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Motivation

One of the most interesting adventures of String Theory is 
understanding its mechanisms for SUSY-breaking.

The capability of String Theory to make 4d phenomenological 
axioms is limited by several issues:

The “landscape problem”

We do not know how to compute string amplitudes 
in a generic background

We do not know how to perform dimensional
reduction in a generic manifold (non Calabi-Yau)

which background??

work in the supergravity limit



Motivation

A particularly interesting setup are GKP compactifications:

1.- The deformation of the moduli space due to the 3-form flux is effectively 
described in 4d by the GVW superpotential:

No scale structure

3.- Add other effects in the effective theory (non-perturbative effects, loop 
corrections, anti-branes…)

2.- In addition, 3-form fluxes induce μ-terms in the worldvolume of D7-branes:

Phenomenological models (KKLT, LVS,…)

WD7i ∼ (Fj̄k̄i + ie
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SU(3)-structure

We consider orientifold compact. on SU(3)-structure manifolds:

J defines a symplectic structure

Ω defines a complex structure

Jmn

Imn global SU(3)-invariant spinor η

gmn = Jmp Ipn

In general non-integrable structures: torsion classes

J ∧Ω = 0 , J ∧ J ∧ J = − 3i
4
Ω∧ Ω̄

dJ =
3

2
Im(W1Ω) +W4 ∧ J +W3 ,

dΩ =W1J ∧ J +W2 ∧ J +W5 ∧ Ω ,



Generalized geometry

Generalized complex structure:

Isomorphism: {J } ' {O(6, 6) pure spinors} ' {(poly-)forms}

NSNS 3-form:

Mukai product: hA,Bi = (−1)[(n+1)/2]An ∧B6−n

Φ− = e
iθ− Ω , Φ+ = e

iθ+e−iJ

J : TM6⊕M∗6 → TM6⊕M∗6 , J 2 = −1

J− =
µ
I 0
0 −IT

¶
, J+ =

µ
0 J−1

−J 0

¶

[Hitchin et al.; Grana et al.]

dHΦ ≡ eBd(e−BΦ)



Effective theory

with

Φ1 Φ2

IIA Φ+ Φ−
IIB Φ− Φ+

Π = C + i e−φRe Φ2

K = −log
∙
−i
Z
hΦ1, Φ̄1i

¸
− 2 log

∙
−i
Z
hΦ2, Φ̄2i

¸
− 2log

¡
e−2φ

¢
W =

Z
hΦ1, dH Πi

- In order to perform the integrals we need the internal profile of the fields. 
That is equivalent to solve the generalized Laplace equation for this background.   

[work in progress…]

- For the time being, we expand as if we were in a Calabi-Yau and take the 
lowest mode to be constant

good for small warping

[Benmachiche,Grimm]



No-scale vacua with torsion

W =

Z
hΦ1, dH ΠiWe take the following strategy:

1.- Decompose        in SU(3) representations

2.- Compute the F-terms

3.- Translate the no-scale condition into conditions on the SU(3) reps.

4.- Complete the solutions with warping

and similar expressions for G−. . .

dHΠ

dHΠ = G
+ +G− , ∗6λ[G±] = ±iG± ,

IIB: G+ =
3

2
G+

(1)
Ω+G+

(3) ∧ J +G+
(6)

IIA: G+ = G+
(1)e

iJ +G+
mnγ

me−iJγn +G+
mγ

m Ω̄+ G̃+
mΩγ

m



No-scale vacua with torsion

2 types of no-scale 
solutions

(e.g. GKP)

- dHΠ is a real poly-form
(only NSNS-flux)

breaking mediated (at tree-level) 
by hypermultiplets

breaking mediated (at tree-level) by vector
multiplets (1/3) and hypermultiplets (2/3)

- Necessary conditions, but not sufficient constraints on the manifold

- dHΠ is an ISD poly-form

[also Lawrence et al.]



- Example 1. IIB-O9/O5,

- No-scale condition G− = 0

- E.g. compactification on nilmanifold (0, 0, 45 - 15 - 42, 0, 0, 0) and

gsF3 = −
t

8u3
[(1−3iu)Ω+(1−iu)(z1∧z2∧z̄3+z1∧z̄2∧z3+z̄1∧z2∧z3)]+e2A∗4d(e−4A)+c.c

dHΠ ISD

J = JB + JΣ2 , dJΣ2 6= 0 , dJB ∧ Ω = 0

W1 = e
φF(1) ,

W2 = 2W1(JB − 2JΣ2 ) ,
W3 = −eφ ∗6 F(6) ,

W∗5 =
i

2
eφF(3) = −∂̄A = −

1

2
∂φ

-M6 a fibration of a complex 2-cycle Σ2 over a 4d base B



- Example 2. IIA-O6,

- No-scale condition

- E.g. compactification on algebraic solvmanifold (0, 64, 45, 0, 34, 42)

G+ + G− real

- In type IIB these are always non-geometric compactifications

dHΠ real

-M6 a trivial fibration of a complex 2-cycle Σ2 over a 4d base B

J = JB + JΣ2 , dJΣ2 = 0 , KUk = − log(U + U∗) +K0
Uk̃
, K0k̃ ¯̃pK0

k̃
K0

¯̃p = 2

G±mn
¯̄
B = 0 ,

Z
JB ∧ d(α0 +

Re U

Re S
βU ) = 0



Torsion induced μ-terms

- Dp-branes wrapping (generalized) calibrated cycles:

D5-branes wrapping complex 2-cycles

D6-branes wrapping special lagrangian 3-cycles

Torsion induces μ-terms in the worldvolume. SUSY-breaking in the bulk
gets manifest as soft-breaking terms, open-string moduli fixing.

- Twisted tori are a good laboratory:

F-term condition W =

Z
B
PB[e

3A−φΦ1] ∧ eF̃

Σ Σ+δ

B

dea =
1

2
fabce

b ∧ ec , fa[bcf
g
d]a
= 0

“easy” for lowest mode in adjoints

[Koerber,Martucci]



Torsion induced μ-terms

D9 D51 D52 D53
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Most of the adjoints a priori can be lifted by the torsion!

Good matching with the T-dual result in vacua where a T-dual 
description is available.

Non-holomorphic terms are due to terms in the Kahler potential 
contributing through the Giudice-Masiero mechanism



Moduli dominated soft-terms

K(M,M̄,φ, φ̄) = K̂(M,M̄) +Zij̄(M,M̄)φ
iφ̄j̄ +

1

2

¡
Hij(M,M̄)φ

iφj + h.c.
¢
+ . . . ,

W(M,φ) =W(M) +
1

2
μ̃ij(M)φ

iφj +
1

6
Ỹijk(M)φ

iφjφk + . . . .

We can compute the induced soft-terms for pure moduli mediation:

D9 D51 D52 D53

μ11 0 0 4eK̂/2f̃3
12̄

t3 0

μ22 0 4eK̂/2f̃3
1̄2t3 0 0

μ33 4eK̂/2f̃ 3̄
1̄2̄

t3 0 0 0

m2
11̄

0 0 |μ33|2 + |m3/2|2 0

m2
22̄

0 |μ22|2 + |m3/2|2 0 0

m2
33̄

|μ11|2 + |m3/2|2 0 0 0

B11 0 0 2μ33m̄3/2 0

B22 0 2μ22m̄3/2 0 0

B33 2μ11m̄3/2 0 0 0

A123 gD9m3/2 gD51m3/2 gD52m3/2 0

C12̄3̄ 0 0 μ33 gD52 0

C1̄23̄ 0 μ22 gD51 0 0

C1̄2̄3 μ11 gD9 0 0 0

Table 3: Torsion induced soft parameters for D9, D51, D52 and D53-branes, in a no-scale vacuum

of a factorizable twisted torus with W independent of S, T1, T2, and DMW = 0 for the remaining

moduli. The gauge coupling constants are gD9 = (S + S̄)−1/2 and gD5k
= (T k + T̄ k)−1/2, and we have

set MPl = 1.

V = eK

⎛⎝X
i,j

Kij̄DiWDj̄W − 3|W |2
⎞⎠



Moduli dominated soft-terms

D60 D61 D62 D63

μ11 2e
K̂
2 (t2f

2̂
1̂3

− t3f
3̂
1̂2

) 2e
K̂
2 (t2f

2
3̂1̂
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) 0 0

μ22 0 0 2e
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3
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) 2e
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2̂
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μ33 0 0 2e
K̂
2 (t2f

2̂
1̂3

+ t3f
3̂
1̂2

) 2e
K̂
2 (t2f

2
3̂1̂

− t3f
3
1̂2̂

)

m2
11̄

|μ11|2 |μ11|2 −|m3/2|2 −|m3/2|2
m2

22̄
0 0 |μ22|2 + |m3/2|2 |μ22|2 + |m3/2|2

m2
33̄

0 0 |μ33|2 + |m3/2|2 |μ33|2 + |m3/2|2
B11 0 0 0 0

B22 0 0 2μ22 m̄3/2 2μ22 m̄3/2

B33 0 0 2μ33 m̄3/2 2μ33 m̄3/2

A123 0 0 gD62m3/2 gD63m3/2

C12̄3̄ μ11 gD60 μ11 gD61 0 0

C1̄23̄ 0 0 μ22 gD62 μ22 gD63

C1̄2̄3 0 0 μ33 gD62 μ33 gD63

Table 4: Torsion induced soft parameters for D6M -branes, in a no-scale vacuum of a factorizable

twisted torus with W independent of T1, U2, U3. The gauge coupling constants are gD60 = (S + S̄)−1/2

and gD6k
= (Uk + Ūk)−1/2, and we have set MPl = 1.



Open-string wavefunctions

Consider e.g. D9-branes. The 4d spectrum of fermionic open-string deformations 
is given by solving the generalized internal Dirac operator. This can be obtained 
from the 10d gaugino action, 

The flux enter in 3 
ways

• Mass-gap

• Twisted derivatives

• Warping

[∂̂a, ∂̂b] = −fcab∂̂c

We can address the problem with the tools of non-commutative harmonic analysis.

The lowest uncharged mode is indeed constant (up to warping):

∂̂a(const.) = 0 ⇒ λ = mass gap = eK/2 μ-term

[work in progress with F.Marchesano]

D/ 6ψ ≡ γa(∂̂a +
1
4ω

bc
a γbc + Aa)ψ +

eφ/2

24 γabcFabcψ = λγ(7)ψ



Open-string wavefunctions

+ RR flux

fibration S1 over T 4

- not excited along the fiber

- excited along the fiber

E.g. consider compactification in (5d Heisenberg manifold) × S1

λ2 =
4π2

t1τ1
1

[k2
4 + k

2
1(τ

1
1 )

2] +
4π2

t2τ2
1

[k2
5 + k

2
2(τ

2
1 )

2] +
4π2τ3

1

t3
k2
3

Two types of modes:

λ2 =
4πM|k6|
(t1t2)1/2

(n+1) +
4π2

t3τ3
1

[k2
6 + k

2
3(τ

3
1 )

2]

same than in a T 6

[work in progress with F.Marchesano]



Conclusions

Generalized geometry provide us with a good framework for exploring     
no-scale solutions in general SU(3)-structure compactifications. These could 
be used as ‘starting point’ of phenomenological scenarios.

Two types of no-scale vacua, characterized by an ISD poly-form (e.g GKP, 
breaking by hypers) or by a real poly-form (no RR flux, breaking by mixture 
of hypers and vectors).

We computed the torsion-induced effective μ-terms for the adjoints inside 
D5, D6 and D9-branes, for twisted tori. The pattern results very rich, a priori 
allowing for the lifting of many of the adjoints. 

Uncharged light modes have a constant internal profile, turning the 
dimensional reduction easy. For other modes, one has to solve the internal 
generalized Dirac and Laplace operators.
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