Topics IN

 RCFT
ORIENTIFOLDS

ORIENTIFOLD PARTITION FUNCTIONS

9 Closed $\frac{1}{2}\left[\sum_{i j} \chi_{i}(\tau) Z_{i j} \chi_{i}(\bar{\tau})+\sum_{i} K_{i} \chi_{i}(2 \tau)\right]$

Q Open $\frac{1}{2}\left[\sum_{i, a, n} N_{a} N_{b} A_{a b}^{i} \chi_{i}\left(\frac{\tau}{2}\right)+\sum_{i, a} N_{a} M_{a}^{i} \hat{\chi}_{i}\left(\frac{\tau}{2}+\frac{1}{2}\right)\right]$
i : Primary field label (finite range)
a : Boundary label (finite range)
χ_{i} : Character
N_{a} : Chan-Paton (CP) Multiplicity

What we can compute

Q Exact perturbative string spectra
9 Gauge couplings in rational points

What we can't do (yet)
9 Compute Yukawa couplings
Q Compute couplings to moduli
Q Perturbations around rational points
Q Moduli stabilization
Q ...

Algebraic choices

9 Basic CFT ($\mathrm{N}=2$ tensor ${ }^{(1)}$, free fermions ${ }^{(2)}$...)
Q Chiral algebra extension
May imply space-time symmetry (e.g. Susy: GSO projection).
But this is optional!
Reduces number of characters.
Q Modular Invariant Partition Function (MIPF)
May imply bulk symmetry (e.g Susy), not respected by all boundaries. Defines the set of boundary states (Sagnotti-Pradisi-Stanev completeness condition)

Q Orientifold choice
${ }^{(1)}$ Dijkstra, Huiszoon, Schellekens (2005);
Anastasopoulos, Dijkstra, Kiritsis, Schellekens (2006)
${ }^{(2)}$ Kiritsis, Lennek, Schellekens, to appear.

CONSISTENCY CONDITIONS

Q Tadpole cancellation
9 Absence of axion mixing for Y
© Global anomalies*

Same as for all other orientifold models

(*) "probe branes" (Uranga)
B. Gato-Rivera and A.N Schellekens, Phys.Lett.B632:728-732,2006

SM REALIZATION

3 families

+ anything vector-like

Vector-like: mass allowed by $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$ Fully vector-like: mass allowed by all gauge symmetries

DHS RESULTS (2004-2005)

210000 distinct tadpole-free spectra found

Best imaginable result:

The exact MSSM spectrum

```
Gauge group: U(3) x Sp(2) x U(1) x U(1)
7 x (V ,V ,0 ,0 ) chirality 3
3 x (V ,0 ,V ,0 ) chirality -3
3 x (V ,0 ,V*,0 ) chirality -3
9 x (0 ,V ,0 ,V ) chirality 3
5 x (0 ,0 ,V ,V ) chirality -3
3 x (0,0 ,V ,V*) chirality 3
6 x (V ,0 ,0 ,V )
10 x (0,V ,V ,0 )
2 x (Ad,0 ,0 ,0 )
2 x (A ,0 ,0,0 )
6 x (S ,0,0,0 )
14 x (0,A ,0,0 )
10 x (0,S ,0 ,0 )
9 x (0,0 ,Ad,0 )
6 x (0,0 ,A ,0 )
14 x (0,0,S ,0 )
3 x (0,0,0,Ad)
4 x (0,0,0,A )
6 x (0,0 ,0 ,S )
Y=\frac{1}{6}\mp@subsup{Q}{\textrm{a}}{}-\frac{1}{2}\mp@subsup{Q}{\textrm{c}}{}-\frac{1}{2}\mp@subsup{Q}{\textrm{d}}{}
```

No hidden sector B-L Massive (axion mixing)

Gauge group: Exactly $\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$

cf. Gmeiner et. al.

ADKS RESULTS (2005-2006)

SEARCH CRITERIA

Require only:
Q U(3) from a single brane
Q U(2) from a single brane
Q Quarks and leptons, Y from at most four branes
$9 \mathrm{G}_{\mathrm{CP}} \supset \mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1)$
9 Chiral $G_{C P}$ fermions reduce to quarks, leptons (plus non-chiral particles)

9 Massless Y

CHAN-PATON GROUP

$G_{C P}=U(3)_{a} \times\left\{\begin{array}{c}U(2)_{b} \\ S p(2)_{b}\end{array}\right\} \times G_{c} \quad\left(\times G_{d}\right)$
Embedding of Y:

$$
Y=\alpha Q_{a}+\beta Q_{b}+\gamma Q_{c}+\delta Q_{d}+W_{c}+W_{d}
$$

Q: Brane charges (for unitary branes)
W: Traceless generators

CLASSIFICATION

$$
Y=\left(x-\frac{1}{3}\right) Q_{a}+\left(x-\frac{1}{2}\right) Q_{b}+x \underbrace{Q_{C}+(x-1)} Q_{D}
$$

Distributed over c and d

Allowed values for x
1/2 Madrid model, Pati-Salam, Flipped SU(5)
0 (broken) SU(5)
1 Antoniadis, Kiritsis, Tomaras model
$-1 / 2,3 / 2$
any Trinification $(x=1 / 3)$ (orientable)

RESULTS

Q 19345 chirally distinct spectra (19 of Maдriة type)

Q 1900 distinct ones with tadpole solutions (≈ 1900 distinct hep-th papers)

StATIStics

Value of x	Total
0	24483441
$1 / 2$	138837612
1	30580
$-1 / 2,3 / 2$	0
any	1250080

A CURIOSITY

$$
\text { Gauge group } \left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]
$$

U3 S2 U1 U1 U2

A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Truly hidden

 hidden sector
A CURIOSITY

Gauge group $\left.\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(1) \times\left[\mathrm{U}(2)_{\text {Hidden }}\right)\right]$

U3 S2 U1 U1 U2

Free-field realization with (2) ${ }^{6}$ Gepner model (Kiritsis, Schellekens, Tsulaia, to appear)

FREE THEORIES

Motivation:

9 Compare with other approaches

Q Allow computation of more quantities

FREE FERMIONS

FREE FERMIONS

M. Lennek, E. Kiritsis, A.N. Schellekens

NUMBER OF MIPFS

Tensor product of 18 real free fermions or "Ising Models". World-sheet susy via KLT-ABK "triplet constraint".

Complex fermions: (Ising) ${ }^{2} \rightarrow \mathrm{D}_{1}$ (within triplets).
(NSR) $\left(\mathrm{D}_{1}\right)^{9}$
(NSR) $\left(\mathrm{D}_{1}\right)^{7}$ (Ising) ${ }^{4}$
(NSR) $\left(\mathrm{D}_{1}\right)^{5}$ (Ising) ${ }^{8}$
(NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) $)^{12}$

685 MIPFs
7466 MIPFs 75427 MIPFs 534700 MIPFs

Far more MIPFs than for Gepner Models (≈ 5000)

Hodge numbers

359	$(51,3,4)$	917	$(21,21,8)$	$(\mathrm{K} 3 \times \mathrm{T} 2)$
359	$(3,51,4)$	2214	$(19,19,4)$	
2962	$(31,7,4)$	13225	$(15,15,4)$	
2962	$(7,31,4)$	6152	$(13,13,8)$	
4066	$(27,3,4)$	12	$(13,13,4)$	
4066 6	$\begin{aligned} & (3,27,4) \\ & (25,1,4) \end{aligned}$	92684	$(11,11,4)$	
6	$(1,25,4)$	1187	$(9,9,16)$	(Tori)
1720	$(21,9,4)$	3550	$(9,9,8)$	
1720	$(9,21,4)$	100838	$(9,9,4)$	
16866	$(19,7,4)$	103414	$(7,7,4)$	
16866	$(7,19,4)$	4252	$(5,5,8)$	
29118	$(17,5,4)$	15018	$(5,5,4)$	
29118	$(5,17,4)$	12209	$(3,3,4)$	
11132	$(15,3,4)$	4	$(1,1,8)$	
11132	$(3,15,4)$			
65072	$(12,6,4)$	cf. Donagi	and Faraggi,	200
65072	$(6,12,4)$	$\left(Z_{2} \times\right.$	Z_{2} orbifolds	

SEARCH RESULTS

(NSR) $\left(\mathrm{D}_{1}\right)^{9}$
SM configuration, no tadpole cancellation
(NSR) $\left(\mathrm{D}_{1}\right)^{7}$ (Ising) ${ }^{4}$
$(\mathrm{NSR})\left(\mathrm{D}_{1}\right)^{5}(\text { Ising })^{8}$
(NSR) $\left(\mathrm{D}_{1}\right)^{3}$ (Ising) $)^{12}$
Nothing
Nothing

Nothing
(using random MIPF selection)

SM CONFIGURATION (FREE BOSONS)

$\mathrm{U}(4)$	$\mathrm{U}(2)$	$\mathrm{U}(2)$	mult.
0	$\mathrm{~V}^{*}$	V	2
$\mathrm{~V}^{*}$	0	V	1
V	V	0	2
$\mathrm{~V}^{*}$	0	$\mathrm{~V}^{*}$	2
V	$\mathrm{~V}^{*}$	0	1

Exact! No non-chiral states!
Also a $\mathrm{U}(3) \times \mathrm{U}(1)$ version

NON-SUPERSYMMETRIC SPECTRA

B. Gato-Rivera and A.N. Schellekens, Phys.Lett.B656:127-131,2007 and to appear.

ARGUMENTS IN FAVOR OF SUSY

9 Stabilizes weak hierarchy
Q Coupling convergence
© LSP and Dark Matter

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling convergence
9 LSP and Dark Matter

Dijkstra, Huiszoon, Schellekens, Nucl.Phys.B710:3-57,2005

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling convergence
9 LSP and Dark Matter

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling convergence
Coincidence in orientifolds

9 LSP and Dark Matter

ARGUMENTS IN FAVOR OF SUSY

Q Stabilizes wak hierarchy
Q Coupling conergence
9 LSP and Dark Matter

For the record: I am NOT making an LHC prediction here!

ARGUMENTS IN FAVOR OF SUSY

Not needed for C.C.
 Q Stabilizes wak hierarchy

Q Coupling conergence
Q LSP and Dark Matter
For the record: I am NOT making an LHC prediction here!
But: does string theory predict low energy supersymmetry or GUT unification at $10^{16} \mathrm{GeV}$?

NON-SUPERSYMMETRIC STRINGS

Additional complications:

Q Tachyons: Closed sector, Open sector
O Tadpoles: Separate equations for NS and R.

Best imaginable outcome:
Q Exactly the standard model (open sector)

But even then, there will be plenty of further problems: tadpoles at genus 1, how to compute anything of interest without the help of supersymmetry, etc.
cf. Ibañez, Marchesano, Rabadan

CLOSED SECTOR

Four ways of removing closed string tachyons:

9 Chiral algebra extension (non-susy) All characters non-supersymmetric, but tachyon-free.
Q Automorphism MIPF
No tachyons in left-right pairing of characters.
Q Susy MIPF
Non-supersymmetric CFT, but supersymmetric bulk.
Allows boundaries that break supersymmetry.
Q Klein Bottle
This introduces crosscap tadpoles. Requires boundaries with non-zero CP multiplicity.

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
Q Automorphism MIPF
Q Susy MIPF
Q Klein Bottle

CLOSED SECTOR

Do these possibilities occur?

9 Chiral algebra extension (non-susy)
9 Automorphism MIPF
Q Susy MIPF
Q Klein Bottle
\checkmark (44054 MIPFs)
, (40261 MIPFs)

- (186951 Orientifolds)

EXAMPLES OF TADPOLE AND TACHYON-FREE SPECTRA

Orientifolds of tachyon-free non-supersymmetric oriented closed strings (automorphism MIPFs)

CFT 11111111, Extension 176, MIPF 35, orientifold 0
Gauge group Sp(4)
Bosons: $2 \times(\mathrm{S}) \quad$ (Symmetric Tensor)
Fermions: None

CFT 11111111, Extension 70, MIPF 56, orientifold 0

Gauge group $\operatorname{Sp}(4)$
Bosons: None (Symmetric Tensor)
Fermions: $2 \times(\mathrm{S})$

CFT 11111111, Extension 176, MIPF 21, orientifold 0
Gauge group Sp(4) Bosons: None Fermions: None

CFT 1112410, Extension 157, MIPF 63, orientifold 0

Gauge group $\mathrm{O}(4) \times \mathrm{U}(1) \times \mathrm{U}(2)$

Fermions

```
2x(V,0,V ) chirality -2
2 x (0,V,V ) chirality 2
2x(0,V,V*) chirality -2
6x (0,0,A ) chirality -2
4x(V,V,0)
2x(S,0,0 )
6x(0,Ad,0 )
4x(0,S,0)
2 x (0,0,Ad)
2x(V,0,V )
2x(A,0,0)
3x(V,V,0)
6x(0,Ad,0)
3x(0,A,0)
4x(0,S,0)
3x(0,0,Ad)
4x(0,0,S )

\section*{CFT 11111111, Extension 67, MIPF 508, orientifold 0}

\section*{Gauge group \(\mathrm{Sp}(2) \times \mathrm{U}(1)\)}

\author{
\(8 \times(\mathrm{V}, \mathrm{V})\) \\ Fermions \\ \[
\begin{aligned}
& 6 \times(\mathrm{S}, 0) \\
& 6 \times(0, \mathrm{Ad}) \\
& 8 \times(0, \mathrm{~S})
\end{aligned}
\] \\ \[
8 x(V, V)
\] \\ Bosons \\ \(5 x(\mathrm{~S}, 0)\)
\(5 \times(0, \mathrm{Ad})\)
\(8 \times(0, \mathrm{~S})\)
}

FINDING THE SM

\section*{SEARCH FOR NON-SUSY SM CONFIGURATIONS}

Total number of tachyon-free boundary state combinations satisfying our criteria:
\[
3456601
\]

Subdivided as follows
\begin{tabular}{|l|l|l|}
\hline Bulk Susy & 3389835 & \(98.1 \%\) \\
\hline \begin{tabular}{l} 
Tachyon-free \\
automorphism
\end{tabular} & 66378 & \(1.9 \%\) \\
\hline \begin{tabular}{l} 
Tachyon-free \\
Klein bottle projection
\end{tabular} & 388 & \(0.01 \%\) \\
\hline
\end{tabular}

\section*{An EXAMPLE}

CFT 44716, Extension 124, MIPF 27, Orientifold 0 \(\mathrm{N}=1\) Susy Bulk symmetry

Spectrum type 20088 (Not on ADKS list) Gauge Group \(\mathrm{U}(3) \times \mathrm{U}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)\)
(broken by axion couplings to \(\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{Sp}(4) \times \mathrm{U}(1)\) )
\begin{tabular}{ll}
\(3 \times(\mathrm{A}, 0,0,0)\) chirality 3 & \(3 \times(\mathrm{S}, 0,0,0)\) \\
\(3 \times(0, \mathrm{~A}, 0,0)\) chirality 3 & \(3 \times(0, \mathrm{~S}, 0,0)\) \\
\(4 \times(0,0,0, \mathrm{~A})\) chirality -2 & \(4 \times(0,0,0, \mathrm{~A})\) \\
\(5 \times(0,0,0, \mathrm{~S})\) chirality -3 & \(5 \times(0,0,0, \mathrm{~S})\) \\
\(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) chirality -1 & \(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) \\
\(1 \times(\mathrm{V}, 0,0, \mathrm{~V})\) chirality 1 & \(2 \times(\mathrm{V}, 0,0, \mathrm{~V})\) \\
\(1 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) chirality 1 & \(2 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) \\
\(1 \times(0,0, \mathrm{~V}, \mathrm{~V})\) chirality 1 & \(3 \times(0,0, \mathrm{~V}, \mathrm{~V})\) \\
\(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) chirality 3 & \(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) \\
\(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) chirality -1 & \(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) \\
\(3 \times(\mathrm{Ad}, 0,0,0)\) & \(2 \times(\mathrm{Ad}, 0,0,0)\) \\
\(3 \times(0, \mathrm{Ad}, 0,0)\) & \(2 \times(0, \mathrm{Ad}, 0,0)\) \\
\(4 \times(0,0,0, \mathrm{Ad})\) & \(3 \times(0,0,0, \mathrm{Ad})\) \\
\(2 \times(0,0, \mathrm{~A}, 0)\) & \(1 \times(0,0, \mathrm{~S}, 0)\) \\
\(4 \times(\mathrm{S}, 0,0,0)\) & \(4 \times(\mathrm{A}, 0,0,0)\) \\
\(4 \times(0, \mathrm{~S}, 0,0)\) & \(4 \times(0, \mathrm{~A}, 0,0)\) \\
\(2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)\) & \\
\(2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)\) & \(2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)\)
\end{tabular}
\begin{tabular}{ll} 
& \(3 \times(\mathrm{A}, 0,0,0)\) chirality 3 \\
\(3 \times(0, \mathrm{~A}, 0,0)\) chirality 3 & \(3 \times(\mathrm{S}, 0,0,0)\) \\
\hline \(4 \times(0,0,0, \mathrm{~A})\) chirality -2 & \(3 \times(0, \mathrm{~S}, 0,0)\) \\
\(5 \times(0,0,0, \mathrm{~S})\) chirality -3 & \(4 \times(0,0,0, \mathrm{~A})\) \\
\(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) chirality -1 & \(5 \times(0,0,0, \mathrm{~S})\) \\
\hline \(1 \times(\mathrm{V}, 0,0, \mathrm{~V})\) chirality 1 & \(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) \\
\(1 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) chirality 1 & \(2 \times(\mathrm{V}, 0,0, \mathrm{~V})\) \\
\(1 \times(0,0, \mathrm{~V}, \mathrm{~V})\) chirality 1 & \(2 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) \\
\hline \(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) chirality 3 & \(3 \times(0,0, \mathrm{~V}, \mathrm{~V})\) \\
\(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) chirality -1 & \(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) \\
\(3 \times(\mathrm{Ad}, 0,0,0)\) & \(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) \\
\(3 \times(0, \mathrm{Ad}, 0,0)\) & \(2 \times(\mathrm{Ad}, 0,0,0)\) \\
\(4 \times(0,0,0, \mathrm{Ad})\) & \(2 \times(0, \mathrm{Ad}, 0,0)\) \\
\hline \(2 \times(0,0, \mathrm{~A}, 0)\) & \(3 \times(0,0,0, \mathrm{Ad})\) \\
\(4 \times(\mathrm{S}, 0,0,0)\) & \(1 \times(0,0, \mathrm{~S}, 0)\) \\
\(4 \times(0, \mathrm{~S}, 0,0)\) & \(4 \times(\mathrm{A}, 0,0,0)\) \\
\(2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)\) & \(4 \times(0, \mathrm{~A}, 0,0)\) \\
\(2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)\) & \\
\hline \(2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)\) & \(2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)\) \\
\hline
\end{tabular}
\begin{tabular}{|ll|}
\hline \(3 \times(\mathrm{A}, 0,0,0)\) chirality 3 & \(3 \times(\mathrm{S}, 0,0,0)\) \\
\(3 \times(0, \mathrm{~A}, 0,0)\) chirality 3 & \(3 \times(0, \mathrm{~S}, 0,0)\) \\
\hline \(4 \times(0,0,0, \mathrm{~A})\) chirality -2 & \(4 \times(0,0,0, \mathrm{~A})\) \\
\(5 \times(0,0,0, S)\) chirality -3 & \(5 \times(0,0,0, \mathrm{~S})\) \\
\(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) chirality -1 & \(3 \times(\mathrm{V}, 0, \mathrm{~V}, 0)\) \\
\hline \(1 \times(\mathrm{V}, 0,0, \mathrm{~V})\) chirality 1 & \(2 \times(\mathrm{V}, 0,0, \mathrm{~V})\) \\
\(1 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) chirality 1 & \(2 \times(0, \mathrm{~V}, 0, \mathrm{~V})\) \\
\(1 \times(0,0, \mathrm{~V}, \mathrm{~V})\) chirality 1 & \(3 \times(0,0, \mathrm{~V}, \mathrm{~V})\) \\
\hline \(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) chirality 3 & \(5 \times(\mathrm{V}, \mathrm{V}, 0,0)\) \\
\(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) chirality -1 & \(1 \times(0, \mathrm{~V}, \mathrm{~V}, 0)\) \\
\(3 \times(\mathrm{Ad}, 0,0,0)\) & \(2 \times(\mathrm{Ad}, 0,0,0)\) \\
\(3 \times(0, \mathrm{Ad}, 0,0)\) & \(2 \times(0, \mathrm{Ad}, 0,0)\) \\
\(4 \times(0,0,0, \mathrm{Ad})\) & \(3 \times(0,0,0, \mathrm{Ad})\) \\
\hline \(2 \times(0,0, \mathrm{~A}, 0)\) & \(1 \times(0,0, \mathrm{~S}, 0)\) \\
\hline \(4 \times(\mathrm{S}, 0,0,0)\) & \(4 \times(\mathrm{A}, 0,0,0)\) \\
\(4 \times(0, \mathrm{~S}, 0,0)\) & \(4 \times(0, \mathrm{~A}, 0,0)\) \\
\hline \(2 \times\left(\mathrm{V}, 0,0, \mathrm{~V}^{*}\right)\) & \\
\(2 \times\left(0, \mathrm{~V}, 0, \mathrm{~V}^{*}\right)\) & \(2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)\) \\
\hline \(2 \times\left(\mathrm{V}, \mathrm{V}^{*}, 0,0\right)\) & \\
\hline
\end{tabular}

FINDING HIDDEN SECTORS

\section*{A tachyon-free, tadpole-free hidden sector could be found for 896 of the 3456601 SM configurations.}

All of these have bulk susy.
"Statistically" 16 would be expected for the tachyon-free automorphism, 0 for tachyon-free Klein bottles.

All 896 have a supersymmetric spectrum (exact boson fermion matching). They are probably identical to supersymmetric models from earlier searches.

\section*{CONCLUSIONS}

Q Non-supersymmetric, tadpole and tachyon-free standard models must exist, but are still hidden in the noise.

Q Better chance with 1, 2 or 4 families.
Q Supersymmetry is very persistent.```

