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Inflation and UV Physics

® Almost scale invariant, Gaussian primordial spectrum
predicted by inflation: good agreement with data.

Angular Scale
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® Tantalizing upper bound on the inflaton energy density:

V < Mgy ~ (101°GeV)?, de., H < 10'*GeV



Inflation as a Short Distance Probe

Quantum Fluctuations "Freeze In" Structure
1 -1 -1,
H ~ constant H ~ constant H 1ncreases
h<H h~H ! h<H!

Imprints of short distance physics



Example 1: Eta Problem

e In a wide class of models, the inflaton potential
takes a peculiar shape:

1 1 V' ?
V() {
f’ i
V//
Ly
N 77— P—V <<l ].

 Dimension 6, Planck suppressed operators can
stop inflation:

(5V~—(/§

o A sufficient degree of UV Completeness is needed
to estimate such corrections.



Example 2: Tensor Modes

g AL
Mp 0.0o
* A detection of primordial gravitational wave will

imply the inflaton rolled over super-Planckian
distances in field space.

e Lyth bound:

e Naturalness suggests order one corrections to
inflaton potential, unless UV completion shows

otherwise.

V(¢) Bl V;enomalizable(¢) 1 ¢4 Z Cn <Mip>

n>1



Example 3: Non-(Gaussianities

e Models of large non-Gaussianities tend to involve
crucially higher derivative terms. {Chen, Huang, Kachru, GS}

e Models of this sort have been proposed:
¢ K-inflation Mukhanoy

¢ DBI inflation Silverstein, Tong

Arkani-Hamed, Creminelli,

¢ Ghost inflation Mukohyama,Zaldarriaga

e UV completion is needed to argue why some terms
suppressed by a high mass scale are present while
others are absent.



More about Non-Gaussianities

Size of 3-point function:

Bispectrum

fNL ~
(Power Spectrum)’

For slow-roll:

Maldacena 02
fNL O (E) Acquaviva et al 02

AT (x1) AT (xo) AT (x3)

ST T 1 1 °
Bispectrum: (Cky ChoCis) = (2m)363 (K1 + ko + k3) F(K1, ko, k3)
¢
P
Power spectrum: (i Cio) ~ 03 (K1 + kz)k_§

Bispectrum gives much richer info because of its shape.



General Results

® General kinetic term:

L(D, X) where

1
X = Egul/a’u¢ay¢

® Bi-spectrum depends on 5 parameters:
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Final Results (Chen, Huang, Kachru, GS, 06)

* The 3-pt function for a general single field inflation to O(e):

(Ck )¢ (ko) (ky)) = (2m)707 (kg + ko + ky) (P ) I; l;

x (Ay+ A.+ A, + A, +A;,+A)

where we have decomposed the shape into six parts (K = kj+ko+k3)

LA | \ 3kTRSES
—|—=—1—-—=2—=(3—=2cy)! ——
G A
|
= 1l=—1 — Y kR L2k k|
A 2 )h( K ,,Z}, o Zﬁ ;}, / "+ Z ) |
1 2\
A, = 2 1 — \—1) (e +nEy, + sF)\)
_..rLj‘ 4 j\-
I . .
-+ IS l) (EE.'E + UE:U + SE:.L;) :
Cy K
|
L =€|—= ],], — > kiR,
A F( b; + Z +A{ijf),
1 o
A, =1 (8 > k;’) ,
A, = sF, .

* Completely specified by 5 parameters: Cs , % :



Shape of Non-Gaussianities

Plot A 1,332,373 /35’22(53

ey

i
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Local shape (Slow-roll) quilateral shape (e.g., DBI)

67 7778 CS?

fve ~ Of(e fne ~ O (c;”



Experimental Bound

Current bound (WMAPS):
—9 < fyr < 111 at 95% C.L. —151 < a1, < 253 at 95% C.L.

Future expectation:

‘fNL local | < 20 (WMAP |fNL local)| <5 (PLANCK



UV Physics & String Inflation

@ All these UV questions about inflation boil
down to a controllable effective theory.

@ Answers to these questions have important
observational consequences as well.

@ In addition to the usual o’ & g, corrections,
there is yet another expansion parameter in
warped compactifications: gsNco’

® Warping ubiquitous in string inflation models:
important to understand such corrections.



A Gentle Landscape







Dynamics of Warped
Flux Compactifications

GS, Torroba, Underwood, Douglas



Dynamics of Warped
Flux Compactifications

GS, Torroba, Underwood, Douglas



Dynamics of Warped
Flux Compactifications

GS, Torroba, Underwood, Douglas

(STUD)
See also: Douglas & Torroba



Warped Kahler Potential

® The warping corrected Kahler potential for the
complex moduli sector was conjectured to be:

K=-log([e*QAQ)= G5 = —ﬁfe_‘mxa A X3

suggested by the fact that
Vey = [d®y/g6 — Viv = [ d®y/gee™ 1)

* For the warped deformed conifold:

A3 <Na')?
Ggg = —0s05K = [Clog St ¢ (g|S|4/3)



Applications of Warped EFT

® Moduli (and hierarchy) stabilization potential:

Near the conifold point:

V ~ |S[43|DsW|?

CCU \

warped throat




Issues with Strong VWarping

D=10 String Theory Ex: GKP and KKLT
Type IIB String Theory in D=10
Low
L L Energy J Low
Energy
D= I O SUG RA IIB Supergravity in D=10
W|th f|uxeS Siip = LQ d"z+/|g| {Rm _ Gs|? B E|F5|2}+CS+1ocal
2K7 2lmT 4
KK
L [Dimensional} KK
Reduction l Dimensional
Reduction
D=4 N=1I .
SUG RA EFT N=1 SUGRA in D=4
K =—3log(p+p) —log(t + 7)
L —10g(/]3)—10g(/ﬂ/\§2)

String vacua, inflation,
de-Sitter, MSSM.....

W:/Gg/\Q—|—Wnp



Issues with Strong VWarping

D=10 String Theory

Low
Energy

D=10 SUGRA
with fluxes

KK
Dimensional
Reduction

D=4 N=|
SUGRA EFT

l

String vacua, inflation,
de-Sitter, MSSM....

Many subtleties with warped KK reduction:

* General KK ansatz (compensators)

* Mixing/sourcing of KK modes with moduli
* Backreaction of moduli on warp factor

* |0D Gauge redundancies

* |0OD Constraint equations

In warped backgrounds these 1ssues
are all highly coupled to each other!




KK Scale in Warped Background

Moduli KK modes

2 1 2 1




KK Scale in Warped Background

Moduli KK modes
2 1 2 1




KK Scale in Warped Background

Moduli KK modes
2 1 9 1
Unwarped m; e~ — MicK ™~ 75

Fields localize to region of strong warping.



KK Scale in Warped Background

Moduli KK modes
> 1 2 L
Unwarped m e~ MKk ™~ T3

Masses Y 24, 1 2 2Aoi
redshifted - 0% a%




KK Scale in Warped Background

Moduli KK modes
2 1 2 1

Fields localize to region of strong warping.
1 1
. o

No mass hierarchy between moduli and KK
modes for integrating out heavy fields.



Warped Kahler Potential

Previous proposal:
K = — log (fe_4AQ /\ﬁ) = G5 = —ﬁ [e 4 xq A Xz
did not account for all these subtle issues with warping.
Ansatz for fluctuations:
ds® = eZAnMVd:L‘“da:V + 6_2A(§mn + 0 G )dy " dy"

...does not solve 10D EOM!

More general ansatz does, but extremely messy ...

ds3, — dsiy + 20,0,5%* K, (y)dz"dz” + 2€** Boy, (y)0,S*dxtdy™ .



Linearized Einstein Equations

- — ., 1= 1
SGH =6l s; {e% {—ZVZA +4(VA)? - 53} } e 24 (00, u" — 6E0Ou’) (46, A — 5019)
+ (0"0u’ — 40" e*AVP(By, — 9,K)

1 _
+ 6—2AfK5KG(V4)M -3 (6K95 _ 556K9§) 62Av2fK :

(A.14)

SGH = §RM :e_QAﬁl‘uI{Z@mé[A — 89 A8 A — %amafg + O AS1G

- 1~
- 2apA5I§mp + §vp51§mp

_ %@p {6414 (@p By, — @mBIp)} + 2(OmAB1, — 0y ABr,)VPel4

1 . N
+ §€8ABlmv26_4A — 64AR%BM} ,

(A.15)

5G™ =uls; {eZA [é;ﬂ +4(VA)2m — gvnAWA} } _ e Ayl gk g g,

1
+6Me 2 A0u! (—267 A + 5(sfg)

e -0 K1) }

— §mVP [ (B — apKI)}>

T { 1 24 [vm (e*40,£5) + ¥, (64Aame)} +omVP [ezAapr}}

1
2 2
1

S0 Ke=245 RW
(A.16)

6TH = —(554 ) {ujéf [67614(%)2} — 27 %! S}, 0™ — 2DuIKIe*6A(%)2} ,
1
(A.37)
STH = 2;1n8“u16_6‘4 [0 S1p — 0pStm + OmaBr, — dpaBrm] 8Pa | (A.38)
4 )
.
ST = — 2 yl5, L e 54 |9, 000 — L5 (Va)?
n 262, " 2"
—6A

s § _ N 1 .
mi {Sjnama + 0,087 — 0, S1p0Pa + 2K {&La@ma — 55;”(Va)2] } )
(A.39)

2&10



Gauge Invariance & Compensators

Previous proposal:

K = - log (fe_‘“‘ﬂ/\ﬁ) = Ga? — —ﬁfe_‘mxa /\XE

is not diffeomorphism invariant:
X — X + do

This turns out to be equivalent to the failure of
the metric ansatz in solving the EOM.

Need extra terms proportional to 9,5

ds3y — dsiy + 20,0,5%** K, (y)dz"dz” + 2€** Boy (y)0,S*dxtdy™ .

\ / (Analogously, also

metric compensators flux compensators)



Compensators in E&M

Consider a U(l) gauge field:

1

S = —Z/dlox\/gloFMNFMN

and a family of solutions to D™ Fyn =0
parametrized by moduli v’ : Ay = (4, =0, A;(y;u))
Promoting v’ — u'(z), the kinetic terms give:

L 0A; 0A;
_ 6 19 v J
GIJ /d y\/ gde g auz ('MJ

not gauge invariant under 0A; = 0;e



Compensators in E&M

The error is in assuming that: A, =0

still holds for time-dependent moduli.

This is incorrect because the 10D EOM:
DM Fyy =0= 0,0'A; = 0'0; A,

cannot be solved by: 0,4, #0, A, =0

Instead, the time-dependence forces a non-zero:
A;
ou!

A,u = Qfﬁuul ] 6”8&1 — 87’

(1r : compensator field
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Compensators in E&M

Effect of compensator on dimensionally reduced action:

DA, 94, ,,;
@ul ? 5[141 — 8u1 aZQ[ so that 0 (5[14@) =0

Compensator puts 07A4; back into harmonic gauge.
The field space metric is simply:
Grj = /dGQ\/LCTG g1 Aid A,

Natural mathematical definition (Singer): fluctuation
0rA; orthogonal to gauge transformation, w.r.t Gy



Warped Compactifications
Time-dependence of moduli sources off-diagonal metric:
dsiy = 24 Wt g,  (v)da"dz” + Bl (y)0,u’ da*dy” + gi;(y; w)dy'dy’

Compensators put metric back into harmonic gauge.

Hard to generalize YM approach. Two strategies:

® |agrangian: gauge-fixed metric (B; = 0, compensator
gauge), dimensional reduction with 10D constraints.

® Hamiltonian: gauge invariant metric, compensators
as Lagrange multipliers enforcing 10D constraints.



Hamiltonian of GR

Split metric into: ——

hmn  space-like piece :

NN tangential shift — ;\’ _

Zt ) hMN(t)

.. 1 :
Extrinsic curvature: Kyn = (g2 (hMN — VunNN — vNﬁM)

>
. oL
Canonical momentum: muw = ahEH = W2 (Kyn — hyun K)
MN
Hamiltonian: #e=v=so (—R“"” + o = ﬁh**) = 2qx Vg (7)

nn =Lagrange multipliers enforcing the constraints:

V m (WMN) =0



Kinetic Terms

Here, time-dependence of iy only implicit through u' ()
Computing the shift vectors: 7' = Bid'
Therefore, compensators = Lagrange multipliers of H¢!

The dynamical variables of H define the metric fluctuations:

. +0h
Kun ~ w'drhan = of /=228 Vunn — VNNIu

oul!

TMN ™ iLI(S]EMN — iLI (5IhMN — hMN5]h)

Only effect of compensators is to shift drhyn — drhun

(“physical” variation) & enforce constraints: V" (6;hyn) =0



Kinetic Terms

Kinetic term of Hamiltonian: Hiin (%, %) = Gry(u)i' 4’

Gry(u) = /dD_lmx/ —gp g7 orRMN S shay N

The constraints: VY (6rhyn) =0

imply that physical fluctuations are orthogonal
to gauge transformations:

Hkin(VE, 5h) =\

Equivalently: the constraints minimize G;; over each
gauge orbit.



Applications:Warped Compactifications

Conformal Calabi-Yau background:
dsiy = AWy datda? 4 e AW g (ysu)dy™ dy”

Constraint equations:

1
(1) §A = 207 +> Invariance of Viy = [ d°yy/oe**

. 1 )
(2) V"™ (6 Gmn — §§jmn5§) = 490" Ad G,

< “Warped” Harmonic Gauge Condition

Warped moduli space metric:

1 ~ . N,I: ~ Y ~ ~
Grj(u) = Wi /d6y go € 5" 571513501 Gn1



Properties of Moduli Space Metric

@ Metric fluctuations are orthogonal to gauge
transformation w.r.t. G;.

@ Warp factor appears in inner product. Metric
fluctuations no longer in harmonic gauge.

@ Expression differs from the conjectured form:
1 —4A
GozB: Vw/e Xa/\XE

Xa are harmonic forms of the underlying CY.




Warped Deformed Conifold

® Compute the field space metric for the
complex moduli S in the deformed conifold

® Klebanov-Strassler solution:

’5’2/3
(QSNO/)

+ K (7) cosh? (%) ((¢°)* + (¢")7) + K(7) sinh’ (g) ((g)* + (92)2)}

1) Pl + (g, Ne') 102 | 222 (04 (6

2
ds{y =

—4A(T) _ (gSNa/)Q
(7) — S I(7)

where e

® Note 6D metric independent of S, which
only enters the 4D redshift factor.



Warped Deformed Conifold

® |nternal metric fluctuations are completely
determined by compensators!

059i; = —Vin; — V1

® The field space metric then becomes:

Ggg = 2VW (/Hg) V96 €209 [T

® Solving compensator equations near IR end:

o _ k (gsNa')? Same qualitative feature
SS T Viw  |S[4/3 as DG, but differs by
order one coefficient.




Warped EFT: Summary

@ Many subtle issues need to be taken intfo account for
strong warping - all important and coupled.

@ Calculate warping and KK corrections to 4D EFT, Kahler
potential differs from previous proposals.

@ Future direction: universal Kahler modulus in strong
warping. Important for many phenomenological &
cosmological applications.



D7-branes

¥ Moduli Stabilization Kachru, Kallosh, Linde, Trivedi
* Vacuum energy uplifting Burgess, Kallosh, Quevedo

* Brane Inflation:

-» Brane-antibrane Baumann et al; ...
> D3-D7 Haack, Kallosh, Linde, Lust, Zaggerman,; ...
® Multi-field effects Chen, Gong, GS

® SUSY D7 in warped deformed conifold
Chen, Ouyang, GS
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