String Model of Gauge Mediated Supersymmetry Breaking

based on:

M.C. and Timo Weigand, arXiv:0807.3953

& Phys. Rev. Lett. 100, 251601 (2008) [arXiv:0711.0209]

Key points – Summary

- Robust supergravity model of dynamical supersymmetry breaking and gauge mediation — Embedding in non-perturbative string theory with D-branes
- Building blocks: (i) Chiral superfield field (and its mirror) charged under "anomalous" U(1)'s: its hierarchical Polonyi-term due to string instantons (ii) Quartic superpotential terms due to tree-level decoupling effect of massive string states.
- Supersymmetry breaking minimum: robust & gauge mediation with soft masses in TeV regime
- Realization:
 Globally consistent SU(5) GUT model of Type I string theory & with D1-instanton inducing the Polonyi term

Challenge:

How is supersymmetry broken & Protects the Standard Model at TeV scale?

 \longrightarrow

Gauge Mediatiated Supersymmetry Breaking:

- Naturally ensures TeV scale soft supersymmetry breaking Standard Model masses
- Clear rationale for the absence of flavor-changing neutral currents
- Model-independent experimental signatures —
 testability at LHC

e.g., [Meade, Seiberg, Shih 0801.3278], [Distler, Robbins 0807.2006]

Implementation:

- SUSY breaking: $\langle X \rangle = \langle S \rangle + \theta^2 \langle F_X \rangle$
- Mediated by messengers: q, \tilde{q} via $\lambda X q \tilde{q}$
- Loop generated soft masses: $m_{\lambda} \simeq m_{\tilde{\ell}} \simeq \frac{\alpha}{4\pi} \frac{\langle F \rangle}{\langle S \rangle}$

Challenge:

Suppressing gravity mediation $m_{gr} \simeq \frac{F}{M_{Pl}} \longrightarrow$ $\langle S \rangle \leq 10^{-3} M_{Pl} \longrightarrow$ requires S stabilized at scale $\ll M_{Pl}$

Perhaps simplest supersymmetry breaking scenario:

Polonyi-type superpotential $\mu^2 S \longrightarrow$

- F-term supersymmetry breaking at scale $F \simeq \mu^2 \ll M_{Pl}$
- Further constraints: $\langle S \rangle \leq 10^{-3} M_{Pl}$ & gauge mediation

Gauge Mediation Embedding in String Theory

E.g., early approach: [Diaconescu, Florea, Kachru, Svrcek 0512170]

Embedding in non-perturbative string theory with D-branes: Type II orientifolds with D-branes and D-instantons

- Polonyi field: Charged hidden sector $S_{-1_a,1_b}$ chiral field at intersection of a and b stack of D-branes with "anomalous" gauge symmetry, say $U(1)_a \times U(1)_b$
- ullet Monomials in S in superpotential forbidden perturbatively, but due to D-brane instantons

([Blumenhagen, MC, Weigand hep-th/0609191], [Ibañez, Uranga

hep-th/0609213], [Florea, Kachru, McGreevy, Saulina 0610003])

Polonyi term: $W=\mu^2 S$, w/ $\mu^2=M_s^2 e^{-S_{inst}}$

[Aharony, Kachru, Silverstein 0708.0493], [MC, Weigand 0711.0209]-global embedding

The Supergravity Model [M.C., Timo Weigand 0807.3953]

- Hidden $U(1)_a \times U(1)_b$
- Polonyi field $S_{(-1_a,1_b)}$ & mirror $\tilde{S}_{(1_a,-1_b)}$ (D-flatness)
- messengers q_{-1_b,N_c} , $\tilde{q}_{1_a,\overline{N}_c}$ (N_c : visible sector)

$$V_F: W = \mu^2 S + c - \frac{S^2 \tilde{S}^2}{4M} - \lambda S q \tilde{q}, K = S S^{\dagger} + \tilde{S} \tilde{S}^{\dagger} + q q^{\dagger} + \tilde{q}$$

$$V_D = \frac{g_a^2}{2} (-|S|^2 + |\tilde{S}|^2 + |q|^2)^2 + \frac{g_b^2}{2} (|S|^2 - |\tilde{S}|^2 - |\tilde{q}|^2)^2$$

(Could include higher order Kähler potential corrections – turn out to be subleading)

String theoretic origin: $(W = \mu^2 S + c - \frac{S^2 \tilde{S}^2}{4M} - \lambda Sq\tilde{q})$

- S, \tilde{S} massless pair at D-brane intersection Π_a , Π_b ; q, (\tilde{q}) -at hidden Π_a (Π_b) and observable N_c stack Π_c intersection
- ullet Polonyi term $\mu^2 S$ due to D-brane instantons with $\mu \ll M_{pl}$ [Aharony, Kachru, Silverstein 0708.0493], [MC, Weigand 0711.0209]
- Quartic term: $-\frac{S^2\tilde{S}^2}{4M}$ decoupling of heavy string states C:

$$W_C = \lambda_C CS\tilde{S} + M_C C^2 \Rightarrow M = M_C/\lambda_C^2$$

 M_C – string scale M_s [or smaller if $M_C \leftrightarrow$ moduli mass]

- Strong assumption: stabilization of closed string moduli at scale $\gg \mu$ —issue of separation of scales (similar to KKKLT) \longrightarrow constant c and absence of FI term
- [Kähler potential corrections (c.f., [MC, Everett, Wang hep-th/9807321]):

$$+\frac{SS^{\dagger}\tilde{S}\tilde{S}^{\dagger}}{M^{2}}$$
 subleading]

Supersymmetry breaking minimum $(M_{Pl} = 1)$

$$V = V_F + V_D$$
, $(W = \mu^2 S + c - \frac{S^2 \tilde{S}^2}{4M} - \lambda S q \tilde{q})$

Expansion:
$$\langle S \rangle \sim \langle \tilde{S} \rangle = \mathcal{O}(\mu^2 M)^{\frac{1}{3}} \ll 1$$
, $\langle q \rangle = \langle \tilde{q} \rangle = 0$

Natural field space basis:

$$S = |S| \exp(i\phi), \quad \tilde{S} = |\tilde{S}| \exp(i\tilde{\phi}) \longrightarrow$$

$$S_{\pm} = \frac{1}{\sqrt{2}}(|S| \pm |\tilde{S}|), \quad \phi_1 \equiv \frac{1}{\sqrt{5}}(\phi + 2\tilde{\phi}), \quad \phi_2 \equiv \frac{1}{\sqrt{5}}(-2\phi + \tilde{\phi})$$

Minimum:

(analytic in leading M_{Pl}^{-1} expansion; $\mu \ll 1$ high precision)

$$\langle S_{+} \rangle = \mu^{\frac{2}{3}} M^{\frac{1}{3}}, \qquad \langle S_{-} \rangle \simeq \frac{1}{g_a^2 + g_b^2} \frac{\mu^2}{M} \ll \langle S_{+} \rangle,$$
 $\langle \phi_1 \rangle = \langle \phi_2 \rangle = 0, \ \langle q \rangle = \langle \tilde{q} \rangle = 0$

$$V|_{min} = 0 \text{ for } c = \frac{\mu^2}{\sqrt{6}}$$

Another minimum: V > 0, $S = q = \tilde{q} = \frac{\mu}{\sqrt{S}}$, $\tilde{S} = 0$

. – p.8

Mass Spectrum

$$(M_{Pl} = 1)$$

F-term breaking: $F \simeq \mu^2$,

[For $\mu \ll 1$ D-term $= \mathcal{O}(\mu^2 \mu^{\frac{2}{3}}/M^{\frac{2}{3}}) \ll F$ – subleading]

 (S, \tilde{S}) sector masses:

$$\begin{split} m_{S_{-}}^2 &= 4(g_a^2 + g_b^2) M^{\frac{2}{3}} \mu^{\frac{4}{3}} \,, \\ m_{S_{+}}^2 &= \frac{9}{4} \, M^{-\frac{2}{3}} \mu^{\frac{8}{3}} = \frac{9}{10} m_{\phi_1}^2 \,, \\ m_{\phi_2}^2 &= \frac{9}{5} \, c \, M^{-\frac{1}{3}} \mu^{\frac{4}{3}} = \frac{3\sqrt{6}}{10} M^{-\frac{1}{3}} \mu^{\frac{10}{3}} \,. \end{split}$$

- (S_-, S_+, ϕ_1) masses global SUSY
- ϕ_2 mass $\propto c > 0$, at linear order in M_{Pl}^{-1} [$c = 0 \rightarrow \text{R-symmetry } \& \phi_2 \text{R-axion}$]

Messenger masses: $m_{q,\tilde{q}}^2=(\lambda s)^2-\mu^2>0$ for $\mu\leq\lambda^{\frac{3}{2}}M$ (automatic)

Gravitino mass: $m_{gr} = \mu^2$

• Vacuum robust towards higher inverse M_{Pl} corrections

Phenomenology

Gauge mediation dominates over gravity mediation:

$$m_{gauge} \simeq \frac{\alpha}{4\pi} \frac{F}{S} \qquad \gg \qquad m_{gr} \simeq \frac{F}{M_{Pl}}$$
 For $S = \mu^{\frac{2}{3}} M^{\frac{1}{3}} \longrightarrow \mu^{2} M < 10^{-10}$

For TeV scale soft masses: $\mu^2 \sim 10^{-13} S \iff \mu \sim 10^{-10} \ M^{\frac{1}{4}}$ and $s \sim 10^{-7} M^{\frac{1}{2}}$ (mild dependence on M)

Hidden sector masses:

$$m_{S_{-}} = 10^{10} - 10^{11} \, \text{GeV}, \qquad m_{S_{+}} = 10^{3} - 10^{4} \, \text{TeV}, \ m_{\phi_{1}} = 10^{3} - 10^{4} \, \text{TeV}, \qquad m_{\phi_{2}} = 1 - 10 \, \text{TeV} \, .$$

Messenger masses: $m_{q,\tilde{q}} = 10^9 - 10^{11} \text{ GeV}$

Light gravitino: $m_{qr} = 0.1 - 10 \text{ GeV}$

String Theory Embedding-Global Model

D-brane instantons in Type II orientifolds can generate perturbatively forbidden matter couplings

[Blumenhagen, MC, Weigand hep-th/0609191], [Ibañez, Uranga hep-th/0609213],

[Florea, Kachru, McGreevy, Saulina 0610003]

Reason: zero modes charged under gauge group on D-branes:

⇔ strings between D-instanton and D-branes cf. [Ganor 9612077]

at chiral "intersection": chiral fermionic zero modes

In presence of disk-level couplings to matter fields of type $S=\int_\Xi \lambda_a \,\Phi_{ab}\overline{\lambda}_b$ in instanton effective action

- p.11

Type I picture:

Constructions of (semi-realistic) examples on globally defined Calabi-Yau spaces (algebraic geometry):

[M.C., T. Weigand 0711.0209]

- Elliptically fibered Calabi-Yau spaces X (Example:
- $\pi:X\to B=dP_4)$
- Introduce N_a (magnetized) D9-branes via holomorphic stable line bundles E_a (and extensions) $U(N_a)$
- Stacks of N_i D5-branes wrapping the holomorphic curve Γ_i - $Sp(2N_i)$
- Spectrum: encoded in various cohomology groups (technical: c.f.,Blumenhagen,Honecker,Weigand'05)
- Tadpole cancellation associated w/ D5: $\sum_a N_a \operatorname{ch}_2(E_a)$ –

$$\sum_{i} N_{i} \gamma_{i} = -c_{2}(TX) \text{ w/ D9: } \sum_{a} N_{a} c_{1}(V_{a}) \in H^{2}(X, 2\mathbf{Z}).$$

Instantons: red E1-instantons

wrap rigid $C = \mathbf{P}^1$ curves - O(1)-instantons Charged zero modes λ in the D9-E1 sector:

state	rep	cohomology
λ_a	$(N_a, 1_E)$	$H^0(\mathbf{P}^1, V_a^{\vee}(-1) _{\mathbf{P}^1})$
$\overline{\lambda}_a$	$(\overline{N}_a, 1_E)$	$H^1(\mathbf{P}^1, V_a^{\vee}(-1) _{\mathbf{P}^1})^*$

For line bundles $V_a=L_a$: $K_{\mathbf{P}^1}=\mathcal{O}(-2)$, and $L_a(-1)|_{\mathbf{P}^1}=\mathcal{O}(x_a-1)$, w/ $x_a=\int_{\mathbf{P}^1}L_a$.

Additional zero modes from the D5-E1 counted by the extension groups $Ext_X(j_*\mathcal{O}|_{\Gamma_i},i_*\mathcal{O}|_C)$: vanish Γ_i and C do not intersect

Figure 1: The dP_9 surface π^*E_4 inside the fibration $\pi:X\to B=dP_4$

• Global four-family $U(5)_c \times U(1)_a \times U(1)_b$ models with Polonyi-type terms responsible for supersymmetry breaking

[MC, T. Weigand 0711.0209 and 0807.3953]

Bundle	N	$c_1(L) = q\sigma + \pi^*(\zeta)$
L_a	1	$\pi^*(-l + 2E_1 + 2E_2 - 2E_3 - E_4)$
L_b	1	$4\sigma + \pi^*(l - 2E_2 + E_4)$
L_c	5	$\pi^*(2E_1 - 2E_2 - 2E_3)$

Engineered Hierarchies from instantons

Suppression scale:
$$\mu^2 = x \, M_s^2 \, e^{-\frac{2\pi}{g_s} \text{Vol}_{E1}} = x \, M_s^2 \, e^{-\frac{2\pi}{\alpha_{GUT}} \frac{\text{Vol}_{E1}}{\tilde{f}_{GUT}}}$$

$$\widetilde{f}_{GUT} = \frac{1}{3!} \, \int_X J \wedge J \wedge J - \int_X J \wedge \left(\text{ch}_2(L_c) + \frac{1}{24} \, c_2(T) \right)$$

Type I relation:
$$M_s^2 = (M_{Pl})^2 g_s \, \alpha_{GUT} = \mathcal{O}(10^{17} GeV)$$
 for TeV soft masses need $\mu = 10^{-10} M_s^{1/4} \leftrightarrow \mathrm{Vol}_C/\widetilde{f}_{GUT} \simeq 0.27$

For the model D-term supersymmetry conditions on line bundles have solutions inside Kähler cone such that $Vol_C=2.6\ell_s^2\Rightarrow \mu=10^{-10}$ for $g_s=0.4$

The model by no means realistic

Have to stabilize closed moduli in the desired regime & at scales higher than supersymmetry breaking

Nevertheless the first step toward proposed gauge-mediation model

 \longrightarrow

Further work