$k_{i}f \longrightarrow k_{i} \qquad M_{i(a)}^{r,f} \sim tr_{a}[\gamma^{k}\lambda_{i}]$$

$$k_{i}f \longrightarrow k_{i} \qquad C_{ij(a)}^{r,f} \sim tr_{a}[\gamma^{k}\lambda_{i}\lambda_{j}]$$

The GCS-terms are:

$$E_{[ij]k}^{(a)} = -\sum_{r,f} M_{[i(a)}^{r,f} C_{j]k(a)}^{r,f} \neq 0$$

which in general are different from zero.

Example of GCS in Z6

Example: Z_6 Orientifold: $[U(6)^2 \times U(4)]_9 \times [U(6)^2 \times U(4)]_5$

• There are:
$$\begin{cases} 2 \text{ non-anomalous} \\ 4 \text{ anomalous} \end{cases} \Rightarrow \begin{cases} 1 \text{ massless} \\ 5 \text{ massive} \end{cases}$$

Ibanez Marchesano Rabadan, Antoniadis Kiritsis Rizos, Anastasopoulos

• Non-zero GCS are needed: E_{iij} ~

$$\begin{pmatrix}
0 & 36 & -72 & 36 & 0 & -24 \\
-36 & 0 & 72 & 0 & -36 & 24 \\
24 & -24 & 0 & 24 & -24 & 0 \\
36 & 0 & -24 & 0 & 36 & -72 \\
0 & -36 & 24 & -36 & 0 & 72 \\
24 & -24 & 0 & 24 & -24 & 0
\end{pmatrix}$$

New couplings in D-brane models

- As it was mentioned before, all D-brane realizations of the Standard Model contain:
 - at least one massless U(1) (the Hypercharge)
 - various anomalous U(1)'s, which behave (almost) like Z's.
- It becomes clear that Generalized Chern-Simons terms are needed to cancel all the anomalies.
- Such terms provide new couplings, that distinguish D-brane models from all the Z'-models studied in the past.

Z-Z' Mixings

- Therefore, new anomaly-related couplings are present between the U(1)'s in the "Hypercharge"-basis.
- These couplings provide <u>very interesting decays</u> in the "photon"-basis.
- From Hypercharge to the photon-basis, we perform a rotation:

$$\begin{pmatrix} W^3 \\ Y \\ A_{PQ} \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & \mathbf{c_{13}} \\ c_{21} & c_{22} & \mathbf{c_{23}} \\ \mathbf{c_{31}} & \mathbf{c_{32}} & c_{33} \end{pmatrix} \begin{pmatrix} A \\ Z^0 \\ Z' \end{pmatrix}$$

where the coefficients are:

$$c_{11}, c_{12}, c_{21}, c_{22}, c_{33} \sim \mathcal{O}(1)$$
 $c_{13}, c_{23}, c_{31}, c_{32} \sim \mathcal{O}\left(\frac{M_Z^2}{M_s^2}\right)$

CS Couplings and LHC

Consider an anomaly canceling GCS-term like:

$$A_{PQ} \land Y \land dY \longrightarrow \begin{cases} Z^{0} \land A \land dA & \Rightarrow & Z^{0} \rightarrow \gamma\gamma & \sim & \mathcal{O}\left(\frac{M_{Z}^{2}}{M_{s}^{2}}\right), \\ A \land Z^{0} \land dZ^{0} & \Rightarrow & Z^{0} \rightarrow Z^{0}\gamma & \sim & \mathcal{O}\left(\frac{M_{Z}^{2}}{M_{s}^{2}}\right), \\ Z' \land A \land dA & \Rightarrow & Z' \rightarrow \gamma\gamma & \sim & \mathcal{O}\left(1\right), \\ Z' \land Z^{0} \land dZ^{0} & \Rightarrow & Z' \rightarrow Z^{0}Z^{0} & \sim & \mathcal{O}\left(1\right), \\ Z' \land Z^{0} \land dA & \Rightarrow & Z' \rightarrow Z^{0}\gamma & \sim & \mathcal{O}\left(1\right) \end{cases}$$

- Some terms are zero on-shell.
- Therefore, new signals may be visible in LHC, like:

$$pp \to Z' \to \gamma Z^0$$

MSSM and anomalous U(1)'s

- In order to study the phenomenological implications of the anomalous U(1)'s and the anomaly related coupling, we will focus on an extension of the MSSM with:
 - an additional anomalous vector multiplet V' and
 - an axionic multiplet S.
- These superfields transform as:

$$V'
ightarrow V' + i(\Lambda - \Lambda^{\dagger})$$
 $S
ightarrow S + 4 i M \Lambda$

under the additional U(1).

MSSM with one anomalous U(1)

• The MSSM particles are now charged under the additional vector multiplet:

	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_Y$	U(1)'
Q_i	3	2	1/6	Q_Q
U_i^c	$\bar{3}$	1	-2/3	Q_{U^c}
D_i^c	$\bar{3}$	1	1/3	Q_{D^c}
L_i	1	2	-1/2	Q_L
E_i^c	1	1	1	Q_{E^c}
H_u	1	2	1/2	Q_{H_u}
H_d	1	2	-1/2	Q_{H_d}

• These charges are in principle independent.

MSSM with one anomalous U(1)

Since we extend the MSSM, the usual Yukawa-terms,

$$\mathcal{L}_{W} = (y_{u}^{ij}Q_{i}U_{j}^{c}H_{u} - y_{d}^{ij}Q_{i}D_{j}^{c}H_{d} - y_{e}^{ij}L_{i}E_{j}^{c}H_{d} + \mu H_{u}H_{d})_{\theta^{2}} + h.c.$$

and charge universality constrain these charges,

$$Q_U = -Q_Q - Q_{H_u}$$

$$Q_D = -Q_Q + Q_{H_u}$$

$$Q_E = -Q_L + Q_{H_u}$$

$$Q_{H_d} = -Q_{H_u}$$

remaining with just three free parameters: Q_Q , Q_L , Q_{H_u} .

Possible Anomalies

For the (quite) general charges, we might have the anomalies:

MSSM & U(1): Stückelberg Terms

• In order to cancel the anomalies, we have to add to the usual MSSM Lagrangian, the SUSY extension of the axionic (Stückelberg) terms:

$$\mathcal{L}_{axion} = \frac{1}{2} (\partial_{\mu} a + M A_{\mu})^2 + \frac{\zeta}{M} \ a \ Tr[G \wedge G]$$
 which become:
$$\mathcal{L}_{axion} = -\frac{1}{4} (S + \bar{S} - 2M V^{(0)})^2 \Big|_{\theta^2 \bar{\theta}^2}$$

$$-\frac{1}{2} \Big\{ \left[\underbrace{c^{(a)}} S \ Tr[W^{(a)} W^{(a)}] + c^{(4)} S \ W^{(1)} W^{(0)} \right]_{\theta^2} + h.c. \Big\}$$

• The M, $c^{(a)}$, $c^{(4)}$ are parameters and will be fixed by anomaly cancellation.

MSSM & U(1): GCS Terms

• The Generalized Chern-Simons terms:

$$\mathcal{L}_{CS} = \left[D_4 \ Y \wedge A_{PQ} \wedge F_{PQ} - D_5 \ A_{PQ} \wedge Y \wedge F_Y \right]$$

will be "supersymmetrized" to:

$$\mathcal{L}_{GCS} = -d_{4} \left[\left(V^{(1)} D^{\alpha} V^{(0)} - V^{(0)} D^{\alpha} V^{(1)} \right) W_{\alpha}^{(0)} + h.c. \right]_{\theta^{2} \bar{\theta}^{2}}$$

$$+ d_{5} \left[\left(V^{(1)} D^{\alpha} V^{(0)} - V^{(0)} D^{\alpha} V^{(1)} \right) W_{\alpha}^{(1)} + h.c. \right]_{\theta^{2} \bar{\theta}^{2}}$$

$$+ d_{6} Tr \left[\left(V^{(2)} D^{\alpha} V^{(0)} - V^{(0)} D^{\alpha} V^{(2)} \right) W_{\alpha}^{(2)} \right.$$

$$+ \frac{1}{6} V^{(2)} D^{\alpha} V^{(0)} \bar{D}^{2} \left(\left[D_{\alpha} V^{(2)}, V^{(2)} \right] \right) + h.c. \right]_{\theta^{2} \bar{\theta}^{2}}$$

• The d_4 , d_5 , d_6 are again parameters and will be fixed by anomaly cancellation.

Anastasopoulos Fucito Lionetto Pradisi Racioppi Stanev

MSSM & U(1): Soft Breaking Terms

- For the soft-breaking terms, we can now include contributions from:
 - the gaugino (prime) λ'
 - the axion \cancel{a}
 - the axino ψ_S
- However, the axion do not contribute due to its particular transformation and the only new soft-terms are:

$$\mathcal{L}_{soft}^{new} = -\frac{1}{2} (M'\lambda'\lambda' + h.c.) - \frac{1}{2} (M_S \psi_S \psi_S + h.c.)$$

MSSM & U(1): New Terms

• Kinetic Mixing (from Stückelberg terms)

$$\frac{1}{4}W^{(0)}W^{(0)} + \frac{1}{4}W^{(1)}W^{(1)} - 2b_2^{(4)}g_0g_1\langle\alpha\rangle W^{(1)}W^{(0)}\Big|_{\theta^2}$$

However, since $b_2^{(4)} \sim 1/b_3 \sim 1/M_{V^{(0)}}$ and $M_{V^{(0)}} \sim 1~TeV$, such mixing will be ignored for our purposes.

- In addition, we have new D- & F- terms (from Stückelberg) which contribute the superpotential adding
 - new interactions and
 - modifying the masses of the particles.

MSSM & U(1): Photon

• After diagonalizations of the U(1) factors we obtain:

$$A_{\mu} = \frac{g_{2}B_{\mu} + g_{1}V_{3\mu}^{(2)}}{\sqrt{g_{1}^{2} + g_{2}^{2}}}$$

$$Z_{0}^{\mu} = \frac{g_{2}A^{3\mu} - g_{1}B^{\mu}}{\sqrt{g_{1}^{2} + g_{2}^{2}}} + g_{0}Q_{H_{u}}\frac{\sqrt{g_{1}^{2} + g_{2}^{2}}v^{2}}{2M_{V^{(0)}}^{2}}C^{\mu} + \mathcal{O}[g_{0}^{3}, M_{V^{(0)}}^{-3}]$$

$$Z'^{\mu} = C^{\mu} + \frac{g_{0}Q_{H_{u}}v^{2}}{2M_{V^{(0)}}^{2}}\left(g_{1}B^{\mu} - g_{2}A^{3\mu}\right) + \mathcal{O}[g_{0}^{3}, M_{V^{(0)}}^{-3}]$$

with corresponding masses:

$$M_{\gamma}^{2} = 0$$

$$M_{Z_{0}}^{2} = \frac{1}{4} \left(g_{1}^{2} + g_{2}^{2} \right) v^{2} - (Q_{H_{u}})^{2} \frac{\left(g_{1}^{2} + g_{2}^{2} \right) g_{0}^{2} v^{4}}{4M_{V^{(0)}}^{2}} + \mathcal{O}[g_{0}^{3}, M_{V^{(0)}}^{-3}]$$

$$M_{Z'}^{2} = M_{V^{(0)}}^{2} + g_{0}^{2} \left[(Q_{H_{u}})^{2} \left(1 + \frac{g_{1}^{2} v^{2} + g_{2}^{2} v^{2}}{4M_{V^{(0)}}^{2}} \right) - \frac{\langle \alpha \rangle g_{1}^{3} \mathcal{A}^{(4)}}{64\pi^{2} M_{V^{(0)}}} \right] v^{2} + \mathcal{O}[g_{0}^{3}, M_{V^{(0)}}^{-3}]$$

Ward Identities

- Our model still contains various unknown parameters, related to the Stückelberg and the GCS terms.
- In order to fix them, we use the Ward-Identities, where in the broken phase look like:

$$-ik^{\mu} \left(V^{\mu}(k) \right) + m_V \left(G_V(k) - \dots \right) = 0$$

where: - V^{μ} the massive gauge boson,

- G_V the related "would be" Goldston Boson

and m_V the related mass coming from the coupling: $m_V V^\mu \partial_\mu G_V$.

Decays for different values

- After fixing the couplings of the Stückelberg and the GCS terms, we evaluated various processes for the only free parameters:
 - Various $M_{Z'}$.
 - Various charges Q_Q , Q_L , Q_{H_u} .
- In particular, we focus on the decays:

$$Z' \rightarrow Z_0 \gamma \qquad \qquad Z' \rightarrow Z_0 Z_0$$

• Fixing for simplicity: $Q_{H_u} = 0$.

$Z' \rightarrow Z_0 \gamma \quad \& \quad Z' \rightarrow Z_0 Z_0$

• Decay rates: for $M_{Z^\prime}=1~TeV$

Decay rates for $Z' \to Z_0 \gamma \& Z' \to Z_0 Z_0$.

Z' at LHC

- Even though the detection of the Z' is expected in Drell-Yan processes, its anomalous or non-anomalous nature could be tested by decays of the form: $Z' \to Z\gamma$, $Z' \to ZZ$.
- These decays will lead to four lepton events a very clean signal that might be visible at LHC.
- A detailed phenomenological analysis with Monte Carlo generators is required for searches at the LHC where a very accurate determination of the QCD and electroweak backgrounds will be considered.

Conclusions

- Anomalous U(1)'s are a generic prediction of all D-brane Standard Models.
- These U(1)'s are massive and if the string scale is low (few TeV region) such gauge bosons become the tell-tales signals of these models.
- Anomaly related Chern Simons-like couplings produce new couplings that distinguish such models from other Z'-models studied in the past.
- Such signals may be visible at LHC.