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Inflation and UV Physics

® Almost scale invariant, Gaussian primordial spectrum
predicted by inflation: good agreement with data.

Angular Scale
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® Tantalizing upper bound on the inflaton energy density:

V < Mgy ~ (101°GeV)?, de., H < 10'*GeV



Inflation as a Short Distance Probe

Quantum Fluctuations "Freeze In" Structure
1 -1 -1,
H ~ constant H ~ constant H 1ncreases
h<H h~H ! h<H!

Imprints of short distance physics



Example 1: Eta Problem

e In a wide class of models, the inflaton potential
takes a peculiar shape:

1 1 V' ?
V() {
f’ i
V//
Ly
N 77— P—V <<l ].

 Dimension 6, Planck suppressed operators can
stop inflation:

(5V~—(/§

o A sufficient degree of UV Completeness is needed
to estimate such corrections.



Example 2: Tensor Modes

g AL
Mp 0.0o
* A detection of primordial gravitational wave will

imply the inflaton rolled over super-Planckian
distances in field space.

e Lyth bound:

e Naturalness suggests order one corrections to
inflaton potential, unless UV completion shows

otherwise.

V(¢) Bl V;enomalizable(¢) 1 ¢4 Z Cn <Mip>

n>1



Example 3: Non-(Gaussianities

e Models of large non-Gaussianities tend to involve
crucially higher derivative terms. {Chen, Huang, Kachru, GS}

e Models of this sort have been proposed:
¢ K-inflation Mukhanoy

¢ DBI inflation Silverstein, Tong

Arkani-Hamed, Creminelli,

¢ Ghost inflation Mukohyama,Zaldarriaga

e UV completion is needed to argue why some terms
suppressed by a high mass scale are present while
others are absent.



More about Non-Gaussianities

Size of 3-point function:

Bispectrum

fNL ~
(Power Spectrum)’

For slow-roll:

Maldacena 02
fNL O (E) Acquaviva et al 02

AT (x1) AT (xo) AT (x3)

ST T 1 1 °
Bispectrum: (Cky ChoCis) = (2m)363 (K1 + ko + k3) F(K1, ko, k3)
¢
P
Power spectrum: (i Cio) ~ 03 (K1 + kz)k_§

Bispectrum gives much richer info because of its shape.



General Results

® General kinetic term:

L(D, X) where

1
X = Egul/a’u¢ay¢

® Bi-spectrum depends on 5 parameters:
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Final Results (Chen, Huang, Kachru, GS, 06)

* The 3-pt function for a general single field inflation to O(e):

(Ck )¢ (ko) (ky)) = (2m)707 (kg + ko + ky) (P ) I; l;

x (Ay+ A.+ A, + A, +A;,+A)

where we have decomposed the shape into six parts (K = kj+ko+k3)

LA | \ 3kTRSES
—|—=—1—-—=2—=(3—=2cy)! ——
G A
|
= 1l=—1 — Y kR L2k k|
A 2 )h( K ,,Z}, o Zﬁ ;}, / "+ Z ) |
1 2\
A, = 2 1 — \—1) (e +nEy, + sF)\)
_..rLj‘ 4 j\-
I . .
-+ IS l) (EE.'E + UE:U + SE:.L;) :
Cy K
|
L =€|—= ],], — > kiR,
A F( b; + Z +A{ijf),
1 o
A, =1 (8 > k;’) ,
A, = sF, .

* Completely specified by 5 parameters: Cs , % :



Shape of Non-Gaussianities

Plot A 1,332,373 /35’22(53

ey

i
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Local shape (Slow-roll) quilateral shape (e.g., DBI)

67 7778 CS?

fve ~ Of(e fne ~ O (c;”



Experimental Bound

Current bound (WMAPS):
—9 < fyr < 111 at 95% C.L. —151 < a1, < 253 at 95% C.L.

Future expectation:

‘fNL local | < 20 (WMAP |fNL local)| <5 (PLANCK



UV Physics & String Inflation

@ All these UV questions about inflation boil
down to a controllable effective theory.

@ Answers to these questions have important
observational consequences as well.

@ In addition to the usual o’ & g, corrections,
there is yet another expansion parameter in
warped compactifications: gsNco’

® Warping ubiquitous in string inflation models:
important to understand such corrections.



A Gentle Landscape







Dynamics of Warped
Flux Compactifications

GS, Torroba, Underwood, Douglas



Dynamics of Warped
Flux Compactifications
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Dynamics of Warped
Flux Compactifications

GS, Torroba, Underwood, Douglas

(STUD)
See also: Douglas & Torroba



Warped Kahler Potential

® The warping corrected Kahler potential for the
complex moduli sector was conjectured to be:

K=-log([e*QAQ)= G5 = —ﬁfe_‘mxa A X3

suggested by the fact that
Vey = [d®y/g6 — Viv = [ d®y/gee™ 1)

* For the warped deformed conifold:

A3 <Na')?
Ggg = —0s05K = [Clog St ¢ (g|S|4/3)



Applications of Warped EFT

® Moduli (and hierarchy) stabilization potential:

Near the conifold point:

V ~ |S[43|DsW|?

CCU \

warped throat




Issues with Strong VWarping

D=10 String Theory Ex: GKP and KKLT
Type IIB String Theory in D=10
Low
L L Energy J Low
Energy
D= I O SUG RA IIB Supergravity in D=10
W|th f|uxeS Siip = LQ d"z+/|g| {Rm _ Gs|? B E|F5|2}+CS+1ocal
2K7 2lmT 4
KK
L [Dimensional} KK
Reduction l Dimensional
Reduction
D=4 N=1I .
SUG RA EFT N=1 SUGRA in D=4
K =—3log(p+p) —log(t + 7)
L —10g(/]3)—10g(/ﬂ/\§2)

String vacua, inflation,
de-Sitter, MSSM.....

W:/Gg/\Q—|—Wnp



Issues with Strong VWarping

D=10 String Theory

Low
Energy

D=10 SUGRA
with fluxes

KK
Dimensional
Reduction

D=4 N=|
SUGRA EFT

l

String vacua, inflation,
de-Sitter, MSSM....

Many subtleties with warped KK reduction:

* General KK ansatz (compensators)

* Mixing/sourcing of KK modes with moduli
* Backreaction of moduli on warp factor

* |0D Gauge redundancies

* |0OD Constraint equations

In warped backgrounds these 1ssues
are all highly coupled to each other!




KK Scale in Warped Background

Moduli KK modes

2 1 2 1




KK Scale in Warped Background

Moduli KK modes
2 1 2 1




KK Scale in Warped Background

Moduli KK modes
2 1 9 1
Unwarped m; e~ — MicK ™~ 75

Fields localize to region of strong warping.



KK Scale in Warped Background

Moduli KK modes
> 1 2 L
Unwarped m e~ MKk ™~ T3

Masses Y 24, 1 2 2Aoi
redshifted - 0% a%




KK Scale in Warped Background

Moduli KK modes
2 1 2 1

Fields localize to region of strong warping.
1 1
. o

No mass hierarchy between moduli and KK
modes for integrating out heavy fields.



Warped Kahler Potential

Previous proposal:
K = — log (fe_4AQ /\ﬁ) = G5 = —ﬁ [e 4 xq A Xz
did not account for all these subtle issues with warping.
Ansatz for fluctuations:
ds® = eZAnMVd:L‘“da:V + 6_2A(§mn + 0 G )dy " dy"

...does not solve 10D EOM!

More general ansatz does, but extremely messy ...

ds3, — dsiy + 20,0,5%* K, (y)dz"dz” + 2€** Boy, (y)0,S*dxtdy™ .



Linearized Einstein Equations

- — ., 1= 1
SGH =6l s; {e% {—ZVZA +4(VA)? - 53} } e 24 (00, u" — 6E0Ou’) (46, A — 5019)
+ (0"0u’ — 40" e*AVP(By, — 9,K)

1 _
+ 6—2AfK5KG(V4)M -3 (6K95 _ 556K9§) 62Av2fK :

(A.14)

SGH = §RM :e_QAﬁl‘uI{Z@mé[A — 89 A8 A — %amafg + O AS1G

- 1~
- 2apA5I§mp + §vp51§mp

_ %@p {6414 (@p By, — @mBIp)} + 2(OmAB1, — 0y ABr,)VPel4

1 . N
+ §€8ABlmv26_4A — 64AR%BM} ,

(A.15)

5G™ =uls; {eZA [é;ﬂ +4(VA)2m — gvnAWA} } _ e Ayl gk g g,

1
+6Me 2 A0u! (—267 A + 5(sfg)

e -0 K1) }

— §mVP [ (B — apKI)}>

T { 1 24 [vm (e*40,£5) + ¥, (64Aame)} +omVP [ezAapr}}

1
2 2
1

S0 Ke=245 RW
(A.16)

6TH = —(554 ) {ujéf [67614(%)2} — 27 %! S}, 0™ — 2DuIKIe*6A(%)2} ,
1
(A.37)
STH = 2;1n8“u16_6‘4 [0 S1p — 0pStm + OmaBr, — dpaBrm] 8Pa | (A.38)
4 )
.
ST = — 2 yl5, L e 54 |9, 000 — L5 (Va)?
n 262, " 2"
—6A

s § _ N 1 .
mi {Sjnama + 0,087 — 0, S1p0Pa + 2K {&La@ma — 55;”(Va)2] } )
(A.39)

2&10



Gauge Invariance & Compensators

Previous proposal:

K = - log (fe_‘“‘ﬂ/\ﬁ) = Ga? — —ﬁfe_‘mxa /\XE

is not diffeomorphism invariant:
X — X + do

This turns out to be equivalent to the failure of
the metric ansatz in solving the EOM.

Need extra terms proportional to 9,5

ds3y — dsiy + 20,0,5%** K, (y)dz"dz” + 2€** Boy (y)0,S*dxtdy™ .

\ / (Analogously, also

metric compensators flux compensators)



Compensators in E&M

Consider a U(l) gauge field:

1

S = —Z/dlox\/gloFMNFMN

and a family of solutions to D™ Fyn =0
parametrized by moduli v’ : Ay = (4, =0, A;(y;u))
Promoting v’ — u'(z), the kinetic terms give:

L 0A; 0A;
_ 6 19 v J
GIJ /d y\/ gde g auz ('MJ

not gauge invariant under 0A; = 0;e



Compensators in E&M

The error is in assuming that: A, =0

still holds for time-dependent moduli.

This is incorrect because the 10D EOM:
DM Fyy =0= 0,0'A; = 0'0; A,

cannot be solved by: 0,4, #0, A, =0

Instead, the time-dependence forces a non-zero:
A;
ou!

A,u = Qfﬁuul ] 6”8&1 — 87’

(1r : compensator field
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Compensators in E&M

Effect of compensator on dimensionally reduced action:

DA, 94, ,,;
@ul ? 5[141 — 8u1 aZQ[ so that 0 (5[14@) =0

Compensator puts 07A4; back into harmonic gauge.
The field space metric is simply:
Grj = /dGQ\/LCTG g1 Aid A,

Natural mathematical definition (Singer): fluctuation
0rA; orthogonal to gauge transformation, w.r.t Gy



Warped Compactifications
Time-dependence of moduli sources off-diagonal metric:
dsiy = 24 Wt g,  (v)da"dz” + Bl (y)0,u’ da*dy” + gi;(y; w)dy'dy’

Compensators put metric back into harmonic gauge.

Hard to generalize YM approach. Two strategies:

® |agrangian: gauge-fixed metric (B; = 0, compensator
gauge), dimensional reduction with 10D constraints.

® Hamiltonian: gauge invariant metric, compensators
as Lagrange multipliers enforcing 10D constraints.



Hamiltonian of GR

Split metric into: ——

hmn  space-like piece :

NN tangential shift — ;\’ _

Zt ) hMN(t)

.. 1 :
Extrinsic curvature: Kyn = (g2 (hMN — VunNN — vNﬁM)

>
. oL
Canonical momentum: muw = ahEH = W2 (Kyn — hyun K)
MN
Hamiltonian: #e=v=so (—R“"” + o = ﬁh**) = 2qx Vg (7)

nn =Lagrange multipliers enforcing the constraints:

V m (WMN) =0



Kinetic Terms

Here, time-dependence of iy only implicit through u' ()
Computing the shift vectors: 7' = Bid'
Therefore, compensators = Lagrange multipliers of H¢!

The dynamical variables of H define the metric fluctuations:

. +0h
Kun ~ w'drhan = of /=228 Vunn — VNNIu

oul!

TMN ™ iLI(S]EMN — iLI (5IhMN — hMN5]h)

Only effect of compensators is to shift drhyn — drhun

(“physical” variation) & enforce constraints: V" (6;hyn) =0



Kinetic Terms

Kinetic term of Hamiltonian: Hiin (%, %) = Gry(u)i' 4’

Gry(u) = /dD_lmx/ —gp g7 orRMN S shay N

The constraints: VY (6rhyn) =0

imply that physical fluctuations are orthogonal
to gauge transformations:

Hkin(VE, 5h) =\

Equivalently: the constraints minimize G;; over each
gauge orbit.



Applications:Warped Compactifications

Conformal Calabi-Yau background:
dsiy = AWy datda? 4 e AW g (ysu)dy™ dy”

Constraint equations:

1
(1) §A = 207 +> Invariance of Viy = [ d°yy/oe**

. 1 )
(2) V"™ (6 Gmn — §§jmn5§) = 490" Ad G,

< “Warped” Harmonic Gauge Condition

Warped moduli space metric:

1 ~ . N,I: ~ Y ~ ~
Grj(u) = Wi /d6y go € 5" 571513501 Gn1



Properties of Moduli Space Metric

@ Metric fluctuations are orthogonal to gauge
transformation w.r.t. G;.

@ Warp factor appears in inner product. Metric
fluctuations no longer in harmonic gauge.

@ Expression differs from the conjectured form:
1 —4A
GozB: Vw/e Xa/\XE

Xa are harmonic forms of the underlying CY.




Warped Deformed Conifold

® Compute the field space metric for the
complex moduli S in the deformed conifold

® Klebanov-Strassler solution:

’5’2/3
(QSNO/)

+ K (7) cosh? (%) ((¢°)* + (¢")7) + K(7) sinh’ (g) ((g)* + (92)2)}

1) Pl + (g, Ne') 102 | 222 (04 (6

2
ds{y =

—4A(T) _ (gSNa/)Q
(7) — S I(7)

where e

® Note 6D metric independent of S, which
only enters the 4D redshift factor.



Warped Deformed Conifold

® |nternal metric fluctuations are completely
determined by compensators!

059i; = —Vin; — V1

® The field space metric then becomes:

Ggg = 2VW (/Hg) V96 €209 [T

® Solving compensator equations near IR end:

o _ k (gsNa')? Same qualitative feature
SS T Viw  |S[4/3 as DG, but differs by
order one coefficient.




Warped EFT: Summary

@ Many subtle issues need to be taken intfo account for
strong warping - all important and coupled.

@ Calculate warping and KK corrections to 4D EFT, Kahler
potential differs from previous proposals.

@ Future direction: universal Kahler modulus in strong
warping. Important for many phenomenological &
cosmological applications.



D7-branes

¥ Moduli Stabilization Kachru, Kallosh, Linde, Trivedi
* Vacuum energy uplifting Burgess, Kallosh, Quevedo

* Brane Inflation:

-» Brane-antibrane Baumann et al; ...
> D3-D7 Haack, Kallosh, Linde, Lust, Zaggerman,; ...
® Multi-field effects Chen, Gong, GS

® SUSY D7 in warped deformed conifold
Chen, Ouyang, GS
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