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Plan of talk:

• Flux vacua systems as a problem in 
algorithmic algebraic geometry

• Elimination and constraints on flux 
parameters

• Saturation decomposition and finding vacua



Vacua of flux compactifications as 
algebraic varieties.

•                      via the usual expression:-

• Let us take                                    as usual. For example...

• Take                      to be an arbitrary holomorphic 
polynomial of the fields (simplest case for now).

K, W → V

Here the ε’s and µ’s are parameters describing the fluxes present in the compactified space,

while the p’s and q’s describe the intrinsic torsion.

Non-perturbative contributions to the superpotential of course will not take the form of

a polynomial such as (4). The simplest implementation of the techniques we will shortly

describe requires the superpotential to be polynomial in the fields. Given the possibility

of complete perturbative stabilisation in some models we shall adhere to this case for the

present. Later, we shall return to the issue of non-perturbative contributions to the super-

potential where we shall describe how these may be accommodated within the structure we

advocate.

Given the above Kähler and superpotentials one can proceed, for uncharged moduli fields,

to construct the scalar potential from the usual formulas [16]. The scalar potential is given

by:

V = eK
[

KAB̄DAWDB̄W̄ − 3|W |2
]

. (5)

As usual the DA represents the Kähler derivative ∂A + ∂A(K) and KAB̄ is the inverse of the

field space metric

KAB̄ = ∂A∂B̄K . (6)

Given the above-mentioned forms of the Kähler potential and the superpotential, the po-

tential is a quotient of polynomials in the fields. This feature, together with the polynomial

nature of W , will be crucial to the methods which we will utilise throughout this paper. We

note that the potential can still be written as such a quotient even when raising terms such

as those added in [4] are included.

In the problem of moduli stabilisation, we are interested in finding the extrema, and

in particular the minima, of the potential (5). In addition to the supersymmetric minima

commonly discussed in the literature, for which DW = 0, this will in general include non-

supersymmetric vacua. These vacua can be de Sitter or Minkowski even in the absence of

D-terms or any other “raising” mechanisms. Non-supersymmetric minima of this type are

not normally considered in the literature as even in simple models they are extremely difficult

to find - a point to which we shall return shortly. The other extrema of the potential are also

of some interest. The position of maxima neighbouring stabilised vacua, for example, might

tell us about which set of cosmological initial conditions will allow the system to obtain the

stabilised configuration. Likewise, such information can make it possible to estimate the rate

of decay of a metastable vacuum due to tunneling.
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K = − log(P (MA, M̄ B̄))

K = −3 log(T + T̄ )− 3 log(Z + Z̄)− log(S + S̄)

W = Q(MA)



•          is then a rational function      .

• So to obtain                we can either set the denominator 
to infinity or the numerator to zero.

• Denominator           corresponds to the runaway 
extremum at infinity in field space - not physically 
interesting.

•  Therefore we wish to study the solutions given by  
vanishing numerator polynomials. We denote this by,

∂V = 0

∂AV ∀A

→∞

〈∂V 〉



• In terms of complex fields       and       the polynomials          
are not holomorphic (or purely anti-holomorphic).

• So write each field in terms of its real and imaginary parts...

• and temporarily complexify these (i.e. pretend        and       are 
complex fields - we will return to this later).

• The locus of extrema of the potential in (complexified) field 
space, given by               , is now described by the vanishing of a 
set of holomorphic polynomials.

• We can rewrite the F-terms in exactly the same way - also 
turning those into polynomial expressions (important later).

MA M̄ B̄ 〈∂V 〉

MA = mA + iµA

mA µA

〈∂V 〉 = 0

We have rewritten the extremal locus of the potential as an 
algebraic variety.



Elimination orderings: Constraints 
on flux parameters.

• In what follows                 is the set of all polynomials 
in the fields and parameters.

• We need an unambiguous ordering on the monomials:

• For our purposes we will require a monomial 
ordering with the elimination property:

• Now consider, for example, the equations for a SUSY 
Minkowski vacuum: 〈∂W, W,Constraints〉

C[MA, aα]

(M1)2 > M1a8 > a1a94 > . . .

P ∈ C[MA, aα],LM(P ) ∈ C[aα]⇒ P ∈ C[aα]



• Start with our set of polynomials: Call it 

- For any pair                   multiply by monomials and 
form difference so as to cancel leading monomials:

- Reduce as much as possible w.r.t. G.

- If           consider next pair

- If           add h to G and return to beginning

• Algorithm terminates when all pairs reduce to 0. Final 
set of polynomials is called      .

The Buchberger Algorithm:

PI , PJ ∈ G

S
G−→ h

h = 0

h != 0

G = {PI}

GF

S = p1PI − p2PJ s.t. LM(PI),LM(PJ) cancel



•       is a Grobner basis - a form for our equations 
with lots of nice properties.

• The important property for us today is that 
                 is a complete set of constraints necessary 
and sufficient for a solution to exist to our original 
equations.

• This elimination process has a nice geometrical 
interpretation - projection onto the space of 
parameters.

• We can now apply this technology to find the 
constraints on flux parameters which are necessary 
and sufficient for the existence of certain types of 
vacua.

GF ∩ C [aα]

GF



An example:Let us illustrate with a concrete example from the literature. Take equation (2.6) of [13],

which presents a non-geometric flux superpotential of the form

W = a0 − 3a1τ + 3a2τ
2 − a3τ

3 (21)

+S(−b0 + 3b1τ − 3b2τ
2 + b3τ

3)

+3U(c0 + (ĉ1 + č1 + c̃1)τ − (ĉ2 + č2 + c̃2)τ
2 − c3τ

3),

with the following constraints on the fluxes.

a0b3 − 3a1b2 + 3a2b1 − a3b0 = 16 (22)

a0c3 + a1(č2 + ĉ2 − c̃2) − a2(č1 + ĉ1 − c̃1) − a3c0 = 0

c0b2 − c̃1b1 + ĉ1b1 − č2b0 = 0

č1b3 − ĉ2b2 + c̃2b2 − c3b1 = 0

c0b3 − c̃1b2 + ĉ1b2 − č2b1 = 0

č1b2 − ĉ2b1 + c̃2b1 − c3b0 = 0

c0c̃2 − č2
1 + c̃1ĉ1 − ĉ2c0 = 0

c3c̃1 − č2
2 + c̃2ĉ2 − ĉ1c3 = 0

c3c0 − č2ĉ1 + c̃2č1 − ĉ1c̃2 = 0

ĉ2c̃1 − c̃1č2 + č1ĉ2 − c0c3 = 0 .

There are also additional constraints which take the same form as those above but with

the hats and checks switched around. Various useful pieces of algebraic processing of these

constraints are provided in [13]. These relations come from, for example, tadpole cancellation

conditions and integrability conditions on Bianchi identities.

Finding Minkowski vacua of this system is then the problem of studying the ideal

I = {W, ∂τW, ∂SW, ∂UW} in the ring C(a0,1,2,3, b0,1,2,3, c0,1,2,3)[S, T, U ], which is a polyno-

mial ring in variables S, T and U but with all fluxes treated as parameters (formally, we

call C(a0,1,2,3, b0,1,2,3, c0,1,2,3) an algebraic extension of the ground field C). If one uses an

implementation of the relevant algorithms in a package such as [10, 11] then it is assumed

that none of the flux parameters vanish. The Gröbner basis of I in lexicographic order then

immediately gives that I has negative dimension. In other words, there are no roots in I.

This is a quite powerful statement without ever solving for anything, or even imposing the

constraints (22): there are no Minkowski vacua for this model, if all of the parameters are

non-vanishing.

Of course, some flux parameters can vanish. So let us treat them as variables and place

I in an elimination order Gröbner basis, and eliminate S, T, U to obtain our constraints as

described above.

The full result for the superpotential given in (21) can be obtained in a matter of seconds4.

The result is a system of 28 constraint equations which the fluxes must obey. We do not
4The best way to achieve this is to homogenise the problem, use a Hilbert driven global elimination order

Gröbner basis calculation, and then dehomogenise again at the end. See [31] for details.
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where

+ additional constraints of same form but with hats and checks switched.

Shelton et. al. hep-th/0508133



• The equations             are complicated as they contain a 
lot of information. 

• It would be useful to split the equations up into a series 
of smaller equations - one for each locus of turning 
points in field space.

• The mathematicians have algorithms (for algebraic 
varieties) which do precisely this - primary 
decomposition.

• These algorithms on their own are too slow for our 
applications. We have to split up the equations a bit first 
ourselves. 

Simplifying the equations for vacua: 
Saturation Decomposition.

∂V = 0



• The main splitting tool used in this work states:

      - Here            is the set of equations whose roots 
give the points in          where         . 

•          is easy to obtain, just add           to eqns!

• How about            ?

- Consider:
These equations have a solution iff       do 
and          .

- Now eliminate t using the technique we just 
learned. The result is            .

(I, F∞) = 〈I, tf − 1〉 ∩ C[φi, aα]

〈I〉

(I, F∞)

L(〈I〉) = L(〈I, F 〉) ∪ L((I, F∞))

F != 0
(I, F∞)

(I, F∞)

〈I, F 〉 F = 0

F != 0

〈I, tF − 1〉 ∈ C[MA, aα, t]

L(〈I〉)



Geometrically, (12) is the split we desire: it says that L(I) is the union of a subvariety

L(
√

(I : f∞)) where f does not vanish, with a subvariety L(
√

〈I, f〉) where f does vanish.

We pause to ask, what is a good choice of polynomial f , or, iteratively, a set of such f ’s?

In general, finding a non-trivial zero divisor, an element f for which (I : f) #= I, can be

very difficult. For the problem at hand, however, our supersymmetric theories automatically

provide the perfect choice! These f ’s are simply the F-flatness conditions, or at least their

real and imaginary parts. Recall that one of our problems from (5), the partial F-flat case,

is to find the solutions to 〈∂V 〉 such that fi = DiW vanishes only for a subset of fields

i = 1, . . . , m < n. We therefore, naturally, choose each F-flatness equation as f , iterating

from m + 1 to n. Geometrically, we can write this saturation decomposition of the vacuum

manifold as:

L(∂V ) = L(〈∂V, f1, f2, ..., fn〉) ∪
⋃

i

L((〈∂V, f1, f2, . . . , fi−1, fi+1, . . . , fn〉 : f∞
i )) ∪

⋃

i,j

L(
(

(〈∂V, f1, f2, . . . , fi−1, fi+1, . . . , fj−1, fj+1, . . . , fn〉 : f∞
i ) : f∞

j

)

) ∪ (13)

...

L(
((

... (∂V : f∞
1 ) . . . : f∞

n−1

)

: f∞
n

)

) .

In words, what this decomposition describes is a classification of the different possible vacua

according to how many of the F-flatness conditions they obey. Thus the first term here is

simply the supersymmetric vacuum space. The second term is the union of all the vacuum

spaces for which the real part of only one of the F-flatness equations is disobeyed, and so

on. Once one has broken up the problem in this manner one can go on to apply the analysis

discussed in previous subsections.

Therefore, this decomposition is physically intuitive, and natural from the point of view

of the theory of ideals, as well as being practically useful. The classification (5) corresponds

precisely to (13). The Minkowski vacuum, for example, would be a subset of the first

term given by L(〈∂V, f1, . . . , fn, W 〉) where the superpotential W vanishes in addition to

all of the F-flatness conditions. Here, a further simplification can be made; indeed, F-flat

configurations are automatically extrema of the potential in supersymmetric systems. Thus,

the Minkowski vacuum is then L(〈f1, . . . , fn, W 〉),
If we wish to study a given type of vacuum - be it partially F-flat, non-F-flat or completely

F-flat, all we have to do is form the associated saturation in (13). Working with each of

these pieces is much more tractable than working with 〈∂V 〉 in its entirety. Indeed some

information can be extracted immediately after forming these saturations. For example, if a

13

• We need some suitable F’s : The F-terms! (SUSY theories are 
the perfect application of these methods).

• We can now primary decompose - eqns have become 
sufficiently simple that this is now fast enough. In addition 
the vacuum equations are now classified by their 
supersymmetry breaking.

• The GTZ primary decomposition algorithm works along 
similar lines to what we have already seen.



• All based on polynomials - how do  we deal with 
transcendental functions from non-perturbative effects 
etc? : Dummy variables.

• Mathematica package now available

- Best on unix based systems (including mac), although 
there is a windows version.

- At highest level you don’t need to know anything I’ve been 
describing - just tell it to look for a given type of vacuum, 
constraint etc...

- At lowest level it allows much more freedom. Essentially a 
Mathematica front end for Singular with nice properties.

Final comments


