Uses and methodology of the STRINGVACUA Mathematica package.

James Gray - University of Oxford

```
J.G.,Y-H. He and A. Lukas: hep-th/0606122
J.G.,Y-H. He, A. Ilderton and A. Lukas: hep-th/0703249
J.G.,Y-H. He, A. Ilderton and A. Lukas: arXiv:0801.1508 [hep-th]
```

For download of the STRINGVACUA Mathematica package please see:

http://www-thphys.physics.ox.ac.uk/user/Stringvacua/

This work makes extensive use of the computer algebra systems Singular and Macaulay 2:

http://www.singular.uni-kl.de/ http://www.math.uiuc.edu/Macaulay2/

Plan of talk:

- Flux vacua systems as a problem in algorithmic algebraic geometry
- Elimination and constraints on flux parameters
- Saturation decomposition and finding vacua

Vacua of flux compactifications as algebraic varieties.

ullet $K,\ W \to V$ via the usual expression:-

$$V = e^K \left[\mathcal{K}^{A\bar{B}} D_A W D_{\bar{B}} \bar{W} - 3|W|^2 \right]$$

• Let us take $K = -\log(P(M^A, \bar{M}^{\bar{B}}))$ as usual. For example...

$$K = -3\log(T + \bar{T}) - 3\log(Z + \bar{Z}) - \log(S + \bar{S})$$

• Take $W = Q(M^A)$ to be an arbitrary holomorphic polynomial of the fields (simplest case for now).

• $\partial_A V$ is then a rational function $\forall A$.

• So to obtain $\partial V = 0$ we can either set the denominator to infinity or the numerator to zero.

ullet Denominator $\to \infty$ corresponds to the runaway extremum at infinity in field space - not physically interesting.

 Therefore we wish to study the solutions given by vanishing numerator polynomials. We denote this by,

$$\langle \partial V \rangle$$

- In terms of complex fields M^A and \bar{M}^B the polynomials $\langle \partial V \rangle$ are not holomorphic (or purely anti-holomorphic).
- So write each field in terms of its real and imaginary parts...

$$M^A = m^A + i\mu^A$$

- and temporarily complexify these (i.e. pretend m^A and μ^A are complex fields we will return to this later).
- The locus of extrema of the potential in (complexified) field space, given by $\langle \partial V \rangle = 0$, is now described by the vanishing of a set of holomorphic polynomials.

We have rewritten the extremal locus of the potential as an algebraic variety.

 We can rewrite the F-terms in exactly the same way - also turning those into polynomial expressions (important later).

Elimination orderings: Constraints on flux parameters.

- In what follows $\mathbb{C}[M^A,a_{\alpha}]$ is the set of all polynomials in the fields and parameters.
- We need an unambiguous ordering on the monomials:

$$(M^1)^2 > M^1 a_8 > a_1 a_{94} > \dots$$

 For our purposes we will require a monomial ordering with the elimination property:

$$P \in \mathbb{C}[M^A, a_\alpha], \mathrm{LM}(P) \in \mathbb{C}[a_\alpha] \Rightarrow P \in \mathbb{C}[a_\alpha]$$

• Now consider, for example, the equations for a SUSY Minkowski vacuum: $\langle \partial W, W, \text{Constraints} \rangle$

The Buchberger Algorithm:

- ullet Start with our set of polynomials: Call it $G=\{P_I\}$
 - For any pair $P_I, P_J \in G$ multiply by monomials and form difference so as to cancel leading monomials:

$$S = p_1 P_I - p_2 P_J$$
 s.t. $LM(P_I), LM(P_J)$ cancel

- Reduce as much as possible w.r.t. G.

$$S \stackrel{G}{\longrightarrow} h$$

- If h = 0 consider next pair
- If $h \neq 0$ add h to G and return to beginning
- ullet Algorithm terminates when all pairs reduce to 0. Final set of polynomials is called G_F .

- G_F is a Grobner basis a form for our equations with lots of nice properties.
- The important property for us today is that $G_F \cap \mathbb{C}[a_{\alpha}]$ is a complete set of constraints necessary and sufficient for a solution to exist to our original equations.
- This elimination process has a nice geometrical interpretation - projection onto the space of parameters.
- We can now apply this technology to find the constraints on flux parameters which are necessary and sufficient for the existence of certain types of vacua.

An example:

Shelton et. al. hep-th/0508133

$$W = a_0 - 3a_1\tau + 3a_2\tau^2 - a_3\tau^3$$

$$+S(-b_0 + 3b_1\tau - 3b_2\tau^2 + b_3\tau^3)$$

$$+3U(c_0 + (\hat{c}_1 + \check{c}_1 + \check{c}_1)\tau - (\hat{c}_2 + \check{c}_2 + \check{c}_2)\tau^2 - c_3\tau^3),$$

where

$$a_{0}b_{3} - 3a_{1}b_{2} + 3a_{2}b_{1} - a_{3}b_{0} = 16$$

$$a_{0}c_{3} + a_{1}(\check{c}_{2} + \hat{c}_{2} - \tilde{c}_{2}) - a_{2}(\check{c}_{1} + \hat{c}_{1} - \tilde{c}_{1}) - a_{3}c_{0} = 0$$

$$c_{0}b_{2} - \check{c}_{1}b_{1} + \hat{c}_{1}b_{1} - \check{c}_{2}b_{0} = 0 \qquad c_{0}\tilde{c}_{2} - \check{c}_{1}^{2} + \tilde{c}_{1}\hat{c}_{1} - \hat{c}_{2}c_{0} = 0$$

$$\check{c}_{1}b_{3} - \hat{c}_{2}b_{2} + \tilde{c}_{2}b_{2} - c_{3}b_{1} = 0 \qquad c_{3}\tilde{c}_{1} - \check{c}_{2}^{2} + \tilde{c}_{2}\hat{c}_{2} - \hat{c}_{1}c_{3} = 0$$

$$c_{0}b_{3} - \check{c}_{1}b_{2} + \hat{c}_{1}b_{2} - \check{c}_{2}b_{1} = 0 \qquad c_{3}c_{0} - \check{c}_{2}\hat{c}_{1} + \tilde{c}_{2}\check{c}_{1} - \hat{c}_{1}\tilde{c}_{2} = 0$$

$$\check{c}_{1}b_{2} - \hat{c}_{2}b_{1} + \tilde{c}_{2}b_{1} - c_{3}b_{0} = 0 \qquad \hat{c}_{2}\tilde{c}_{1} - \tilde{c}_{1}\check{c}_{2} + \check{c}_{1}\hat{c}_{2} - c_{0}c_{3} = 0.$$

+ additional constraints of same form but with hats and checks switched.

Simplifying the equations for vacua: Saturation Decomposition.

- The equations $\partial V = 0$ are complicated as they contain a lot of information.
- It would be useful to split the equations up into a series of smaller equations - one for each locus of turning points in field space.
- The mathematicians have algorithms (for algebraic varieties) which do precisely this - primary decomposition.
- These algorithms on their own are too slow for our applications. We have to split up the equations a bit first ourselves.

The main splitting tool used in this work states:

$$L(\langle I \rangle) = L(\langle I, F \rangle) \cup L((I, F^{\infty}))$$

- Here (I, F^{∞}) is the set of equations whose roots give the points in $L(\langle I \rangle)$ where $F \neq 0$.
- $\langle I, F \rangle$ is easy to obtain, just add F = 0 to eqns!
- How about (I, F^{∞}) ?
 - Consider: $\langle I, tF-1 \rangle \in \mathbb{C}[M^A, a_\alpha, t]$ These equations have a solution iff $\langle I \rangle$ do and $F \neq 0$.
 - Now eliminate t using the technique we just learned. The result is (I, F^{∞}) .

$$(I, F^{\infty}) = \langle I, tf - 1 \rangle \cap \mathbb{C}[\phi^i, a_{\alpha}]$$

 We need some suitable F's: The F-terms! (SUSY theories are the perfect application of these methods).

```
L(\partial V) = L(\langle \partial V, f_1, f_2, ..., f_n \rangle) \cup
\bigcup_{i} L((\langle \partial V, f_1, f_2, ..., f_{i-1}, f_{i+1}, ..., f_n \rangle : f_i^{\infty})) \cup
\bigcup_{i,j} L(((\langle \partial V, f_1, f_2, ..., f_{i-1}, f_{i+1}, ..., f_{j-1}, f_{j+1}, ..., f_n \rangle : f_i^{\infty}) : f_j^{\infty})) \cup
\vdots
L((((...(\partial V : f_1^{\infty}) ... : f_{n-1}^{\infty}) : f_n^{\infty})) .
```

- We can now primary decompose eqns have become sufficiently simple that this is now fast enough. In addition the vacuum equations are now classified by their supersymmetry breaking.
- The GTZ primary decomposition algorithm works along similar lines to what we have already seen.

Final comments

 All based on polynomials - how do we deal with transcendental functions from non-perturbative effects etc? : Dummy variables.

• Mathematica package now available

- Best on unix based systems (including mac), although there is a windows version.
- At highest level you don't need to know anything I've been describing - just tell it to look for a given type of vacuum, constraint etc...
- At lowest level it allows much more freedom. Essentially a Mathematica front end for Singular with nice properties.