Uses and methodology of the STRINGVACUA Mathematica package.

James Gray - University of Oxford

J.G.,Y-H. He and A. Lukas: hep-th/0606I22
J.G.,Y-H. He, A. Ilderton and A. Lukas: hep-th/0703249 J.G.,Y-H. He, A. Ilderton and A. Lukas: arXiv:080I.I 508 [hep-th]

For download of the STRINGVACUA Mathematica package please see:
http://www-thphys.physics.ox.ac.uk/user/Stringvacua/
This work makes extensive use of the computer algebra systems Singular and Macaulay 2:
http://www.singular.uni-kl.de/ http://www.math.uiuc.edu/Macaulay2/

Plan of talk:

- Flux vacua systems as a problem in algorithmic algebraic geometry
- Elimination and constraints on flux parameters
- Saturation decomposition and finding vacua

Vacua of flux compactifications as algebraic varieties.

- $K, W \rightarrow V$ via the usual expression:-

$$
V=e^{K}\left[\mathcal{K}^{A \bar{B}} D_{A} W D_{\bar{B}} \bar{W}-3|W|^{2}\right]
$$

- Let us take $K=-\log \left(P\left(M^{A}, \bar{M}^{\bar{B}}\right)\right)$ as usual. For example...

$$
K=-3 \log (T+\bar{T})-3 \log (Z+\bar{Z})-\log (S+\bar{S})
$$

- Take $W=Q\left(M^{A}\right)$ to be an arbitrary holomorphic polynomial of the fields (simplest case for now).
- $\partial_{A} V$ is then a rational function $\forall A$.
- So to obtain $\partial V=0$ we can either set the denominator to infinity or the numerator to zero.
- Denominator $\rightarrow \infty$ corresponds to the runaway extremum at infinity in field space - not physically interesting.
- Therefore we wish to study the solutions given by vanishing numerator polynomials. We denote this by,

$$
\langle\partial V\rangle
$$

- In terms of complex fields M^{A} and $\bar{M}^{\bar{B}}$ the polynomials $\langle\partial V\rangle$ are not holomorphic (or purely anti-holomorphic).
- So write each field in terms of its real and imaginary parts...

$$
M^{A}=m^{A}+i \mu^{A}
$$

- and temporarily complexify these (i.e. pretend m^{A} and μ^{A} are complex fields - we will return to this later).
- The locus of extrema of the potential in (complexified) field space, given by $\langle\partial V\rangle=0$, is now described by the vanishing of a set of holomorphic polynomials.
We have rewritten the extremal locus of the potential as an algebraic variety.
- We can rewrite the F-terms in exactly the same way - also turning those into polynomial expressions (important later).

Elimination orderings: Constraints

 on flux parameters.- In what follows $\mathbb{C}\left[M^{A}, a_{\alpha}\right]$ is the set of all polynomials in the fields and parameters.
- We need an unambiguous ordering on the monomials:

$$
\left(M^{1}\right)^{2}>M^{1} a_{8}>a_{1} a_{94}>\ldots
$$

- For our purposes we will require a monomial ordering with the elimination property:

$$
P \in \mathbb{C}\left[M^{A}, a_{\alpha}\right], \operatorname{LM}(P) \in \mathbb{C}\left[a_{\alpha}\right] \Rightarrow P \in \mathbb{C}\left[a_{\alpha}\right]
$$

- Now consider, for example, the equations for a SUSY Minkowski vacuum:
$\langle\partial W, W$, Constraints \rangle

The Buchberger Algorithm:

- Start with our set of polynomials: Call it $G=\left\{P_{I}\right\}$
- For any pair $P_{I}, P_{J} \in G$ multiply by monomials and form difference so as to cancel leading monomials:

$$
S=p_{1} P_{I}-p_{2} P_{J} \text { s.t. } \mathrm{LM}\left(P_{I}\right), \mathrm{LM}\left(P_{J}\right) \text { cancel }
$$

- Reduce as much as possible w.r.t. G.

$$
S \xrightarrow{G} h
$$

- If $h=0$ consider next pair
- If $h \neq 0$ add h to G and return to beginning
- Algorithm terminates when all pairs reduce to 0 . Final set of polynomials is called G_{F}.
- G_{F} is a Grobner basis - a form for our equations with lots of nice properties.
- The important property for us today is that $G_{F} \cap \mathbb{C}\left[a_{\alpha}\right]$ is a complete set of constraints necessary and sufficient for a solution to exist to our original equations.
- This elimination process has a nice geometrical interpretation - projection onto the space of parameters.
- We can now apply this technology to find the constraints on flux parameters which are necessary and sufficient for the existence of certain types of vacua.

An example:

Shelton et. al. hep-th/0508I33

$$
\begin{aligned}
W=a_{0} & -3 a_{1} \tau+3 a_{2} \tau^{2}-a_{3} \tau^{3} \\
& +S\left(-b_{0}+3 b_{1} \tau-3 b_{2} \tau^{2}+b_{3} \tau^{3}\right) \\
& +3 U\left(c_{0}+\left(\hat{c}_{1}+\check{c}_{1}+\tilde{c}_{1}\right) \tau-\left(\hat{c}_{2}+\check{c}_{2}+\tilde{c}_{2}\right) \tau^{2}-c_{3} \tau^{3}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{0} b_{3}-3 a_{1} b_{2}+3 a_{2} b_{1}-a_{3} b_{0}=16 \\
& a_{0} c_{3}+a_{1}\left(\check{c}_{2}+\hat{c}_{2}-\tilde{c}_{2}\right)-a_{2}\left(\check{c}_{1}+\hat{c}_{1}-\tilde{c}_{1}\right)-a_{3} c_{0}=0 \\
& c_{0} b_{2}-\tilde{c}_{1} b_{1}+\hat{c}_{1} b_{1}-\check{c}_{2} b_{0}=0 \quad c_{0} \tilde{c}_{2}-\check{c}_{1}^{2}+\tilde{c}_{1} \hat{c}_{1}-\hat{c}_{2} c_{0}=0 \\
& \check{c}_{1} b_{3}-\hat{c}_{2} b_{2}+\tilde{c}_{2} b_{2}-c_{3} b_{1}=0 \quad c_{3} \tilde{c}_{1}-\check{c}_{2}^{2}+\tilde{c}_{2} \hat{c}_{2}-\hat{c}_{1} c_{3}=0 \\
& c_{0} b_{3}-\tilde{c}_{1} b_{2}+\hat{c}_{1} b_{2}-\check{c}_{2} b_{1}=0 \quad c_{3} c_{0}-\check{c}_{2} \hat{c}_{1}+\tilde{c}_{2} \check{c}_{1}-\hat{c}_{1} \tilde{c}_{2}=0 \\
& \check{c}_{1} b_{2}-\hat{c}_{2} b_{1}+\tilde{c}_{2} b_{1}-c_{3} b_{0}=0 \quad \hat{c}_{2} \tilde{c}_{1}-\tilde{c}_{1} \check{c}_{2}+\check{c}_{1} \hat{c}_{2}-c_{0} c_{3}=0 .
\end{aligned}
$$

+ additional constraints of same form but with hats and checks switched.

Simplifying the equations for vacua:

Saturation Decomposition.

- The equations $\partial V=0$ are complicated as they contain a lot of information.
- It would be useful to split the equations up into a series of smaller equations - one for each locus of turning points in field space.
- The mathematicians have algorithms (for algebraic varieties) which do precisely this - primary decomposition.
- These algorithms on their own are too slow for our applications. We have to split up the equations a bit first ourselves.
- The main splitting tool used in this work states:

$$
L(\langle I\rangle)=L(\langle I, F\rangle) \cup L\left(\left(I, F^{\infty}\right)\right)
$$

- Here $\left(I, F^{\infty}\right)$ is the set of equations whose roots give the points in $L(\langle I\rangle)$ where $F \neq 0$.
- $\langle I, F\rangle$ is easy to obtain, just add $F=0$ to eqns!
- How about $\left(I, F^{\infty}\right)$?
- Consider: $\langle I, t F-1\rangle \in \mathbb{C}\left[M^{A}, a_{\alpha}, t\right]$

These equations have a solution iff $\langle I\rangle$ do and $F \neq 0$.

- Now eliminate t using the technique we just learned. The result is $\left(I, F^{\infty}\right)$.

$$
\left(I, F^{\infty}\right)=\langle I, t f-1\rangle \cap \mathbb{C}\left[\phi^{i}, a_{\alpha}\right]
$$

- We need some suitable F's :The F-terms! (SUSY theories are the perfect application of these methods).

$$
\begin{aligned}
L(\partial V)= & L\left(\left\langle\partial V, f_{1}, f_{2}, \ldots, f_{n}\right\rangle\right) \cup \\
& \bigcup_{i} L\left(\left(\left\langle\partial V, f_{1}, f_{2}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{n}\right\rangle: f_{i}^{\infty}\right)\right) \cup \\
& \bigcup_{i, j} L\left(\left(\left(\left\langle\partial V, f_{1}, f_{2}, \ldots, f_{i-1}, f_{i+1}, \ldots, f_{j-1}, f_{j+1}, \ldots, f_{n}\right\rangle: f_{i}^{\infty}\right): f_{j}^{\infty}\right)\right) \cup \\
& \vdots \\
& L\left(\left(\left(\ldots\left(\partial V: f_{1}^{\infty}\right) \ldots: f_{n-1}^{\infty}\right): f_{n}^{\infty}\right)\right) .
\end{aligned}
$$

- We can now primary decompose - eqns have become sufficiently simple that this is now fast enough. In addition the vacuum equations are now classified by their supersymmetry breaking.
- The GTZ primary decomposition algorithm works along similar lines to what we have already seen.

Final comments

- All based on polynomials - how do we deal with transcendental functions from non-perturbative effects etc? : Dummy variables.
- Mathematica package now available
- Best on unix based systems (including mac), although there is a windows version.
- At highest level you don't need to know anything l've been describing - just tell it to look for a given type of vacuum, constraint etc...
- At lowest level it allows much more freedom. Essentially a Mathematica front end for Singular with nice properties.

