UV Physics and String Inflation

Gary Shiu

- University of Wisconsin-Madison

DAWN OF TIME

tiny fraction of a second

inflation

380,000 years

Inflation and UV Physics

- Almost scale invariant, Gaussian primordial spectrum predicted by inflation: good agreement with data.

- Tantalizing upper bound on the inflaton energy density:

$$
V \leq M_{G U T}^{4} \sim\left(10^{16} \mathrm{GeV}\right)^{4}, \text { i.e., } H \leq 10^{14} \mathrm{GeV}
$$

Inflation as a Short Distance Probe

Quantum Fluctuations
"Freeze In"

$\mathrm{H}^{-1} \sim$ constant
$\lambda \sim \mathrm{H}^{-1}$

Structure

H^{-1} increases
$\lambda<\mathrm{H}^{-1}$

Imprints of short distance physics
[Brandenberger];[Chu,Greene, GS];[Easther, Greene, Kinney, GS]; [Kaloper, Kleban, Lawrence, Shenker, Susskind];[Einhorn, Larsen][Danielsson];
[Goldstein, Lowe];[Burgess, Cline, Holman];[Schalm, GS, van der Schaar], ...

Example i: Eta Problem

- In a wide class of models, the inflaton potential takes a peculiar shape:

$$
\begin{aligned}
& \epsilon=\frac{1}{2} M_{P}^{2}\left(\frac{V^{\prime}}{V}\right)^{2} \ll 1 \\
& \eta=M_{P}^{2} \frac{V^{\prime \prime}}{V} \ll 1
\end{aligned}
$$

- Dimension 6, Planck suppressed operators can stop inflation:

$$
\delta V \sim \frac{V}{M_{P}^{2}} \phi^{2}
$$

- A sufficient degree of UV completeness is needed to estimate such corrections.

Example 2: Tensor Modes

- Lyth bound:

$$
\frac{\Delta \phi}{M_{P}} \sim \sqrt{\frac{r}{0.05}}
$$

- A detection of primordial gravitational wave will imply the inflaton rolled over super-Planckian distances in field space.
- Naturalness suggests order one corrections to inflaton potential, unless UV completion shows otherwise.

$$
V(\phi)=V_{\text {renomalizable }}(\phi)+\phi^{4} \sum_{n \geq 1} c_{n}\left(\frac{\phi}{M_{P}}\right)^{n}
$$

Example 3: Non-Gaussianities

- Models of large non-Gaussianities tend to involve crucially higher derivative terms. [Chen, Huang, Kachru, GS]
- Models of this sort have been proposed:
\% K-inflation
DBI inflation
Ghost inflation

Mukhanov

Silverstein, Tong
Arkani-Hamed, Creminelli, Mukohyama,Zaldarriaga

- UV completion is needed to argue why some terms suppressed by a high mass scale are present while others are absent.

More about Non-Gaussianities

$$
<\frac{\Delta T\left(x_{1}\right)}{T} \frac{\Delta T\left(x_{2}\right)}{T} \frac{\Delta T\left(x_{3}\right)}{T}>
$$

Size of 3-point function:

$$
f_{N L} \sim \frac{\text { Bispectrum }}{(\text { Power Spectrum })^{2}}
$$

For slow-roll:

$$
f_{N L} \sim \mathcal{O}(\epsilon) \quad \begin{aligned}
& \text { Maldacena } 02 \\
& \text { Acquaviva et al } 02
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}} \zeta_{\mathbf{k}_{3}}\right\rangle & =(2 \pi)^{3} \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) F\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right) \\
\left\langle\zeta_{\mathbf{k}_{1}} \zeta_{\mathbf{k}_{2}}\right\rangle & \sim \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \frac{P_{k}^{\zeta}}{k_{1}^{3}}
\end{aligned}
$$

Bispectrum gives much richer info because of its shape.

General Results

Chen, Huang, Kachru, GS

- General kinetic term:

$$
\mathcal{L}(\phi, X) \quad \text { where } \quad X=\frac{1}{2} g_{\mu \nu} \partial^{\mu} \phi \partial^{\nu} \phi
$$

- Bi-spectrum depends on 5 parameters:

$$
\begin{array}{rlrl}
c_{s}^{2} & =\frac{\mathcal{L}_{, X}}{\mathcal{L}_{, X}+2 X \mathcal{L}_{, X X}} & \epsilon & =-\frac{\dot{H}}{H^{2}} \\
\lambda / \Sigma & =\frac{X^{2} \mathcal{L}_{, X X}+\frac{2}{3} X^{3} \mathcal{L}_{, X X X}}{X \mathcal{L}_{, X}+2 X^{2} \mathcal{L}_{, X X}} & \eta & =\frac{\dot{\epsilon}}{\epsilon H}, \\
s & =\frac{\dot{c}_{s}}{c_{s} H} . & & \text { Large non-Gaussianities } \\
& & \begin{array}{ll}
\text { small } C_{S} \text { or large } \lambda / \Sigma
\end{array}
\end{array}
$$

Final Results (Chen, Huang, Kachru, GS, 06)

- The 3-pt function for a general single field inflation to $\mathcal{O}(\epsilon)$:

$$
\begin{aligned}
\left\langle\zeta\left(\mathbf{k}_{1}\right) \zeta\left(\mathbf{k}_{2}\right) \zeta\left(\mathbf{k}_{3}\right)\right\rangle & =(2 \pi)^{7} \delta^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right)\left(\tilde{P}_{K}^{\zeta}\right)^{2} \frac{1}{\Pi_{i} k_{i}^{3}} \\
& \times\left(\mathcal{A}_{\lambda}+\mathcal{A}_{c}+\mathcal{A}_{o}+\mathcal{A}_{\epsilon}+\mathcal{A}_{\eta}+\mathcal{A}_{s}\right),
\end{aligned}
$$

where we have decomposed the shape into six parts ($K \equiv k_{1}+k_{2}+k_{3}$)

$$
\begin{aligned}
\mathcal{A}_{\lambda} & =\left(\frac{1}{c_{s}^{2}}-1-\frac{\lambda}{\sum}\left[2-\left(3-2 \mathbf{c}_{1}\right) l\right]\right)_{K} \frac{3 k_{1}^{2} k_{2}^{2} k_{3}^{2}}{2 K^{3}}, \\
\mathcal{A}_{c} & =\left(\frac{1}{c_{s}^{2}}-1\right)_{K}\left(-\frac{1}{K} \sum_{>j} k_{i}^{2} k_{j}^{2}+\frac{1}{2 K^{2}} \sum_{i \neq j} k_{i}^{2} k_{j}^{3}+\frac{1}{8} \sum_{i} k_{i}^{3}\right), \\
\mathcal{A}_{o} & =\left(\frac{1}{c_{s}^{2}}-1-\frac{2 \lambda}{\sum}\right)_{K}\left(\epsilon F_{\lambda \epsilon}+\eta F_{\lambda \eta}+s F_{\lambda s}\right) \\
& +\left(\frac{1}{c_{s}^{2}}-1\right)_{K}\left(\epsilon F_{c \epsilon}+\eta F_{c \eta}+s F_{c s}\right), \\
\mathcal{A}_{\epsilon} & =\epsilon\left(-\frac{1}{8} \sum_{i} k_{i}^{3}+\frac{1}{8} \sum_{i \neq j} k_{i} k_{j}^{2}+\frac{1}{K} \sum_{i>j} k_{i}^{2} k_{j}^{2}\right), \\
\mathcal{A}_{\eta} & =\eta\left(\frac{1}{8} \sum_{i} k_{i}^{3}\right), \\
\mathcal{A}_{s} & =s F_{s} .
\end{aligned}
$$

- Completely specified by 5 parameters: $c_{s}, \frac{\lambda}{\Sigma}, \quad \epsilon, \quad \eta, \quad s$.

Shape of Non-Gaussianities

(Babich, Creminelli, Zaldarriaga, 04; Chen, Huang, Kachru, GS, 06)

$$
\text { Plot } \mathcal{A}\left(1, x_{2}, x_{3}\right) / x_{2} x_{3}
$$

Local shape (Slow-roll)

$$
\begin{gathered}
\epsilon, \eta, s \\
f_{N L} \sim \mathcal{O}(\epsilon)
\end{gathered}
$$

Equilateral shape (e.g., DBI)

$$
c_{s}, \lambda
$$

$$
f_{N L} \sim \mathcal{O}\left(c_{s}^{-2}\right)
$$

Experimental Bound

Current bound (WMAP5):
$-9<f_{N L}<111$ at 95% C.L. $\quad-151<f_{N L}<253$ at 95% C.L.
Future expectation:
$\mid f_{N L}($ local $) \mid \leq 20($ WMAP $) \quad \mid f_{N L}($ local $) \mid \leq 5($ PLANCK $)$

UV Physics \& String Inflation

- All these UV questions about inflation boil down to a controllable effective theory.
- Answers to these questions have important observational consequences as well.
- In addition to the usual $\alpha^{\prime} \& g_{s}$ corrections, there is yet another expansion parameter in warped compactifications: $\mathrm{g}_{s} N \alpha^{\prime}$
- Warping ubiquitous in string inflation models: important to understand such corrections.

A Gentle Landscape

Dynamics of Warped
 Flux Compactifications

GS, Torroba, Underwood, Douglas

Dynamics of Warped
 Flux Compactifications

GS, Torroba, Underwood, Douglas

Dynamics of Warped Flux Compactifications

GS, Torroba, Underwood, Douglas (STUD)

See also: Douglas \& Torroba

Warped Kahler Potential

- The warping corrected Kahler potential for the complex moduli sector was conjectured to be:

$$
\mathrm{K}=-\log \left(\int e^{-4 A} \Omega \wedge \bar{\Omega}\right) \Rightarrow G_{\alpha \bar{\beta}}=-\frac{1}{V_{W}} \int e^{-4 A} \chi_{\alpha} \wedge \chi_{\bar{\beta}}
$$

suggested by the fact that
DeWolfe-Giddings

$$
\mathrm{V}_{C Y}=\int d^{6} y \sqrt{g_{6}} \rightarrow V_{W}=\int d^{6} y \sqrt{\tilde{g}_{6}} e^{-4 A(y)}
$$

- For the warped deformed conifold:

$$
\mathrm{G}_{S \bar{S}}=-\partial_{S} \partial_{\bar{S}} K=\frac{1}{V_{W}}\left[c \log \frac{\Lambda_{0}^{3}}{|S|}+c^{\prime} \frac{\left(g_{s} N \alpha^{\prime}\right)^{2}}{|S|^{4 / 3}}\right]
$$

Applications of Warped EFT

- Moduli (and hierarchy) stabilization potential:

Near the conifold point:

$$
\mathrm{V} \simeq|S|^{4 / 3}\left|D_{S} W\right|^{2}
$$

- Inflation potential, soft SUSY breaking terms, etc

Issues with Strong Warping

$\mathrm{D}=10$ String Theory 11 Liou

$$
D=10 \text { SUGRA }
$$ with fluxes

$\mathrm{D}=4 \mathrm{~N}=1$ SUGRA EFT 1
String vacua, inflation, de-Sitter, MSSM...

Ex: GKP and KKLT
Type IIB String Theory in $\mathrm{D}=10$

IIB Supergravity in $\mathrm{D}=10$
$S_{I I B}=\frac{1}{2 \kappa_{10}^{2}} \int d^{10} x \sqrt{|g|}\left\{R_{10}-\frac{\left|G_{3}\right|^{2}}{2 \operatorname{Im} \tau}-\frac{1}{4}\left|\tilde{F}_{5}\right|^{2}\right\}+$ CS + local

$\mathrm{N}=1$ SUGRA in $\mathrm{D}=4$
$K=-3 \log (\rho+\bar{\rho})-\log (\tau+\bar{\tau})$
$-\log \left(\int J^{3}\right)-\log \left(\int \Omega \wedge \bar{\Omega}\right)$
$W=\int G_{3} \wedge \Omega+W_{n p}$

Issues with Strong Warping

$\mathrm{D}=10$ String Theory

 with fluxes

$D=4 \mathrm{~N}=1$ SUGRA EFT !
String vacua, inflation, de-Sitter, MSSM...

Many subtleties with warped KK reduction:

- General KK ansatz (compensators)
- Mixing/sourcing of KK modes with moduli
- Backreaction of moduli on warp factor
- IOD Gauge redundancies
- IOD Constraint equations

In warped backgrounds these issues are all highly coupled to each other!

KK Scale in Warped Background

Moduli
Unwarped

KK modes
$m_{K K}^{2} \sim \frac{1}{L^{2}}$

KK Scale in Warped Background

Moduli
Unwarped $m_{z}^{2} \sim \frac{1}{\alpha^{\prime}}$

Strong warping

KK modes

$$
m_{K K}^{2} \sim \frac{1}{L^{2}}
$$

DeWolfe, Giddings; Giddings, Maharana; $\underset{\text { Manifold }}{\text { Bulk }}$ Frey, Maharana; Burgess, Camara, de Alwis, Giddings, Maharana, Quevedo, Suruliz; ...

KK Scale in Warped Background

Moduli
Unwarped $m_{z}^{2} \sim \frac{1}{\alpha^{\prime}}$

Fields localize to region of strong warping.

KK modes

$$
m_{K K}^{2} \sim \frac{1}{L^{2}}
$$

DeWolfe, Giddings; Giddings, Maharana; $\underset{\text { Manifold }}{\text { Bulk }}$ Frey, Maharana;

Burgess, Camara, de Alwis, Giddings, Maharana, Quevedo, Suruliz; ...

KK Scale in Warped Background

Moduli
Unwarped $m_{z}^{2} \sim \frac{1}{\alpha^{\prime}}$

Fields localize to region of strong warping.

Strong warping

 KK modes$$
m_{K K}^{2} \sim \frac{1}{L^{2}}
$$

KK Scale in Warped Background

Moduli
Unwarped

$$
m_{z}^{2} \sim \frac{1}{\alpha^{\prime}}
$$

Fields localize to region of strong warping.
Strong warping

KK modes

$$
m_{K K}^{2} \sim \frac{1}{L^{2}}
$$ $\quad \begin{aligned} & \text { DeWolfe, Giddings; } \\ & \text { Giddings, Maharana; } \\ & \text { Bunk } \\ & \text { Manifold }\end{aligned}$ Frey, Maharana;

Burgess, Camara, de
Alwis, Giddings,
Maharana, Quevedo,
Suruliz; ...

$$
m_{K K}^{2} \sim e^{2 A_{0}} \frac{1}{\alpha^{\prime}}
$$

No mass hierarchy between moduli and KK modes for integrating out heavy fields.

Warped Kahler Potential

Previous proposal: (DeWolfe, Giddings)

$$
\mathrm{K}=-\log \left(\int e^{-4 A} \Omega \wedge \bar{\Omega}\right) \Rightarrow G_{\alpha \bar{\beta}}=-\frac{1}{V_{W}} \int e^{-4 A} \chi_{\alpha} \wedge \chi_{\bar{\beta}}
$$

did not account for all these subtle issues with warping.
Ansatz for fluctuations: (DeWolfe, Giddings)

$$
d s^{2}=e^{2 A} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+e^{-2 A}\left(\tilde{g}_{m n}+\delta \tilde{g}_{m n}\right) d y^{m} d y^{n}
$$

... does not solve IOD EOM! Giddings, Maharana; STUD
More general ansatz does, but extremely messy ...

$$
d s_{10}^{2} \rightarrow d s_{10}^{2}+2 \partial_{\mu} \partial_{\nu} S^{\alpha} e^{2 A} K_{\alpha}(y) d x^{\mu} d x^{\nu}+2 e^{2 A} B_{\alpha m}(y) \partial_{\mu} S^{\alpha} d x^{\mu} d y^{m}
$$

Linearized Einstein Equations

$\begin{aligned} \delta G_{\nu}^{\mu}= & \delta_{\nu}^{\mu} u^{I} \delta_{I}\left\{e^{2 A}\left[-2 \tilde{\nabla}^{2} A+4(\widetilde{\nabla A})^{2}-\frac{1}{2} \tilde{R}\right]\right\}+e^{-2 A}\left(\partial^{\mu} \partial_{\nu} u^{I}-\delta_{\nu}^{\mu} \square u^{I}\right)\left(4 \delta_{I} A-\frac{1}{2} \delta_{I} \tilde{g}\right) \\ & +\left(\partial^{\mu} \partial_{\nu} u^{I}-\delta_{\nu}^{\mu} \square u^{I}\right) e^{2 A} \tilde{\nabla}^{p}\left(B_{I p}-\partial_{p} K_{I}\right) \\ & +e^{-2 A} f^{K} \delta_{K} G_{\nu}^{(4) \mu}-\frac{1}{2}\left(\delta_{K} g_{\nu}^{\mu}-\delta_{\nu}^{\mu} \delta_{K} g_{\lambda}^{\lambda}\right) e^{2 A} \tilde{\nabla}^{2} f^{K},\end{aligned}$

$$
\begin{align*}
\delta G_{m}^{\mu}=\delta R_{m}^{\mu}= & e^{-2 A} \partial^{\mu} u^{I}\left\{2 \partial_{m} \delta_{I} A-8 \partial_{m} A \delta_{I} A-\frac{1}{2} \partial_{m} \delta_{I} \tilde{g}+\partial_{m} A \delta_{I} \tilde{g}\right. \\
& -2 \partial^{\tilde{p}} A \delta_{I} \tilde{g}_{m p}+\frac{1}{2} \tilde{\nabla}^{p} \delta_{I} \tilde{g}_{m p} \\
& -\frac{1}{2} \tilde{\nabla}^{p}\left[e^{4 A}\left(\tilde{\nabla}_{p} B_{I m}-\tilde{\nabla}_{m} B_{I p}\right)\right]+2\left(\partial_{m} A B_{I p}-\partial_{p} A B_{I m}\right) \tilde{\nabla}^{p} e^{4 A} \\
& \left.+\frac{1}{2} e^{8 A} B_{I m} \tilde{\nabla}^{2} e^{-4 A}-e^{4 A} \tilde{R}_{m}^{n} B_{I n}\right\} \tag{A.15}
\end{align*}
$$

$$
\begin{aligned}
\delta G_{n}^{m}= & u^{I} \delta_{I}\left\{e^{2 A}\left[\tilde{G}_{n}^{m}+4(\widetilde{\nabla A})^{2} \delta_{n}^{m}-8 \nabla_{n} A \tilde{\nabla}^{m} A\right]\right\}-\frac{1}{2} e^{-2 A} \square u^{I} \tilde{g}^{m k} \delta_{I} \tilde{g}_{k n} \\
& +\delta_{n}^{m} e^{-2 A} \square u^{I}\left(-2 \delta_{I} A+\frac{1}{2} \delta_{I} \tilde{g}\right) \\
& \square u^{I}\left(\frac{1}{2} e^{-2 A}\left\{\tilde{\nabla}^{m}\left[e^{4 A}\left(B_{I n}-\partial_{n} K_{I}\right)\right]+\tilde{\nabla}_{n}\left[e^{4 A}\left(B_{I}^{\tilde{m}}-\partial^{\tilde{m}} K_{I}\right)\right]\right\}\right. \\
& \left.-\delta_{n}^{m} \tilde{\nabla}^{p}\left[e^{2 A}\left(B_{I p}-\partial_{p} K_{I}\right)\right]\right) \\
& +\frac{1}{2} \delta_{K} g_{\mu}^{\mu}\left\{-\frac{1}{2} e^{-2 A}\left[\tilde{\nabla}^{m}\left(e^{4 A} \partial_{n} f^{K}\right)+\tilde{\nabla}_{n}\left(e^{4 A} \partial^{\tilde{m}} f^{K}\right)\right]+\delta_{n}^{m} \tilde{\nabla}^{p}\left[e^{2 A} \partial_{p} f^{K}\right]\right\} \\
& -\frac{1}{2} \delta_{n}^{m} f^{K} e^{-2 A} \delta_{K} R^{(4)}
\end{aligned}
$$

$$
\begin{gather*}
\delta T_{\nu}^{\mu}=-\delta_{\nu}^{\mu} \frac{1}{4 \kappa_{10}^{2}}\left\{u^{I} \delta_{I}\left[e^{-6 A}(\widetilde{\nabla \alpha})^{2}\right]-2 e^{-6 A} \square u^{I} S_{I m} \partial^{\tilde{m}} \alpha-2 \square u^{I} K_{I} e^{-6 A}(\widetilde{\nabla \alpha})^{2}\right\} \tag{A.38}\\
\delta T_{m}^{\mu}=\frac{1}{2 \kappa_{10}^{2}} \partial^{\mu} u^{I} e^{-6 A}\left[\partial_{m} S_{I p}-\partial_{p} S_{I m}+\partial_{m} \alpha B_{I p}-\partial_{p} \alpha B_{I m}\right] \partial^{\tilde{p}} \alpha \tag{A.37}
\end{gather*}
$$

$$
\begin{aligned}
\delta T_{n}^{m} & =-\frac{1}{2 \kappa_{10}^{2}} u^{I} \delta_{I}\left\{e^{-6 A}\left[\partial_{n} \alpha \partial^{\tilde{m}} \alpha-\frac{1}{2} \delta_{n}^{m}(\widetilde{\nabla \alpha})^{2}\right]\right\} \\
& +\frac{e^{-6 A}}{2 \kappa_{10}^{2}} \square u^{I}\left\{S_{I n} \partial^{\tilde{m}} \alpha+\partial_{n} \alpha S_{I}^{\tilde{I}}-\delta_{n}^{m} S_{I p} \partial^{\tilde{p}} \alpha+2 K_{I}\left[\partial_{n} \alpha \partial^{\tilde{m}} \alpha-\frac{1}{2} \delta_{n}^{m}(\widetilde{\nabla \alpha})^{2}\right]\right\}
\end{aligned}
$$

Gauge Invariance \& Compensators

Previous proposal: (DeWolfe, Giddings)

$$
\mathrm{K}=-\log \left(\int e^{-4 A} \Omega \wedge \bar{\Omega}\right) \Rightarrow G_{\alpha \bar{\beta}}=-\frac{1}{V_{W}} \int e^{-4 A} \chi_{\alpha} \wedge \chi_{\bar{\beta}}
$$

is not diffeomorphism invariant:

$$
\chi \rightarrow \chi+d \alpha
$$

This turns out to be equivalent to the failure of the metric ansatz in solving the EOM.

Need extra terms proportional to $\partial_{\mu} S^{\alpha}$

$$
d s_{10}^{2} \rightarrow d s_{10}^{2}+2 \partial_{\mu} \partial_{\nu} S^{\alpha} e^{2 A} K_{\alpha}(y) d x^{\mu} d x^{\nu}+2 e^{2 A} B_{\alpha m}(y) \partial_{\mu} S^{\alpha} d x^{\mu} d y^{m} \text {. }
$$

Compensators in E\&M

Consider a $\mathrm{U}(\mathrm{I})$ gauge field:

$$
S=-\frac{1}{4} \int d^{10} x \sqrt{g_{10}} F^{M N} F_{M N}
$$

and a family of solutions to $D^{M} F_{M N}=0$ parametrized by moduli $u^{I}: \quad A_{M}=\left(A_{\mu}=0, A_{i}(y ; u)\right)$
Promoting $u^{I} \rightarrow u^{I}(x)$, the kinetic terms give:

$$
G_{I J}=\int d^{6} y \sqrt{g_{6}} g^{i j} \frac{\partial A_{i}}{\partial u^{i}} \frac{\partial A_{j}}{\partial u^{J}}
$$

not gauge invariant under $\quad \delta A_{i}=\partial_{i} \epsilon$

Compensators in E\&M

The error is in assuming that: $A_{\mu}=0$ still holds for time-dependent moduli.

This is incorrect because the IOD EOM:

$$
D^{M} F_{M \mu}=0 \Rightarrow \partial_{\mu} \partial^{i} A_{i}=\partial^{i} \partial_{i} A_{\mu}
$$

cannot be solved by: $\quad \partial_{\mu} A_{i} \neq 0, \quad A_{\mu}=0$
Instead, the time-dependence forces a non-zero:

$$
A_{\mu}=\Omega_{I} \partial_{\mu} u^{I}, \quad \partial^{i} \partial_{i} \Omega_{I}=\partial^{i} \frac{A_{i}}{\partial u^{I}}
$$

Ω_{I} : compensator field

Compensators in E\&M

The error is in assuming that: $A_{\mu}=0$ still holds for time-dependent moduli.

This is incorrect because the IOD EOM:

$$
D^{M} F_{M \mu}=0 \Rightarrow \partial_{\mu} \partial^{i} A_{i}=\partial^{i} \partial_{i} A_{\mu}
$$

cannot be solved by: $\quad \partial_{\mu} A_{i} \neq 0, \quad A_{\mu}=0$
Instead, the time-dependence forces a non-zero:

$$
A_{\mu}=\Omega_{I} \partial_{\mu} u^{I}, \quad \partial^{i} \partial_{i} \Omega_{I}=\partial^{i} \frac{A_{i}}{\partial u^{I}}
$$

Ω_{I} : compensator field

Compensators in E\&M

Effect of compensator on dimensionally reduced action:

$$
\frac{\partial A_{i}}{\partial u^{I}} \rightarrow \delta_{I} A_{i} \equiv \frac{\partial A_{i}}{\partial u^{I}}-\partial_{i} \Omega_{I} \text { so that } \partial^{i}\left(\delta_{I} A_{i}\right)=0
$$

Compensator puts $\delta_{I} A_{i}$ back into harmonic gauge.
The field space metric is simply:

$$
G_{I J}=\int d^{6} y \sqrt{g_{6}} g^{i j} \delta_{I} A_{i} \delta_{J} A_{j}
$$

Natural mathematical definition (Singer): fluctuation $\delta_{I} A_{i}$ orthogonal to gauge transformation, w.r.t $G_{I J}$

Warped Compactifications

Time-dependence of moduli sources off-diagonal metric:

$$
d s_{10}^{2}=e^{2 A(y, y)} g_{\mu \nu}(x) d x^{\mu} d x^{\nu}+B_{j}^{I}(y) \partial_{\mu} u^{I} d x^{\mu} d y^{I}+g_{i j}(y ; u) d y^{i} d y^{j}
$$

Compensators put metric back into harmonic gauge.
Hard to generalize YM approach. Two strategies:

- Lagrangian: gauge-fixed metric ($B_{j}^{I}=0$, compensator gauge), dimensional reduction with IOD constraints.
- Hamiltonian: gauge invariant metric, compensators as Lagrange multipliers enforcing IOD constraints.

Hamiltonian of GR

Split metric into:

$$
\begin{array}{ll}
h_{M N} & \text { space-like piece } \\
\eta_{N} & \text { tangential shift }
\end{array}
$$

Extrinsic curvature: $\quad K_{M N}=\frac{1}{2}\left(g^{t t}\right)^{1 / 2}\left(\dot{h}_{M N}-\nabla_{M} \eta_{N}-\nabla_{N} \eta_{M}\right)$
Canonical momentum: $\pi_{M N}=\frac{\partial \mathcal{L}_{E H}}{\partial \dot{h}_{M N}}=h^{1 / 2}\left(K_{M N}-h_{M N} K\right)$
Hamiltonian: $\mathcal{H}_{G}=\sqrt{-g_{D}}\left(-R^{(D-1)}+h^{-1} \pi^{M N} \pi_{M N}-\frac{1}{D-2} h^{-1} \pi^{2}\right)-2 \eta_{N} \nabla_{M}\left(\pi^{M N}\right)$
$\eta_{N}=$ Lagrange multipliers enforcing the constraints:

$$
\nabla_{M}\left(\pi^{M N}\right)=0
$$

Kinetic Terms

Here, time-dependence of $h_{M N}$ only implicit through $u^{I}(x)$
Computing the shift vectors: $\quad \eta^{i}=B_{I}^{i} \dot{u}^{I}$
Therefore, compensators = Lagrange multipliers of \mathcal{H}_{G} !
The dynamical variables of H define the metric fluctuations:

$$
\begin{aligned}
K_{M N} \sim \dot{u}^{I} \delta_{I} h_{M N} & \equiv \dot{u}^{I} \frac{\partial h_{M N}}{\partial u^{I}}-\nabla_{M} \eta_{N}-\nabla_{N} \eta_{M} \\
\pi_{M N} \sim \dot{u}^{I} \delta_{I} \bar{h}_{M N} & \equiv \dot{u}^{I}\left(\delta_{I} h_{M N}-h_{M N} \delta_{I} h\right)
\end{aligned}
$$

Only effect of compensators is to shift $\partial_{I} h_{M N} \rightarrow \delta_{I} h_{M N}$ ("physical" variation) \& enforce constraints: $\nabla^{M}\left(\delta_{I} \bar{h}_{M N}\right)=0$

Kinetic Terms

Kinetic term of Hamiltonian: $\mathcal{H}_{\text {kin }}(\dot{u}, \dot{u})=G_{I J}(u) \dot{u}^{I} \dot{u}^{J}$

$$
G_{I J}(u)=\int d^{D-1} x \sqrt{-g_{D}} g^{t t} \delta_{I} h^{M N} \delta_{J} \bar{h}_{M N}
$$

The constraints: $\quad \nabla^{M}\left(\delta_{I} \bar{h}_{M N}\right)=0$
imply that physical fluctuations are orthogonal to gauge transformations:

$$
\mathcal{H}_{\text {kin }}(\nabla \epsilon, \delta h)=0
$$

Equivalently: the constraints minimize $G_{I J}$ over each gauge orbit.

Applications:Warped Compactifications

Conformal Calabi-Yau background:

$$
d s_{10}^{2}=e^{2 A(y ; u)} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+e^{-2 A(y ; u)} \tilde{g}_{m n}(y ; u) d y^{m} d y^{n}
$$

Constraint equations:

$$
\begin{aligned}
& \text { (1) } \delta A=\frac{1}{8} \delta \tilde{g} \leftrightarrow \text { Invariance of } V_{W}=\int d^{6} y \sqrt{\tilde{g}_{6}} e^{-4 A} \\
& \text { (2) } \tilde{\nabla}^{\tilde{m}}\left(\delta \tilde{g}_{m n}-\frac{1}{2} \tilde{g}_{m n} \delta \tilde{g}\right)=4 \partial^{\tilde{m}} A \delta \tilde{g}_{m n} \\
& \leftrightarrow \text { "Warped" Harmonic Gauge Condition }
\end{aligned}
$$

Warped moduli space metric:

$$
G_{I J}(u)=\frac{1}{4 V_{W}} \int d^{6} y \sqrt{\tilde{g}_{6}} e^{-4 A} \tilde{g}^{i k} \tilde{g}^{j l} \delta_{I} \tilde{g}_{i j} \delta_{J} \tilde{g}_{k l}
$$

Properties of Moduli Space Metric

- Metric fluctuations are orthogonal to gauge transformation w.r.t. $G_{I J}$.
- Warp factor appears in inner product. Metric fluctuations no longer in harmonic gauge.
- Expression differs from the conjectured form:

$$
G_{\alpha \bar{\beta}}=-\frac{1}{V_{W}} \int e^{-4 A} \chi_{\alpha} \wedge \chi_{\bar{\beta}}
$$

χ_{α} are harmonic forms of the underlying CY .

Warped Deformed Conifold

- Compute the field space metric for the complex moduli S in the deformed conifold
- Klebanov-Strassler solution:

$$
\begin{aligned}
& \begin{aligned}
& d s_{10}^{2}=\frac{|S|^{2 / 3}}{\left(g_{s} N \alpha^{\prime}\right)} I(\tau)^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\left(g_{s} N \alpha^{\prime}\right) I(\tau)^{1 / 2}\left[\frac{1}{3 K(\tau}\right)^{2}\left(d \tau^{2}+\left(g^{5}\right)^{2}\right) \\
&\left.+K(\tau) \cosh ^{2}\left(\frac{\tau}{2}\right)\left(\left(g^{3}\right)^{2}+\left(g^{4}\right)^{2}\right)+K(\tau) \sinh ^{2}\left(\frac{\tau}{2}\right)\left(\left(g^{1}\right)^{2}+\left(g^{2}\right)^{2}\right)\right] \\
& \text { Where } \quad e^{-4 A(\tau)}=\frac{\left(g_{s} N \alpha^{\prime}\right)^{2}}{|S|^{4 / 3}} I(\tau)
\end{aligned} \text { W}
\end{aligned}
$$

- Note 6D metric independent of S, which only enters the 4D redshift factor.

Warped Deformed Conifold

- Internal metric fluctuations are completely determined by compensators!

$$
\delta_{S} g_{i j}=-\nabla_{i} \eta_{j}-\nabla_{j} \eta_{i}
$$

- The field space metric then becomes:

$$
G_{S \bar{S}}=-\left.\frac{1}{2 V_{W}}\left(\int \prod_{i} g^{i}\right) \sqrt{g_{6}} e^{2 A} \eta_{i} \delta_{S} \bar{g}^{i \tau}\right|_{\tau=0} ^{\tau=\tau_{\Lambda}}
$$

- Solving compensator equations near IR end:

$$
G_{S \bar{S}}=\frac{k}{V_{W}} \frac{\left(g_{s} N \alpha^{\prime}\right)^{2}}{|S|^{4 / 3}}
$$

Same qualitative feature as DG, but differs by order one coefficient.

Warped EFT: Summary

- Many subtle issues need to be taken into account for strong warping - all important and coupled.
- Calculate warping and KK corrections to 4D EFT, Kahler potential differs from previous proposals.
- Future direction: universal Kahler modulus in strong warping. Important for many phenomenological \& cosmological applications.

D7-branes

* Moduli Stabilization
* Vacuum energy uplifting

Kachru, Kallosh, Linde, Trivedi
Burgess, Kallosh, Quevedo

* Brane Inflation:
-f. Brane-antibrane
Baumann et al; ...
-f. $\mathrm{D}_{3}-\mathrm{D}_{7}$ Haack, Kallosh, Linde, Lust, Zaggerman; ...
- Multi-field effects
- SUSY D7 in warped deformed conifold

THANKS

4-4

