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Motivation

® One of the most interesting adventures of String Theory is
understanding its mechanisms for SUSY-breaking.

® The capability of String Theory to make 4d phenomenological
axioms is limited by several issues:

» The “landscape problem” === which background??

* We do not know how to compute string amplitudes
in a generic background === work in the supergravity limit

[ * We do not know how to perform dimensional
reduction in a generic manifold (non Calabi-Yau)



Motivation

e A particularly interesting setup are GKP compactifications:

f 1.- The deformation of the moduli space due to the 3-form flux is effectively
described in 4d by the G'V'W superpotential:
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2.- In addition, 3-form fluxes induce y-terms in the worldvolume of D7-branes:
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3.- Add other effects in the effective theory (non-perturbative effects, loop

corrections, anti-branes...)

Phenomenological models (KKLT, LVS,...)
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SU(3)-structure

We consider orientifold compact. on SU(3)-structure manifolds:

JAQ=0, J/\J/\J:—%Q/\Q

+ J defines a symplectic structure .J,,,, : t { Gmn = Jmp [Pn

» Q defines a complex structure I™,, global SU(3)-invariant spinor 7

In general non-integrable structures: torsion classes

3
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(Generalized geometry

[Hitchin et al.; Grana et al.

e Generalized complex structure:
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Isomorphism: {J} ~ {O(6,6) pure spinors} ~ {(poly-)forms}

d_ =€ Q, &, =efre
® NSNS 3-form: dg® = ePd(e P d)

® Mukai product: (A, B) = (—-1){(n*+V/2 A A Bs_,,



Effective theory

[Benmachiche,Grimm]

K = —log [—i/<<1>1,<i>1>] — 2log [—i/<<1>2,<i>2>] — 2log (e7*7)
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with II=C+ie ?Re &y

- In order to perform the integrals we need the internal profile of the fields.
That is equivalent to solve the generalized Laplace equation for this background.

WOI'K 11 progress...
k i

- For the time being, we expand as if we were in a Calabi-Yau and take the
lowest mode to be constant

|—|::> good for small warping



No-scale vacua with torsion

® We take the following strategy: W = /(<I>1, dy 1)

1.- Decompose d 11 in SU(3) representations
dull= Gt + G~ , *A\GT] = £iG*T
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and similar expressions for G—...

2.- Compute the F-terms
3.- Translate the no-scale condition into conditions on the SU(3) reps.

4.- Complete the solutions with warping



No-scale vacua with torsion

.

- dylIlI is an ISD poly-form
(e.g. GKP)

=) breaking mediated (at tree-level)
by hypermultiplets

[also Lawrence et al.|
2 types of no-scale <
solutions - dylIl is a real poly-form

(only NSNS-flux)

breaking mediated (at tree-level) by vector
multiplets (1/3) and hypermultiplets (2/3)

\

- Necessary conditions, but not sufficient = constraints on the manifold



- Example 1. IIB-09/05, dgII ISD

- Mg a fibration of a complex 2-cycle

Yo over a 4d base B

J:JB—i—JEQ, djzz#o, dJg N =0

- No-scale condition = G- =0 = <

p
W, = €¢F(1) )
Wy =2W, (Jg — 2Js,) ,
Wy = —e? x4 F) ,
1 1-

- E.g. compactification on nilmanifold

L Wg = 26¢F(3) = —514 = —§8¢

(0, 0,45 - 15 - 42,0, 0, 0) and

t
gsF3 = ———[(1=3iu)Q4+(1—iu) (2 A 22AZ3 4+ 2 N2 A3+ 2 A 22 A 23) | +e2Asqd(e 74 ) +-c.c

Su3



- Example 2. IIA-O6, dglI real

- Mg a trivial fibration of a complex 2-cycle 5 over a 4d base B

J=Jsg+Js,, djg,=0, Ky =-logU+U")+K} , KWK/ K;=2

.
GT + G real

- No-scale condition = < Re U

Re S

GT:EWIB:O, /JB/\d(ao+ ﬁU):O

~

- E.g. compactification on algebraic solvmanifold (0, 64, 45, 0, 34, 42)

- In type IIB these are always non-geometric compactifications



Torsion induced u~-terms

- Dp-branes wrapping (generalized) calibrated cycles: [Koerber,Martucci]

{ » D5-branes wrapping complex 2-cycles

- D6-branes wrapping special lagrangian 3-cycles

F-term condition = W = / Pg [e3A_¢<I>1] N .
B
( z 3
“easy” for lowest mode in adjoints

Torsion induces /~terms in the worldvolume. SUSY-breaking in the bulk
gets manifest as soft-breaking terms, open-string moduli fixing.

- T'wisted tori are a good laboratory:

a 1 a c a
de 25 ceb/\6 ? f[bcf(g]azo



Torsion induced u~-terms

D6y

D6,

1
2u1

2u9o
1
2us

(T2 fF, — Tsf7, — 2T1f23)

L(—lefﬁlg + Tsjfg’l + 215 f3)

D62

5 (Tof2 + Tsfs — Tify)
sus QT [ + T fyy + Tof3)
gy 2T fi3 + T fyy + T31%)

D6s

D9 D5; Dby D53 ZZZ

wipn || fis 0 fy f5 s
U422 51 f o o 23

uspss || f55  f5 Sy O ZZ;;

134433

1

2us
1
2

s
=1
2u1

(2T3f3) + TifL + Taf2)
(Tuf5 + Toffy + T f7,)
(2T1 fo3 + Tof2y + T3 f3)

5o (2T f3 + Tgffé + T1f§2)
5 (2T0 fao + T3 £ + Ta f2)
55 (Thfay — Tof — T f2)

¢ Most of the adjoints a priori can be lifted by the torsion!

® (Good matching with the T-dual result in vacua where a T-dual

description is available.

¢ Non-holomorphic terms are due to terms in the Kahler potential
contributing through the Giudice-Masiero mechanism



Moduli dominated soft-terms

We can compute the induced soft-terms for pure moduli mediation:

K(M, M, $,8) = K(M, ¥) + Z5(M, M) 6/ + 5 (Hy(M, M) 6 +hc)) + ...,

1 .. 1 ~ o
— ~ ) - ) k
W(M,0) = W) + iy (M) 6 + - T (M) 666+ ...
V=e"> KID;WD;W —3|W|?
,J
\ | D9 \ D5, \ D5, | D5s |

11 0 ) 0 ) 46K/2f13§t3 0
[i22 0 423 0 0
133 4el/2 %tg 0 0 0
m2; 0 0 |uss|® + [mzpl® | 0
mgi 0 |,U22|2 + |Tn3/2|2 0 0
m2z || [paa]? + [msg sl 0 0 0
B 0 0 2p33mM3 /9 0
B 0 2p20mM3 /2 0 0
Bss 2p111m3 /2 0 0 0
Aqa3 9p9m3 /2 9D5,M3)2 9D5,M3)2 0
Ci33 0 0 133 gD5, 0
C1a3 0 H22 9D5, 0 0
Cia3 H11 9D9 0 0 0

Table 3: Torsion induced soft parameters for D9, D51, D55 and D53-branes, in a no-scale vacuum
of a factorizable twisted torus with W independent of S, 71,75, and DyW = 0 for the remaining
moduli. The gauge coupling constants are gpg = (S +5)~'/2? and gps, = (T* +T%)~'/2, and we have
set Mpl =1.



Moduli dominated soft-terms

D6y D6, D6y Do6g
par || 2e2 (¢ 2 —taf3) 2e (ty ot tafy) A 0 A O A
122 0 0 2es (b %t taf3y) 2e= (ta f2, + tf3)
33 0 0 26% (t2 123 + i3 132) 26§(t2 % — tgf%)
m; |pe11]? |11 |2 —|mg o|? —|mgo|?
Mg 0 0 22| + [ms 2| 22| + [msg 2|
M 0 0 s+ Imgpol* | |pssl® + mayol?
B 0 0 0 0
B 0 0 2p122 M3 /o 2022 T3 /9
B 0 0 24133 M3/ 2433 M3 /2
Au3 0 0 gD6,M3/2 9D63M3/2
C33 H11 9D6, 111 9D64 0 0
Cio3 0 0 1422 9D6s 122 9D63
Cias 0 0 1433 9 D6, 1433 9 D63

Table 4: Torsion induced soft parameters for D6j,-branes, in a no-scale vacuum of a factorizable
twisted torus with W independent of T}, Us, Us. The gauge coupling constants are gpg, = (S+5)~1/2
and gpe, = (U* + U*)=1/2 and we have set Mp; = 1.



Open-string wavefunctions

[work in progress with F.Marchesano]

Consider e.g. D9-branes. The 4d spectrum of fermionic open-string deformations
is given by solving the generalized internal Dirac operator. This can be obtained
from the 10d gaugino action,

D 6¢ Y ( _|_ gc’)/bc + Aa)w 24 'yachabcw )\7(7)¢

. \ /

e Mass-gap
The flux enter in 3 — ¢ T'wisted derivatives [8a7 3b] - gbac
ways
* Warping

\

The lowest uncharged mode is indeed constant (up to warping):

A

Oq(const.) =0 = )\ = mass gap = eX/2 y-term

We can address the problem with the tools of non-commutative harmonic analysis.



Open-string wavefunctions

[work in progress with F.Marchesano]

E.g. consider compactification in (5d Heisenberg manifold) x S! + RR flux

— —— U
fibration S! over T
Two types of modes: same than in a T°
( . . A2 2 Ar2+3 ﬁ:i>
- not excited along the fiber )2 = i k2 K2+ W[kg FE2(12)?] + - 12

- excited along the fiber 2 = M K | (n
\ (t1t2)1/2

k ._' “@"l “ ‘\\\»fﬁ "
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Conclusions

® Generalized geometry provide us with a good framework for exploring
no-scale solutions in general SU(3)-structure compactifications. These could
be used as ‘starting point’ of phenomenological scenarios.

® Two types of no-scale vacua, characterized by an ISD poly-form (e.g GKP,
breaking by hypers) or by a real poly-form (no RR flux, breaking by mixture
of hypers and vectors).

® We computed the torsion-induced effective s~terms for the adjoints inside
D5, D6 and D9-branes, for twisted tori. The pattern results very rich, a priori

allowing for the lifting of many of the adjoints.

® Uncharged light modes have a constant internal profile, turning the
dimensional reduction easy. For other modes, one has to solve the internal
generalized Dirac and Laplace operators.
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