Torsion induced soft-breaking terms

Pablo G. Camara

CPHT, Ecole Polytechnique (Paris)

Based on arXiv:0710.4577 with M. Grana, and work in progress with F. Marchesano.

Motivation

- One of the most interesting adventures of String Theory is understanding its mechanisms for SUSY-breaking.
- The capability of String Theory to make 4d phenomenological axioms is limited by several issues:
- The "landscape problem" \longrightarrow which background??
- We do not know how to compute string amplitudes in a generic background \longrightarrow work in the supergravity limit
[We do not know how to perform dimensional reduction in a generic manifold (non Calabi-Yau)

Motivation

- A particularly interesting setup are GKP compactifications:
1.- The deformation of the moduli space due to the 3-form flux is effectively described in $4 d$ by the GVW superpotential:

$$
\begin{aligned}
& \qquad W=\int_{C Y}\left(F_{3}-i e^{-\phi} H_{3}\right) \wedge \Omega \\
& \text { No scale structure }\left\{\begin{array}{l}
\sum_{\tilde{\tilde{c}}} K^{i \bar{\jmath}} \partial_{\bar{\imath}} K \partial_{\bar{\jmath}} K=3 \\
K^{\imath} \bar{\jmath}=0 \\
\partial_{\bar{\imath}} W=0
\end{array} \Longrightarrow V=e^{K} \sum_{i, j \neq i} K^{i \bar{\jmath}} D_{i} W D_{\bar{\jmath}} \bar{W}\right.
\end{aligned}
$$

2.- In addition, 3 -form fluxes induce μ-terms in the worldvolume of $D 7$-branes:

$$
W_{D 7_{i}} \sim\left(F_{\bar{j} \bar{k} i}+i e^{-\phi} H_{\bar{j} \bar{k} i}\right) \phi^{i} \phi^{i} \quad i \neq j \neq k
$$

3.- Add other effects in the effective theory (non-perturbative effects, loop corrections, anti-branes...)

Phenomenological models (KKLT, LVS,...)

Outline

- Basics of generalized geometry
- No-scale orientifold compactifications with torsion
- Torsion-induced μ-terms
- Moduli dominated soft-terms
- Open-string wavefunctions
- Conclusions

SU(3)-structure

We consider orientifold compact. on $\mathrm{SU}(3)$-structure manifolds:

$$
J \wedge \Omega=0, \quad J \wedge J \wedge J=-\frac{3 i}{4} \Omega \wedge \bar{\Omega}
$$

- J defines a symplectic structure $J_{m n}$
- Ω defines a complex structure $I^{m}{ }_{n}$

In general non-integrable structures: torsion classes

$$
\begin{aligned}
& d J=\frac{3}{2} \operatorname{Im}\left(\mathcal{W}_{1} \bar{\Omega}\right)+\mathcal{W}_{4} \wedge J+\mathcal{W}_{3} \\
& d \Omega=\mathcal{W}_{1} J \wedge J+\mathcal{W}_{2} \wedge J+\overline{\mathcal{W}}_{5} \wedge \Omega
\end{aligned}
$$

Generalized geometry

[Hitchin et al.; Grana et al.]

- Generalized complex structure:

$$
\begin{gathered}
\mathcal{J}: \quad T_{\mathcal{M}_{6} \oplus \mathcal{M}_{6}^{*}} \rightarrow T_{\mathcal{M}_{6} \oplus \mathcal{M}_{6}^{*}}, \quad \mathcal{J}^{2}=-1 \\
\mathcal{J}_{-}=\left(\begin{array}{cc}
I & 0 \\
0 & -I^{T}
\end{array}\right), \quad \mathcal{J}_{+}=\left(\begin{array}{cc}
0 & J^{-1} \\
-J & 0
\end{array}\right)
\end{gathered}
$$

Isomorphism: $\quad\{\mathcal{J}\} \simeq\{O(6,6)$ pure spinors $\} \simeq\{$ (poly-)forms $\}$

$$
\Phi_{-}=e^{i \theta_{-}} \Omega, \quad \Phi_{+}=e^{i \theta_{+}} e^{-i J}
$$

- NSNS 3-form: $\quad d_{H} \Phi \equiv e^{B} d\left(e^{-B} \Phi\right)$
- Mukai product: $\quad\langle A, B\rangle=(-1)^{[(n+1) / 2]} A_{n} \wedge B_{6-n}$

Effective theory

$$
\begin{array}{cr}
K=-\log \left[-i \int\left\langle\Phi_{1}, \bar{\Phi}_{1}\right\rangle\right]-2 \log \left[-i \int\left\langle\Phi_{2}, \bar{\Phi}_{2}\right\rangle\right]-2 \log \left(e^{-2 \phi}\right) \\
W=\int\left\langle\Phi_{1}, d_{H} \Pi\right\rangle & \\
\hline \text { IIA } & \Phi_{1} \\
\text { with } \Pi=\mathcal{C}+i e^{-\phi} \operatorname{Re} \Phi_{2} & \text { IIB } \\
\Phi_{-}
\end{array}
$$

- In order to perform the integrals we need the internal profile of the fields. That is equivalent to solve the generalized Laplace equation for this background. [work in progress...]
- For the time being, we expand as if we were in a Calabi-Yau and take the lowest mode to be constant
\square good for small warping

No-scale vacua with torsion

- We take the following strategy:

$$
W=\int\left\langle\Phi_{1}, d_{H} \Pi\right\rangle
$$

1.- Decompose $d_{H} \Pi$ in $\mathrm{SU}(3)$ representations

$$
\begin{aligned}
& d_{H} \Pi=G^{+}+G^{-} \quad, \quad *_{6} \lambda\left[G^{ \pm}\right]= \pm i G^{ \pm}, \\
& \text {IIB: } \quad G^{+}=\frac{3}{2} G_{(1)}^{+} \bar{\Omega}+G_{(3)}^{+} \wedge J+G_{(6)}^{+} \\
& \text {IIA: } \quad G^{+}=G_{(1)}^{+} e^{i J}+G_{m n}^{+} \gamma^{m} e^{-i J} \gamma^{n}+G_{m}^{+} \gamma^{m} \bar{\Omega}+\tilde{G}_{m}^{+} \Omega \gamma^{m}
\end{aligned}
$$

and similar expressions for $G^{-} \ldots$
2.- Compute the F-terms
3.- Translate the no-scale condition into conditions on the $\operatorname{SU}(3)$ reps.
4.- Complete the solutions with warping

No-scale vacua with torsion

- Necessary conditions, but not sufficient
\Rightarrow constraints on the manifold
- Example 1. IIB-O9/O5, $d_{H} \Pi$ ISD
- \mathcal{M}_{6} a fibration of a complex 2 -cycle Σ_{2} over a 4 d base B

$$
J=J_{B}+J_{\Sigma_{2}}, \quad d J_{\Sigma_{2}} \neq 0, \quad d J_{B} \wedge \Omega=0
$$

- No-scale condition $\Rightarrow G^{-}=0 \Rightarrow\left\{\begin{array}{l}\mathcal{W}_{1}=e^{\phi} F_{(1)}, \\ \mathcal{W}_{2}=2 \mathcal{W}_{1}\left(J_{B}-2 J_{\Sigma_{2}}\right), \\ \mathcal{W}_{3}=-e^{\phi} *_{6} F_{(6)}, \\ \mathcal{W}_{5}^{*}=\frac{i}{2} e^{\phi} F_{(3)}=-\bar{\partial} A=-\frac{1}{2} \bar{\partial} \phi\end{array}\right.$
- E.g. compactification on nilmanifold ($0,0,45-15-42,0,0,0$) and $g_{s} F_{3}=-\frac{t}{8 u^{3}}\left[(1-3 i u) \Omega+(1-i u)\left(z^{1} \wedge z^{2} \wedge \bar{z}^{3}+z^{1} \wedge \bar{z}^{2} \wedge z^{3}+\bar{z}^{1} \wedge z^{2} \wedge z^{3}\right)\right]+e^{2 A}{ }_{{ }_{4}} d\left(e^{-4 A}\right)+c . c$
- Example 2. IIA-O6, $d_{H} \Pi$ real
- \mathcal{M}_{6} a trivial fibration of a complex 2 -cycle Σ_{2} over a 4 d base B

$$
J=J_{\mathcal{B}}+J_{\Sigma_{2}}, \quad d J_{\Sigma_{2}}=0, \quad K_{U_{k}}=-\log \left(U+U^{*}\right)+K_{U_{\bar{k}}}^{\prime}, \quad K^{\prime / \bar{k} \bar{p}} K_{\bar{k}}^{\prime} K_{\overline{\bar{p}}}^{\prime}=2
$$

- No-scale condition $\Rightarrow\left\{\begin{array}{l}G^{+}+G^{-} \text {real } \\ \left.G_{m n}^{ \pm}\right|_{\mathcal{B}}=0, \quad \int J_{\mathcal{B}} \wedge d\left(\alpha_{0}+\frac{\operatorname{Re} U}{\operatorname{Re} S} \beta_{U}\right)=0\end{array}\right.$
- E.g. compactification on algebraic solvmanifold ($0,64,45,0,34,42$)
- In type IIB these are always non-geometric compactifications

Torsion induced μ-terms

- Dp-branes wrapping (generalized) calibrated cycles:

Torsion induces μ-terms in the worldvolume. SUSY-breaking in the bulk gets manifest as soft-breaking terms, open-string moduli fixing.

- Twisted tori are a good laboratory:

$$
d e^{a}=\frac{1}{2} f_{b c}^{a} e^{b} \wedge e^{c}, \quad f_{[b c}^{a} f_{d] a}^{g}=0
$$

Torsion induced μ-terms

	D 9	$\mathrm{D} 5_{1}$	$\mathrm{D} 5_{2}$	$\mathrm{D} 5_{3}$
$u_{1} \mu_{11}$	$\tilde{f}_{\overline{2}}^{1} \overline{3}$	0	$\tilde{f}_{1 \overline{2}}^{3}$	$\tilde{f}_{\overline{3} 1}^{2}$
$u_{2} \mu_{22}$	$\tilde{f}_{\overline{3}}^{2} \overline{1}$	\tilde{f}^{3}	0	$\tilde{f}_{2}^{1} \overline{3}$
$u_{3} \mu_{33}$	$\tilde{f}_{\overline{1} \overline{2}}^{\overline{2}}$	$\tilde{f}_{3 \overline{1}}^{2}$	$\tilde{f}_{\overline{2} 3}^{1}$	0

	$\mathrm{D} 6_{0}$	$\mathrm{D} 6_{1}$
$t_{1} \mu_{11}$	$\frac{1}{2 u_{1}}\left(T_{2} f_{\hat{1} 3}^{2}-T_{3} f_{\hat{1} 2}^{3}-2 T_{1} f_{23}^{1}\right)$	$\frac{1}{2 s}\left(T_{2} f_{\hat{3} \hat{1}}^{2}+T_{3} f_{\hat{1} \hat{2}}^{3}-T_{1} f_{\hat{2} \hat{3}}^{1}\right)$
$t_{2} \mu_{22}$	$\frac{1}{2 u_{2}}\left(-T_{1} f_{\hat{2} 3}^{1}+T_{3} f_{\hat{2}}^{3}+2 T_{2} f_{31}^{2}\right)$	$\frac{-1}{2 u_{3}}\left(2 T_{3} f_{12}^{3}+T_{1} f_{2 \hat{3}}^{1}+T_{2} f_{1 \hat{3}}^{2}\right)$
$t_{3} \mu_{33}$	$\frac{1}{2 u_{3}}\left(T_{1} f_{\hat{3} 2}^{\hat{1}}-T_{2} f_{\hat{1} 1}^{2}+2 T_{3} f_{12}^{3}\right)$	$\frac{1}{2 u_{2}}\left(2 T_{2} f_{13}^{2}+T_{1} f_{3 \hat{2}}^{1}+T_{3} f_{1 \hat{2}}^{3}\right)$
		$\mathrm{D} 6_{2}$
$t_{1} \mu_{11}$	$\frac{1}{2 u_{3}}\left(2 T_{3} f_{21}^{3}+T_{1} f_{2 \hat{3}}^{1}+T_{2} f_{12}^{2}\right)$	$\frac{-1}{2 u_{2}}\left(2 T_{2} f_{31}^{2}+T_{3} f_{1 \hat{2}}^{3}+T_{1} f_{3 \hat{2}}^{1}\right)$
$t_{2} \mu_{22}$	$\frac{1}{2 s}\left(T_{1} f_{\hat{2} \hat{3}}^{1}+T_{2} f_{\hat{1} \hat{3}}^{2}+T_{3} f_{\hat{1} \hat{2}}^{3}\right)$	$\frac{1}{2 u_{1}}\left(2 T_{1} f_{32}^{1}+T_{3} f_{2 \hat{1}}^{3}+T_{2} f_{\hat{1} \hat{1}}^{2}\right)$
$t_{3} \mu_{33}$	$\frac{-1}{2 u_{1}}\left(2 T_{1} f_{23}^{1}+T_{2} f_{3 \hat{1}}^{2}+T_{3} f_{2 \hat{1}}^{3}\right)$	$\frac{1}{2 s}\left(T_{1} f_{\hat{2} \hat{3}}^{1}-T_{2} f_{\hat{1} \hat{3}}^{2}-T_{3} f_{\hat{1} \hat{2} \hat{2}}^{3}\right)$

- Most of the adjoints a priori can be lifted by the torsion!
- Good matching with the T-dual result in vacua where a T-dual description is available.
- Non-holomorphic terms are due to terms in the Kahler potential contributing through the Giudice-Masiero mechanism

Moduli dominated soft-terms

We can compute the induced soft-terms for pure moduli mediation:

$$
\begin{aligned}
& K(M, \bar{M}, \phi, \bar{\phi})=\hat{K}(M, \bar{M})+Z_{i \bar{j}}(M, \bar{M}) \phi^{i} \bar{\phi}^{\bar{j}}+\frac{1}{2}\left(H_{i j}(M, \bar{M}) \phi^{i} \phi^{j}+\text { h.c. }\right)+\ldots, \\
& W(M, \phi)=W(M)+\frac{1}{2} \tilde{\mu}_{i j}(M) \phi^{i} \phi^{j}+\frac{1}{6} \tilde{Y}_{i j k}(M) \phi^{i} \phi^{j} \phi^{k}+\ldots . \\
& V=e^{K}\left(\sum_{i, j} K^{i \bar{\jmath}} D_{i} W D_{\bar{\jmath}} \bar{W}-3|W|^{2}\right)
\end{aligned}
$$

Table 3: Torsion induced soft parameters for $D 9, D 5_{1}, D 5_{2}$ and $D 5_{3}$-branes, in a no-scale vacuum of a factorizable twisted torus with W independent of S, T_{1}, T_{2}, and $D_{M} W=0$ for the remaining moduli. The gauge coupling constants are $g_{D 9}=(S+\bar{S})^{-1 / 2}$ and $g_{D 5_{k}}=\left(T^{k}+\bar{T}^{k}\right)^{-1 / 2}$, and we have set $M_{P l}=1$.

Moduli dominated soft-terms

	$D 6_{0}$	$D 6_{1}$	$D 6_{2}$	$D 6_{3}$
μ_{11}	$2 e^{\frac{K}{2}}\left(t_{2} f_{\hat{1} 3}^{\hat{2}}-t_{3} f_{\hat{1} 2}^{\hat{3}}\right)$	$2 e^{\frac{K}{2}}\left(t_{2} f_{\hat{3} \hat{1}}^{2}+t_{3} f_{\hat{1} \hat{2}}^{3}\right)$	0	0
μ_{22}	0	0	$2 e^{\frac{\hat{K}}{2}}\left(t_{2} f_{\hat{1} \hat{3}}^{2}+t_{3} f_{\hat{1} \hat{\hat{2}}}^{3}\right)$	$2 e^{\frac{\hat{K}}{2}}\left(t_{2} f_{3 \hat{1}}^{\hat{2}}+t_{3} f_{2 \hat{1}}^{\hat{3}}\right)$
μ_{33}	0	0	$2 e^{\frac{\hat{K}}{2}}\left(t_{2} f_{\hat{1} 3}^{\hat{2}}+t_{3} f_{\hat{1} 2}^{\hat{3}}\right)$	$2 e^{\frac{\hat{K}}{2}}\left(t_{2} f_{\hat{3} \hat{1}}^{2}-t_{3} f_{\hat{1} \hat{2}}^{3}\right)$
$m_{1 \overline{1}}^{2}$	$\left\|\mu_{11}\right\|^{2}$	$\left\|\mu_{11}\right\|^{2}$	$-\left\|m_{3 / 2}\right\|^{2}$	$-\left\|m_{3 / 2}\right\|^{2}$
$m_{2 \overline{2}}^{2}$	0	0	$\left\|\mu_{22}\right\|^{2}+\left\|m_{3 / 2}\right\|^{2}$	$\left\|\mu_{22}\right\|^{2}+\left\|m_{3 / 2}\right\|^{2}$
$m_{3 \overline{3}}^{2}$	0	0	$\left\|\mu_{33}\right\|^{2}+\left\|m_{3 / 2}\right\|^{2}$	$\left\|\mu_{33}\right\|^{2}+\left\|m_{3 / 2}\right\|^{2}$
B_{11}	0	0	0	0
B_{22}	0	0	$2 \mu_{22} \bar{m}_{3 / 2}$	$2 \mu_{22} \bar{m}_{3 / 2}$
B_{33}	0	0	$2 \mu_{33} \bar{m}_{3 / 2}$	$2 \mu_{33} \bar{m}_{3 / 2}$
A_{123}	0	0	$g_{D 6_{2} m_{3 / 2}}$$g_{D 6_{3} m_{3 / 2}}$ $C_{1 \overline{2} \overline{3}}$$\mu_{11} g_{D 6_{0}}$	$\mu_{11} g_{D 6_{1}}$
$C_{\overline{1} 2 \overline{3}}$	0	0	0	0
$C_{\overline{1} \overline{2} 3}$	0	0	$\mu_{22} g_{D 6_{2}}$	$\mu_{22} g_{D 6_{3}}$

Table 4: Torsion induced soft parameters for $D 6_{M}$-branes, in a no-scale vacuum of a factorizable twisted torus with W independent of T_{1}, U_{2}, U_{3}. The gauge coupling constants are $g_{D 6_{0}}=(S+\bar{S})^{-1 / 2}$ and $g_{D 6_{k}}=\left(U^{k}+\bar{U}^{k}\right)^{-1 / 2}$, and we have set $M_{P l}=1$.

Open-string wavefunctions

[work in progress with F.Marchesano]
Consider e.g. D9-branes. The 4d spectrum of fermionic open-string deformations is given by solving the generalized internal Dirac operator. This can be obtained from the 10 d gaugino action,

$$
\mathrm{D}_{6} \psi \equiv \gamma^{a}\left(\hat{\partial}_{a}+\frac{1}{4} \omega_{a}^{b c} \gamma_{b c}+A_{a}\right) \psi+\frac{e^{\phi / 2}}{24} \gamma^{a b c} F_{a b c} \psi=\lambda \gamma_{(7)} \psi
$$

The lowest uncharged mode is indeed constant (up to warping):

$$
\hat{\partial}_{a}(\text { const. })=0 \Rightarrow \lambda=\text { mass gap }=e^{K / 2} \mu \text {-term }
$$

We can address the problem with the tools of non-commutative harmonic analysis.

Open-string wavefunctions

[work in progress with F.Marchesano]
E.g. consider compactification in (5d Heisenberg manifold) $\times S^{1}+\mathrm{RR}$ flux fibration S^{1} over T^{4}
Two types of modes:
$\left(\right.$ - not excited along the fiber $\quad \lambda^{2}=\frac{4 \pi^{2}}{t^{1} \tau_{1}^{1}}\left[k_{4}^{2}+k_{1}^{2}\left(\tau_{1}^{1}\right)^{2}\right]+\frac{4 \pi^{2}}{t^{2} \tau_{1}^{2}}\left[k_{5}^{2}+k_{2}^{2}\left(\tau_{1}^{2}\right)^{2}\right]+\frac{4 \pi^{2} \tau_{1}^{3}}{t^{3}} k_{3}^{2}$

- excited along the fiber

$$
\lambda^{2}=\frac{4 \pi M\left|k_{6}\right|}{\left(t_{1} t_{2}\right)^{1 / 2}}(n+1)+\frac{4 \pi^{2}}{t^{3} \tau_{1}^{3}}\left[k_{6}^{2}+k_{3}^{2}\left(\tau_{1}^{3}\right)^{2}\right]
$$

Conclusions

- Generalized geometry provide us with a good framework for exploring no-scale solutions in general $\mathrm{SU}(3)$-structure compactifications. These could be used as 'starting point' of phenomenological scenarios.
- Two types of no-scale vacua, characterized by an ISD poly-form (e.g GKP, breaking by hypers) or by a real poly-form (no RR flux, breaking by mixture of hypers and vectors).
- We computed the torsion-induced effective μ-terms for the adjoints inside D5, D6 and D9-branes, for twisted tori. The pattern results very rich, a priori allowing for the lifting of many of the adjoints.
- Uncharged light modes have a constant internal profile, turning the dimensional reduction easy. For other modes, one has to solve the internal generalized Dirac and Laplace operators.

