D-brane Instanton Effects in 4D String Vacua

Ralph Blumenhagen

Max-Planck-Institut für Physik, München

Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilization

Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilization

- Tree level effects: Fluxes ('tunable")

Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilization

- Tree level effects: Fluxes ('tunable")
- Non-perturbative effects: instantons, gaugino condensation (defined by string background)

Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilization

- Tree level effects: Fluxes ('tunable")
- Non-perturbative effects: instantons, gaugino condensation (defined by string background)

Program: Systematic investigation of string instanton effects for various classes of $\mathcal{N}=1$ string vacua (Billo et. al.), (BI, Cvetic,
Weigand), (Ibanez, Uranga),(Florea, Kachru, McGreevy, Saulina)

Motivation

In order to make progress towards making definite low energy predictions from string theory one must resolve the issue of moduli stabilization

- Tree level effects: Fluxes ("tunable")
- Non-perturbative effects: instantons, gaugino condensation (defined by string background)

Program: Systematic investigation of string instanton effects for various classes of $\mathcal{N}=1$ string vacua (Billo et. al.), (Bl, Cvetic,
Weigand), (Ibanez, Uranga),(Florea, Kachru, McGreevy, Saulina)
(Previous work on world-sheet instantons in Type II and heterotic string theory and for M-brane instantons)
(Dine, Seiberg, Wen, Witten I+II),(Distler, Greene), (Witten), (Becker², Strominger),
(Harvey, Moore), (Beasley, Witten), (Green, Gutperle), (Antoniadis, Gava, Narain,
Taylor),...

Zero modes

Zero modes

D-brane instanton effects on $\mathcal{N}=14 \mathrm{D}$ action

Zero modes

D-brane instanton effects on $\mathcal{N}=14 \mathrm{D}$ action

- Zero mode structure and possible lifting
- Generic 4 bosonic zero modes X_{μ} and 4 fermionic zero modes θ^{α} and $\bar{\theta}^{\dot{\alpha}}$
- Due to deformations, complex bosonic zero modes Y_{i} and fermionic zero modes μ_{i}^{α} and $\bar{\mu}_{i}^{\dot{\alpha}}$
- For E3 instantons in Type IIB, these zero modes are counted by $H^{(i, 0)}(D) i=0,1,2$.

F-terms

F-terms

F-terms possible only if

- The two $\bar{\theta}^{\dot{\alpha}}$ zero modes are projected out by $\Omega \sigma$. For this the instanton must be invariant under σ and must be an $O(1)$ instanton (instead of $S P(2)$ or $U(1)$) (Argurio,
Bertolini, Ferreti, Lerda, Petersson) , (Ibanez, Schellekens, Uranga) , (Bianchi, Fucito, Morales)

F-terms

F-terms possible only if

- The two $\bar{\theta}^{\dot{\alpha}}$ zero modes are projected out by $\Omega \sigma$. For this the instanton must be invariant under σ and must be an $O(1)$ instanton (instead of $S P(2)$ or $U(1)$) (Argurio, Bertolini, Ferreti, Lerda, Petersson) , (Ibanez, Schellekens, Uranga) , (Bianchi, Fucito, Morales)
- The two $\bar{\theta}^{\dot{\alpha}}$ zero modes can be absorbed elsewhere, like for instantons on top of D-brane:

\rightarrow fermionic ADHM-constraints (Billo et al., hep-th/0211250) ,

Charged matter zero modes

Charged matter zero modes

Gauge group

$$
\prod_{a} U\left(N_{a}\right)=\prod_{a} S U\left(N_{a}\right) \times U(1)_{a}
$$

in general contains anomalous $U(1)_{a}$ symmetries

Charged matter zero modes

Gauge group

$$
\prod_{a} U\left(N_{a}\right)=\prod_{a} S U\left(N_{a}\right) \times U(1)_{a}
$$

in general contains anomalous $U(1)_{a}$ symmetries
Anomaly cancellation via the 4D Green-Schwarz mechanism

Charged matter zero modes

Gauge group

$$
\prod_{a} U\left(N_{a}\right)=\prod_{a} S U\left(N_{a}\right) \times U(1)_{a}
$$

in general contains anomalous $U(1)_{a}$ symmetries
Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous $U(1)$ s become massive and survive as global perturbative symmetries

Charged matter zero modes

Gauge group

$$
\prod_{a} U\left(N_{a}\right)=\prod_{a} S U\left(N_{a}\right) \times U(1)_{a}
$$

in general contains anomalous $U(1)_{a}$ symmetries
Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous $U(1)$ s become massive and survive as global perturbative symmetries
- Only specific linear combinations of $U(1)$ s are massless and remain as unbroken gauge symmetry (like $U(1)_{Y}$)

Charged matter zero modes

Gauge group

$$
\prod_{a} U\left(N_{a}\right)=\prod_{a} S U\left(N_{a}\right) \times U(1)_{a}
$$

in general contains anomalous $U(1)_{a}$ symmetries
Anomaly cancellation via the 4D Green-Schwarz mechanism

- Anomalous $U(1)$ s become massive and survive as global perturbative symmetries
- Only specific linear combinations of $U(1)$ s are massless and remain as unbroken gauge symmetry (like $\left.U(1)_{Y}\right)$
- Global $U(1)$ forbid some desirable matter couplings, e.g. Majorana type neutrino masses, $S U(5)$ Yukawa couplings or μ-terms \rightarrow relation to M -theory on G_{2} manifolds (?)

Instanton zero modes

Instanton zero modes

Instanton corrections in string theory can break the axionic shift symmetries and therefore the global $U(1)$ symmetries.

- Additional zero modes charged under $U(1)_{a}$: Strings between $E 3$ and $D 7_{a}$ have DN-boundary conditions in 4 D and mixed boundary conditions along $C Y_{3} \rightarrow$ $1 / 2$ complex fermionic zero mode λ_{a} (Ganor, hep-th/9612077)

zero modes	Reps.	number
$\lambda_{a, I}$	$\left(-1_{E}, \square_{a}\right)$	$I=1, \ldots,\left[\Xi \cap \Pi_{a}\right]^{+}$
$\bar{\lambda}_{a, I}$	$\left(1_{E}, \square_{a}\right)$	$I=1, \ldots,\left[\Xi \cap \Pi_{a}\right]^{-}$
$\lambda_{a^{\prime}, I}$	$\left(-1_{E}, \bar{\square}_{a}\right)$	$I=1, \ldots,\left[\Xi \cap \Pi_{a}^{\prime}\right]^{+}$
$\bar{\lambda}_{a^{\prime}, I}$	$\left(1_{E}, \square_{a}\right)$	$I=1, \ldots,\left[\Xi \cap \Pi_{a}^{\prime}\right]^{-}$

Instanton calculus

Instanton calculus

D-brane-instantons are described by open strings \rightarrow computation of stringy instanton correlation functions should be possible in (boundary) conformal field theory. (Gutperle, Green, hep-th/9701093), (Billo et al., hep-th/0211250)

Instanton calculus

D-brane-instantons are described by open strings \rightarrow computation of stringy instanton correlation functions should be possible in (boundary) conformal field theory. (Gutperle, Green, hep-th/9701093), (Billo et al., hep-th/0211250)

To compute (rigid) instanton contributions to the charged matter field superpotential

$$
W_{n p} \simeq \prod_{i=1}^{M} \Phi_{a_{i}, b_{i}} e^{-S_{E 2}}
$$

with $\Phi_{a_{i}, b_{i}}=\phi_{a_{i}, b_{i}}+\theta \psi_{a_{i}, b_{i}}$ denoting chiral matter superfields at the intersection of $\Pi_{a_{i}}$ with $\Pi_{b_{i}}$ (suppress Chan-Paton labels for simplicity).

Instanton calculus: Summary

Instanton calculus: Summary

Probe superpotential by correlator

$$
\left\langle\Phi_{a_{1}, b_{1}} \cdot \ldots \cdot \Phi_{a_{M}, b_{M}}\right\rangle_{E 2-\mathrm{inst}}=\frac{e^{\frac{\mathcal{K}}{2}} Y_{\Phi_{a_{1}, b_{1}, \ldots, \Phi_{a_{M}, b_{M}}}}}{\sqrt{K_{a_{1}, b_{1}} \cdot \ldots \cdot K_{a_{M}, b_{M}}}}
$$

$$
\begin{aligned}
& \left\langle\Phi_{a_{1}, b_{1}}\left(x_{1}\right) \cdot \ldots \cdot \Phi_{a_{M}, b_{M}}\left(x_{M}\right)\right\rangle_{E 2-\mathrm{inst}}= \\
& =\int d^{4} x d^{2} \theta \sum_{\text {conf. }} \prod_{a}\left(\prod_{i=1}^{\left[\Xi \cap \Pi_{a}\right]^{+}} d \lambda_{a}^{i}\right)\left(\prod_{i=1}^{\left[\Xi \cap \Pi_{a}\right]^{-}} d \bar{\lambda}_{a}^{i}\right) \\
& \quad \exp \left(-S_{E 2}\right) \times \exp \left(Z_{0}^{\prime}\right) \\
& \quad \times\left\langle\widehat{\Phi}_{a_{1}, b_{1}}\left[\vec{x}_{1}\right]\right\rangle_{\lambda_{a_{1}}, \bar{\lambda}_{b_{1}}}^{\text {tree }} \ldots \cdot\left\langle\widehat{\Phi}_{a_{L}, b_{L}}\left[\vec{x}_{L}\right]\right\rangle_{\lambda_{a_{L}}, \bar{\lambda}_{b_{L}}}^{\text {tree }} \times \\
& \quad \prod_{k}\left\langle\widehat{\Phi}_{c_{k}, c_{k}}\left[\vec{x}_{k}\right]\right\rangle_{A\left(E 2, D 6_{c_{k}}\right)}^{\text {loop }}
\end{aligned}
$$

Achievements

Achievements

- Zero mode structure and possible lifting

Achievements

- Zero mode structure and possible lifting
- CFT instanton calculus (BI, Cvetic, Weigand), (Ibanez, Uranga)

Achievements

- Zero mode structure and possible lifting
- CFT instanton calculus (BI, Cvetic, Weigand), (Ibanez, Uranga)
- D-brane instanton corrections to superpotential W
- Contributions to the moduli field $W \rightarrow$ moduli stabilization (R.B., Moster, Plauschinn)
- Generation of perturbatively forbidden but phenomenologically desirable matter couplings like Majorana masses for neutrinos, Yukawa couplings for $S U(5)$ models.
- Computations for global models like toroidal or Gepner model orientifolds (Cvetic, Weigand), (Bianchi, Kiritsis),
(Ibanez, Schellekens, Uranga)

Achievements

Achievements

- D-brane instanton corrections to gauge kinetic function f
- By S-duality to het. string \rightarrow test of the D-brane instanton calculus (Bianchi, Morales), (Camara, Dudas, Maillard, Pradisi)
- New phenomena from multi-instantons \rightarrow second part of this talk (R.B., Schmidt-Sommerfeld) , (Grimm) , (R.B., Moster, Plauschinn)

Achievements

- D-brane instanton corrections to gauge kinetic function f
- By S-duality to het. string \rightarrow test of the D-brane instanton calculus (Bianchi, Morales), (Camara, Dudas, Maillard,
Pradisi)
- New phenomena from multi-instantons \rightarrow second part of this talk (R.B., Schmidt-Sommerfeld) , (Grimm) , (R.B., Moster, Plauschinn)
- Stringy derivation of field theory instanton effects
- Computation of the AdS superpotential for $\mathcal{N}=1$ SQCD in a local brane set-up (Akerblom, R.B., Lüst, Plauschinn, Schmidt-Sommerfeld)
- Generalization for non-compact quiver gauge theories (Florea, Kachru, McGreevy, Saulina), (Argurio, Bertolini, Ferreti, Lerda, Petersson) , (Ibanez, Uranga) , (Krefl) , (Bianchi, Fucito, Morales), ...

Achievements

Achievements

- Behaviour of W crossing lines of marginal stability (R.B., Cvetic, Richter, Weigand) , (Garcia-Etxebarria,Marchesano, Uranga)

Achievements

- Behaviour of W crossing lines of marginal stability (r.B., Cvetic, Richter, Weigand) , (Garcia-Etxebarria,Marchesano, Uranga)
- Instantons and fluxes (R.B., Cvetic, Richter, Weigand), (Garcia-Etxebarria, Marchesano, Uranga) , (Billo, Ferro, Frau, Fucito, Lerda, Morales)

Achievements

- Behaviour of W crossing lines of marginal stability (R.B., Cvetic, Richter, Weigand) , (Garcia-Etxebarria,Marchesano, Uranga)
- Instantons and fluxes (R.B., Cvetic, Richter, Weigand), (Garcia-Etxebarria, Marchesano, Uranga) , (Billo, Ferro, Frau, Fucito, Lerda, Morales)
- Phenomenological applications like neutrino masses or supersymmetry breaking (Antusch, Ibanez, Macri), (Cvetic, Langacker), (Buican, Franco)

Program

Program

- A puzzle about $\mathcal{N}=1$ instantons

Program

- A puzzle about $\mathcal{N}=1$ instantons
- D-Instanton corrections to gauge kinetic function

Program

- A puzzle about $\mathcal{N}=1$ instantons
- D-Instanton corrections to gauge kinetic function
- Quantitative test for a heterotic-Type I S-dual pair

Program

- A puzzle about $\mathcal{N}=1$ instantons
- D-Instanton corrections to gauge kinetic function
- Quantitative test for a heterotic-Type I S-dual pair
- Questions

A puzzle about D-instantons

A puzzle about D-instantons

The exact superpotential is expected to have an expansion like (Dine, Seiberg, Wen, Witten)

$$
W=W_{\text {tree }}+\sum_{E 1-\text { inst. }} \prod_{i} \Phi_{i} g\left(\mathcal{U}_{I}\right) e^{-a^{I} \mathcal{T}_{I}}
$$

A puzzle about D-instantons

The exact superpotential is expected to have an expansion like (Dine, Seiberg, Wen, Witten)

$$
W=W_{\text {tree }}+\sum_{E 1-\text { inst. }} \prod_{i} \Phi_{i} g\left(\mathcal{U}_{I}\right) e^{-a^{I} \mathcal{T}_{I}}
$$

Similarly, the gauge coupling on a D-brane A beyond one-loop receives also instanton corrections from a D-instanton B

$$
f_{A}=f_{A, \text { tree }}+f_{A, 1-\mathrm{loop}}+f_{A, \mathrm{NP}}
$$

with $f_{A, \mathrm{NP}} \sim \exp \left(-S_{B}\right)$.
Consider the 4D low-energy effective field theory on this D-brane.

A puzzle about D-instanton

A puzzle about D-instanton

Assume that an ADS-type superpotential is dynamically generated by a gauge instanton, lnst_{A} i.e.

$$
\begin{aligned}
W_{A D S} & =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { full }}\right) \\
& =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { tree }}-f_{A, 1-\mathrm{loop}}-e^{-S_{B}}\right)
\end{aligned}
$$

A puzzle about D-instanton

Assume that an ADS-type superpotential is dynamically generated by a gauge instanton, lnst_{A} i.e.

$$
\begin{aligned}
W_{A D S} & =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { full }}\right) \\
& =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { tree }}-f_{A, 1-\mathrm{loop}}-e^{-S_{B}}\right)
\end{aligned}
$$

It must be possible to derive the superpotential in the full string theory.

A puzzle about D-instanton

Assume that an ADS-type superpotential is dynamically generated by a gauge instanton, lnst_{A} i.e.

$$
\begin{aligned}
W_{A D S} & =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { full }}\right) \\
& =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { tree }}-f_{A, 1-\mathrm{loop}}-e^{-S_{B}}\right)
\end{aligned}
$$

It must be possible to derive the superpotential in the full string theory.
By expanding the exponential, it is expected to be a multi-instanton correction involving one gauge instanton Inst $_{A}$ and instantons Inst $_{B}$.

A puzzle about D-instanton

Assume that an ADS-type superpotential is dynamically generated by a gauge instanton, lnst_{A} i.e.

$$
\begin{aligned}
W_{A D S} & =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { full }}\right) \\
& =\frac{1}{\operatorname{det} \Phi \bar{\Phi}} \exp \left(-f_{A, \text { tree }}-f_{A, 1-\mathrm{loop}}-e^{-S_{B}}\right)
\end{aligned}
$$

It must be possible to derive the superpotential in the full string theory.
By expanding the exponential, it is expected to be a multi-instanton correction involving one gauge instanton Inst $_{A}$ and instantons Inst ${ }_{B}$.

Let us dicuss this issue more systematically.

Instanton corrections to f

Instanton corrections to f

For a single instanton to generate a correction to f, the zero mode structure must be of a certain type. (related to: (Argurio,
Bertolini, Ferreti, Lerda, Petersson), (Bianchi, Fucito, Morales), (Ibanez, Schellekens, Uranga),(Akerblom, BI, Lüst, Schmidt-Sommerfeld))
It must be an $O(1)$ instanton wrapping a holomorphic curve of genus one (i.e. a 2-torus):

x_{μ},	position in 4 D
θ^{α},	2 Goldstino zero modes
μ^{α},	2 modulino zero modes

Instanton corrections to f

For a single instanton to generate a correction to f, the zero mode structure must be of a certain type. (related to: (Argurio,
Bertolini, Ferreti, Lerda, Petersson), (Bianchi, Fucito, Morales), (Ibanez, Schellekens, Uranga),(Akerblom, BI, Lüst, Schmidt-Sommerfeld))
It must be an $O(1)$ instanton wrapping a holomorphic curve of genus one (i.e. a 2-torus):

x_{μ},	position in 4 D
θ^{α},	2 Goldstino zero modes
μ^{α},	2 modulino zero modes

Introducing a graphical notation, the instanton correction to f can be computed by evaluating the holomorphic part of

Instanton corrections to f

Instanton corrections to f

- What builds up in the exponent is the gauge coupling on some fictitious $D 5_{r}$ branes wrapping the same curve as $E 1_{r}$.

Instanton corrections to f

- What builds up in the exponent is the gauge coupling on some fictitious $D 5_{r}$ branes wrapping the same curve as $E 1_{r}$.
- The gauge coupling in $D 5_{r}$ can by itself receive instanton correction from instantons $E 1_{s}$ wrapping a different curve

Instanton corrections to f

- What builds up in the exponent is the gauge coupling on some fictitious $D 5_{r}$ branes wrapping the same curve as $E 1_{r}$.
- The gauge coupling in $D 5_{r}$ can by itself receive instanton correction from instantons $E 1_{s}$ wrapping a different curve
- By including these corrections, one obtains

$$
\begin{aligned}
& f_{a}=\int d^{2} \theta_{r} d^{2} \mu_{r} \underset{D 9_{a} E 1_{r}}{\times \times x} \exp \left(-S_{E 1_{r}}^{x}-Z_{0}^{\prime}\left(E 1_{r}\right)-\right. \\
& \sum_{s} \int d^{4} x_{r s} d^{2} \theta_{s} d^{2} \mu_{s}^{\overbrace{E 1_{r} E 1_{s}}^{x+}} e^{-S_{E 1_{s}}-Z_{0}^{\prime}\left(E 1_{s}\right) \ldots}) \text {, }
\end{aligned}
$$

Instanton corrections to f

Instanton corrections to f

For a single $E 1_{s}$ instanton, expanding the exponential gives

$$
\begin{aligned}
& f_{a}=\int d^{2} \theta_{r} d^{2} \mu_{r} \underbrace{x \times x}_{D 9_{a} E 1_{r}} e^{-S_{E 1_{r}}} e^{-Z_{0}^{\prime}\left(E 1_{r}\right)} \times \\
& {\left[\sum_{n=0}^{\infty} \int d^{4 n} x_{r s} d^{2 n} \theta_{s} d^{2 n} \mu_{s} \frac{(-1)^{n}}{n!}\left(\begin{array}{c}
x x \\
E 1_{r} E 1_{s} \\
x
\end{array}\right)^{n} e^{-n S_{E 1_{s}}} e^{-n Z_{0}^{\prime}\left(E 1_{s}\right)}\right]} \\
& =\int d^{2} \theta_{r} d^{2} \mu_{r} \underbrace{x}_{D 9_{a} x_{E 1_{r}}^{x}} e^{-S_{E 1_{r}}} e^{-Z_{0}^{\prime}\left(E 1_{r}\right)}+
\end{aligned}
$$

$$
\begin{aligned}
& e^{-Z_{0}^{\prime}\left(E 1_{r}\right)-Z_{0}^{\prime}\left(E 1_{s}\right)} e^{-S_{E 1_{r}}-S_{E 1_{s}}}+
\end{aligned}
$$

revealing the multi-instanton nature of these iterated instanton corrections (see also: (BI, Cvetiv, Richter,
Weigand),(Garcia-Etxebarria, Marchesano, Uranga), (Cvetic, Richter, Weigand))

Heterotic - Type I S-dual pair

Heterotic - Type I S-dual pair

Consider the Ω orientifold of Type IIB on the shift $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold (Camara, Dudas, Maillard,Pradisi)
$\Theta:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1} \\ z_{2} \rightarrow-z_{2}+\frac{1}{2} \\ z_{3} \rightarrow z_{3}+\frac{1}{2}\end{array} \quad \Theta^{\prime}:\left\{\begin{array}{l}z_{1} \rightarrow z_{1}+\frac{1}{2} \\ z_{2} \rightarrow-z_{2} \\ z_{3} \rightarrow-z_{3}+\frac{1}{2}\end{array} \Theta^{\prime \prime}:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1}+\frac{1}{2} \\ z_{2} \rightarrow z_{2}+\frac{1}{2} \\ z_{3} \rightarrow-z_{3} .\end{array}\right.\right.\right.$

Heterotic - Type I S-dual pair

Consider the Ω orientifold of Type IIB on the shift $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold (Camara, Dudas, Maillard, Pradisi)
$\Theta:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1} \\ z_{2} \rightarrow-z_{2}+\frac{1}{2} \\ z_{3} \rightarrow z_{3}+\frac{1}{2}\end{array} \quad \Theta^{\prime}:\left\{\begin{array}{l}z_{1} \rightarrow z_{1}+\frac{1}{2} \\ z_{2} \rightarrow-z_{2} \\ z_{3} \rightarrow-z_{3}+\frac{1}{2}\end{array} \Theta^{\prime \prime}:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1}+\frac{1}{2} \\ z_{2} \rightarrow z_{2}+\frac{1}{2} \\ z_{3} \rightarrow-z_{3} .\end{array}\right.\right.\right.$

- One gets only one $O 9$ plane, whose tadpole can be canceled by 32 D9-branes yielding the gauge group $S O(32)$ with no massless matter.

Heterotic - Type I S-dual pair

Consider the Ω orientifold of Type IIB on the shift $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ orbifold (Camara, Dudas, Maillard,Pradisi)
$\Theta:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1} \\ z_{2} \rightarrow-z_{2}+\frac{1}{2} \\ z_{3} \rightarrow z_{3}+\frac{1}{2}\end{array} \quad \Theta^{\prime}:\left\{\begin{array}{l}z_{1} \rightarrow z_{1}+\frac{1}{2} \\ z_{2} \rightarrow-z_{2} \\ z_{3} \rightarrow-z_{3}+\frac{1}{2}\end{array} \Theta^{\prime \prime}:\left\{\begin{array}{l}z_{1} \rightarrow-z_{1}+\frac{1}{2} \\ z_{2} \rightarrow z_{2}+\frac{1}{2} \\ z_{3} \rightarrow-z_{3} .\end{array}\right.\right.\right.$

- One gets only one $O 9$ plane, whose tadpole can be canceled by 32 D9-branes yielding the gauge group $S O(32)$ with no massless matter.
- On the dual heterotic side the shift symmetry act in an asymmetric way

$$
X_{L} \rightarrow X_{L}+\frac{\pi R}{2}+\frac{\pi \alpha^{\prime}}{2 R}, \quad X_{R} \rightarrow X_{R}+\frac{\pi R}{2}-\frac{\pi \alpha^{\prime}}{2 R}
$$

Heterotic thresholds

Heterotic thresholds

One can compute the one-loop (in g_{s}) threshold corrections

$$
\begin{aligned}
\Lambda & =\int_{\mathcal{F}} \frac{d^{2} \tau}{4 \tau_{2}} \mathcal{B}(\tau) \\
& =\int_{\mathcal{F}} \frac{d^{2} \tau}{\tau_{2}} \sum_{i=1}^{3}\left(\frac{1}{\eta^{2} \vartheta_{2}^{2}} \hat{Z}_{i}\left[\begin{array}{l}
1 \\
0
\end{array}\right]-\frac{1}{\eta^{2} \vartheta_{4}^{2}} \hat{Z}_{i}\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\frac{i}{\eta^{2} \vartheta_{3}^{2}} \hat{Z}_{i}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)
\end{aligned}
$$

$$
\sum_{a, b}\left(\frac{\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\eta}\right)^{16}\left(\frac{\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]}+\frac{\pi}{\tau_{2}}\right)
$$

with $(a, b) \in\{(0,0),(0,1 / 2),(1 / 2,0)\}$ originating from the $\widehat{S O}(32)_{1}$ left-moving current algebra.

Heterotic thresholds

Heterotic thresholds

The questions we would like to answer are:

- Can we quantitatively reproduce the holomorphic part of the heterotic result on the Type I side in terms of E1-brane instanton corrections?

Heterotic thresholds

The questions we would like to answer are:

- Can we quantitatively reproduce the holomorphic part of the heterotic result on the Type I side in terms of E1-brane instanton corrections?
- Are there poly-instanton contributions on the Type I dual side and, if so, are they also included in the heterotic dual?

Heterotic thresholds

Heterotic thresholds

Following (Dixon, Kaplunovsly, Louis), by unfolding the integral over \mathcal{F} one gets (see also: (Bachas, Fabre, Kiritsis, Obers, Vanhove))

$$
\Lambda(\overrightarrow{\mathcal{U}}, \overrightarrow{\mathcal{T}})=\sum_{i=1}^{3} \Lambda\left(\mathcal{U}_{i}\right) \frac{1}{\operatorname{det}(A)} e^{2 \pi i \operatorname{det}(A) \mathcal{T}^{(i)}}
$$

For the holomorphic prefactor $\Lambda(\mathcal{U})$ we obtain

$$
\begin{aligned}
\Lambda(\mathcal{U})= & \mathcal{A}\left[\begin{array}{l}
1 \\
0
\end{array}\right]\left(\frac{j+p \mathcal{U}}{k}\right)= \\
& \frac{(-1)^{k}}{\eta^{2} \vartheta_{2}^{2}} \sum_{a, b}\left(\frac{\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]}{\eta}\right)^{16}\left(\frac{\vartheta\left[\begin{array}{c}
a \\
b^{\prime \prime}
\end{array}\right.}{\vartheta\left[\begin{array}{l}
a \\
b
\end{array}\right]}\right)\left(\frac{j+p \mathcal{U}}{k}\right)
\end{aligned}
$$

for $k \in \mathbb{Z}$ and $j \in \mathbb{Z}+\frac{1}{2}$, and similarly for $\mathcal{A}\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\mathcal{A}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

One-instanton sector

One-instanton sector

Leading order instantons: $\operatorname{det}(A)=1 / 2$ and only one orbit

$$
A=\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right), \quad \text { so that }
$$

One-instanton sector

Leading order instantons: $\operatorname{det}(A)=1 / 2$ and only one orbit

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & 1
\end{array}\right), \text { so that } \\
& \Lambda_{1}(\mathcal{U}, \mathcal{T})= 2 \mathcal{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right](2 \mathcal{U}) e^{\pi i \mathcal{T}} \\
&= \frac{2 \pi^{2}}{3}\left[\frac{e^{\pi i \mathcal{T}}}{\eta^{4}(\mathcal{U})}\left(\frac{\vartheta_{3}}{\eta}(2 \mathcal{U})\right)^{16}\left(E_{2}+\vartheta_{2}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U})+\right. \\
& \frac{e^{\pi i \mathcal{T}}}{\eta^{4}(\mathcal{U})}\left(\frac{\vartheta_{4}}{\eta}(2 \mathcal{U})\right)^{16}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(2 \mathcal{U})+ \\
&\left.\frac{e^{\pi i \mathcal{T}}}{\eta^{4}(\mathcal{U})}\left(\frac{\vartheta_{2}}{\eta}(2 \mathcal{U})\right)^{16}\left(E_{2}+\vartheta_{3}^{4}+\vartheta_{4}^{4}\right)(2 \mathcal{U})\right]_{\text {CERN, 28.07.2008-p.22/33}}
\end{aligned}
$$

Type I E1-instantons

Type I E1-instantons

For each T^{2}, we find three candidate $O(1)$ instantons with discrete Wilson lines

$$
E 1_{\left(0, \frac{1}{2}\right)}^{(i)}, \quad E 1_{(1,0)}^{(i)}, \quad E 1_{\left(1, \frac{1}{2}\right)}^{(i)} \quad i=1,2,3 .
$$

Type I E1-instantons

For each T^{2}, we find three candidate $O(1)$ instantons with discrete Wilson lines

$$
E 1_{\left(0, \frac{1}{2}\right)}^{(i)}, \quad E 1_{(1,0)}^{(i)}, \quad E 1_{\left(1, \frac{1}{2}\right)}^{(i)} \quad i=1,2,3 .
$$

To have precisely the two modulino zero modes μ^{α}, i.e. they must be rigid along the other two T^{2} factors transverse to the instantons.

Type I E1-instantons

Type I E1-instantons

- For the $E 1-D 9$ annulus diagram we get

$$
\bigodot_{E 1_{j} D 9}=-16 \log \left(\frac{\vartheta_{j}}{\eta}(2 \mathcal{U})\right)
$$

where the prefactor of 16 originates from the 32 $D 9$-branes.

Type I E1-instantons

- For the $E 1-D 9$ annulus diagram we get

$$
\bigodot_{E 1_{j} D 9}=-16 \log \left(\frac{\vartheta_{j}}{\eta}(2 \mathcal{U})\right)
$$

where the prefactor of 16 originates from the 32
D9-branes.

- For the Möbius strip we get the simple result

$$
\bigotimes_{E 1_{j} O 9}^{Q}=4 \log (\eta(\mathcal{U})) .
$$

Type I E1-instantons

- For the $E 1-D 9$ annulus diagram we get

$$
\bigodot_{E 1_{j} D 9}=-16 \log \left(\frac{\vartheta_{j}}{\eta}(2 \mathcal{U})\right)
$$

where the prefactor of 16 originates from the 32 D9-branes.

- For the Möbius strip we get the simple result

$$
\bigotimes_{E 1_{j} O 9}^{Q}=4 \log (\eta(\mathcal{U})) .
$$

- The Type I one-loop determinants $\exp [-\underset{E 1 D 9}{O}-\underset{E 1 O 9}{O}]$ precisely give the first two factors in each line of the heterotic result.

Type I E1-instantons

Type I E1-instantons

For the three different classes of single $E 1$ instantons, we get

$$
\begin{aligned}
& \int d^{2} \theta d^{2} \mu{\underset{D 9}{x} \underset{E 1_{2}}{x}}_{x}^{x} \simeq \frac{\vartheta_{2}^{\prime \prime}}{\vartheta_{2}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}+\vartheta_{3}^{4}+\vartheta_{4}^{4}\right)(2 \mathcal{U}) \\
& \int d^{2} \theta d^{2} \mu \underset{D 9 E 1_{3}}{x \times x} \simeq \frac{\vartheta_{3}^{\prime \prime}}{\vartheta_{3}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}+\vartheta_{2}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U}) \\
& \int d^{2} \theta d^{2} \mu \underset{D 9 E 1_{4}}{\underbrace{x}_{\underset{x}{x}} \simeq \frac{\vartheta_{4}^{\prime \prime}}{\vartheta_{4}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(2 \mathcal{U}), ~}
\end{aligned}
$$

which agree precisely with the third factor in each of the three heterotic contributions

Type I E1-instantons

For the three different classes of single $E 1$ instantons, we get

$$
\begin{aligned}
& \int d^{2} \theta d^{2} \mu{\underset{D 9}{x} \underset{E 1_{2}}{x}}_{x}^{x} \simeq \frac{\vartheta_{2}^{\prime \prime}}{\vartheta_{2}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}+\vartheta_{3}^{4}+\vartheta_{4}^{4}\right)(2 \mathcal{U}) \\
& \int d^{2} \theta d^{2} \mu \underset{D 9 E 1_{3}}{x \times x} \simeq \frac{\vartheta_{3}^{\prime \prime}}{\vartheta_{3}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}+\vartheta_{2}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U}) \\
& \int d^{2} \theta d^{2} \mu \underset{D 9 E 1_{4}}{\underbrace{x}_{\underset{x}{x}} \simeq \frac{\vartheta_{4}^{\prime \prime}}{\vartheta_{4}}(2 \mathcal{U})=-\frac{\pi^{2}}{3}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(2 \mathcal{U}), ~}
\end{aligned}
$$

which agree precisely with the third factor in each of the three heterotic contributions

Multiple wrapped instantons

Multiple wrapped instantons

As argued in (Bachas), (Gava, Morales, Narain, Thompson), the heterotic contributions with $p \cdot k>1 / 2$ correspond to multiply wrapped E1 instanton

Multiple wrapped instantons

As argued in (Bachas), (Gava, Morales, Narain, Thompson), the heterotic contributions with $p \cdot k>1 / 2$ correspond to multiply wrapped E1 instanton
For $k \in \mathbb{Z}+\frac{1}{2}$ and $j, p \in \mathbb{Z}$ they correspond to the instanton

Two-instanton sector

Two-instanton sector

However, what about the various Type I poly two-instanton contributions

$$
E 1_{3}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}, \quad E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}} \quad E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}
$$

Two-instanton sector

However, what about the various Type I poly two-instanton contributions

$$
E 1_{3}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}, \quad E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}} \quad E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}
$$

For the first one, we get
$\Lambda_{34}=\int d^{4} x_{r s} d^{2} \theta_{r} d^{2} \theta_{s} d^{2} \mu_{r} d^{2} \mu_{s}$

Two-instanton sector

Two-instanton sector

Collecting all terms, we find
$\Lambda_{34}=\frac{\pi^{4} \kappa}{3} e^{2 \pi i \mathcal{T}} \frac{\vartheta_{4}^{4}(2 \mathcal{U})}{\eta^{8}(\mathcal{U})}\left(\frac{\vartheta_{3} \vartheta_{4}}{\eta^{2}}(2 \mathcal{U})\right)^{16}\left(2 E_{2}-\vartheta_{3}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U})$,
which invoking some ϑ-function identities can be written as

$$
\Lambda_{34}=\frac{4 \pi^{4} \kappa}{3} \frac{e^{2 \pi i \mathcal{T}}}{\eta^{4}(2 \mathcal{U})}\left(\frac{\vartheta_{4}}{\eta}(4 \mathcal{U})\right)^{16}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(4 \mathcal{U})
$$

Two-instanton sector

Collecting all terms, we find
$\Lambda_{34}=\frac{\pi^{4} \kappa}{3} e^{2 \pi i \mathcal{T}} \frac{\vartheta_{4}^{4}(2 \mathcal{U})}{\eta^{8}(\mathcal{U})}\left(\frac{\vartheta_{3} \vartheta_{4}}{\eta^{2}}(2 \mathcal{U})\right)^{16}\left(2 E_{2}-\vartheta_{3}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U})$,
which invoking some ϑ-function identities can be written as

$$
\Lambda_{34}=\frac{4 \pi^{4} \kappa}{3} \frac{e^{2 \pi i \mathcal{T}}}{\eta^{4}(2 \mathcal{U})}\left(\frac{\vartheta_{4}}{\eta}(4 \mathcal{U})\right)^{16}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(4 \mathcal{U})
$$

This has precisely the form of the holomorphic part of the heterotic contribution

$$
\Lambda_{1}(\mathcal{U}, \mathcal{T})=\mathcal{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right](4 \mathcal{U}) e^{2 \pi i \mathcal{T}}
$$

Two-instanton sector

Collecting all terms, we find
$\Lambda_{34}=\frac{\pi^{4} \kappa}{3} e^{2 \pi i \mathcal{T}} \frac{\vartheta_{4}^{4}(2 \mathcal{U})}{\eta^{8}(\mathcal{U})}\left(\frac{\vartheta_{3} \vartheta_{4}}{\eta^{2}}(2 \mathcal{U})\right)^{16}\left(2 E_{2}-\vartheta_{3}^{4}-\vartheta_{4}^{4}\right)(2 \mathcal{U})$,
which invoking some ϑ-function identities can be written as

$$
\Lambda_{34}=\frac{4 \pi^{4} \kappa}{3} \frac{e^{2 \pi i \mathcal{T}}}{\eta^{4}(2 \mathcal{U})}\left(\frac{\vartheta_{4}}{\eta}(4 \mathcal{U})\right)^{16}\left(E_{2}-\vartheta_{2}^{4}-\vartheta_{3}^{4}\right)(4 \mathcal{U})
$$

This has precisely the form of the holomorphic part of the heterotic contribution

$$
\Lambda_{1}(\mathcal{U}, \mathcal{T})=\mathcal{A}\left[\begin{array}{l}
0 \\
1
\end{array}\right](4 \mathcal{U}) e^{2 \pi i \mathcal{T}}
$$

Is this poly-instanton included in the heterotic thresholds?

Two-instanton sector

Two-instanton sector

Similarly, we find the poly instanton $E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}$ in the heterotic amplitude and the sector $E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}$ is vanishing due to extra zero modes.

Two-instanton sector

Similarly, we find the poly instanton $E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}$ in the heterotic amplitude and the sector $E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}$ is vanishing due to extra zero modes.

Two possibilities:

- These poly two-instanton sectors are really included on the heterotic side

Two-instanton sector

Similarly, we find the poly instanton $E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}$ in the heterotic amplitude and the sector $E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}$ is vanishing due to extra zero modes.

Two possibilities:

- These poly two-instanton sectors are really included on the heterotic side
- The equality of the poly two-instanton amplitudes with the ones of a doubly wrapped single instanton is just an artefact of the equality of the KK and winding modes of the two brane systems

Two-instanton sector

Similarly, we find the poly instanton $E 1_{2}^{i, k}-E 1_{4}^{i^{\prime}, k^{\prime}}$ in the heterotic amplitude and the sector $E 1_{2}^{i, k}-E 1_{3}^{i^{\prime}, k^{\prime}}$ is vanishing due to extra zero modes.

Two possibilities:

- These poly two-instanton sectors are really included on the heterotic side
- The equality of the poly two-instanton amplitudes with the ones of a doubly wrapped single instanton is just an artefact of the equality of the KK and winding modes of the two brane systems

To settle this issue, consider the poly three-instanton sector.

Three-instanton sector

Three-instanton sector

For the three instanton amplitude we eventually find

$$
\begin{aligned}
\Lambda_{234} & =-\kappa \pi^{4} \frac{\vartheta_{4}^{8}(2 \mathcal{U})}{\eta^{12}(\mathcal{U})}\left(\frac{\vartheta_{2} \vartheta_{3} \vartheta_{4}}{\eta^{3}}(2 \mathcal{U})\right)^{16} \sum_{r=2,3,4} \frac{\vartheta_{r}^{\prime \prime}}{\vartheta_{r}}(2 \mathcal{U}) e^{\frac{3 \pi i \mathcal{I}}{2}} \\
& =\kappa \frac{\pi^{6}}{2^{18}} \frac{E_{2}}{\vartheta_{2}^{2} \vartheta_{3}^{2}}(2 \mathcal{U}) e^{\frac{3 \pi i \mathcal{T}}{2}}
\end{aligned}
$$

Three-instanton sector

For the three instanton amplitude we eventually find

$$
\begin{aligned}
\Lambda_{234} & =-\kappa \pi^{4} \frac{\vartheta_{4}^{8}(2 \mathcal{U})}{\eta^{12}(\mathcal{U})}\left(\frac{\vartheta_{2} \vartheta_{3} \vartheta_{4}}{\eta^{3}}(2 \mathcal{U})\right)^{16} \sum_{r=2,3,4} \frac{\vartheta_{r}^{\prime \prime}}{\vartheta_{r}}(2 \mathcal{U}) e^{\frac{3 \pi i \mathcal{I}}{2}} \\
& =\kappa \frac{\pi^{6}}{2^{18}} \frac{E_{2}}{\vartheta_{2}^{2} \vartheta_{3}^{2}}(2 \mathcal{U}) e^{\frac{3 \pi i \mathcal{I}}{2}}
\end{aligned}
$$

This term is not present on the heterotic side!

Open questions

Open questions

- For all its 20 years of existence, do we really have missed corrections on the heterotic side, arising from new terms in the world-sheet action of 2 fundamental strings?

Open questions

- For all its 20 years of existence, do we really have missed corrections on the heterotic side, arising from new terms in the world-sheet action of 2 fundamental strings?
- Do we miss a condition for multi-instanton corrections on the Type I side?

Open questions

- For all its 20 years of existence, do we really have missed corrections on the heterotic side, arising from new terms in the world-sheet action of 2 fundamental strings?
- Do we miss a condition for multi-instanton corrections on the Type I side?

Other possible resolution:

Open questions

- For all its 20 years of existence, do we really have missed corrections on the heterotic side, arising from new terms in the world-sheet action of 2 fundamental strings?
- Do we miss a condition for multi-instanton corrections on the Type I side?

Other possible resolution:

- Similarly to the mirror map, have we computed just instanton corrections to S-duality map?

Open questions

- For all its 20 years of existence, do we really have missed corrections on the heterotic side, arising from new terms in the world-sheet action of 2 fundamental strings?
- Do we miss a condition for multi-instanton corrections on the Type I side?

Other possible resolution:

- Similarly to the mirror map, have we computed just instanton corrections to S-duality map?
- What effects do these pure stringy poly instanton corrections might have?

Applications Moduli Stabilization

Applications Moduli Stabilization

(BI, Plauschinn, Moster)
Consider Type IIB orientifolds of Calabi-Yau manifolds with $O 7$ and $O 3$ planes. Generalize the KKLT resp. LARGE volume scenario (Conlon, Quevedo, Cicoli):

$$
\mathcal{K}=-2 \ln \left(\mathcal{V}+\frac{\hat{\xi}}{2}\right)-\ln (S+\bar{S})+\mathcal{K}_{\mathrm{CS}}
$$

with $\hat{\xi}=\xi / g_{s}^{3 / 2}$ and

$$
\mathcal{V}=\left(\eta_{\mathrm{b}} \tau_{\mathrm{b}}\right)^{3 / 2}-\left(\eta_{1} \tau_{1}\right)^{3 / 2}-\left(\eta_{2} \tau_{2}\right)^{3 / 2}
$$

Applications Moduli Stabilization

(BI, Plauschinn, Moster)
Consider Type IIB orientifolds of Calabi-Yau manifolds with $O 7$ and $O 3$ planes. Generalize the KKLT resp. LARGE volume scenario (Conlon, Quevedo, Cicoli):

$$
\mathcal{K}=-2 \ln \left(\mathcal{V}+\frac{\hat{\xi}}{2}\right)-\ln (S+\bar{S})+\mathcal{K}_{\mathrm{CS}}
$$

with $\hat{\xi}=\xi / g_{s}^{3 / 2}$ and

$$
\mathcal{V}=\left(\eta_{\mathrm{b}} \tau_{\mathrm{b}}\right)^{3 / 2}-\left(\eta_{1} \tau_{1}\right)^{3 / 2}-\left(\eta_{2} \tau_{2}\right)^{3 / 2}
$$

Stabilize complex structure and dilaton with G_{3} form flux with $W=0$. Not massively suppressed (DeWolfe, Giryavets, Kachru, Taylor).

Moduli Stabilization

Moduli Stabilization

Consider the racetrack- multi-instanton superpotential:

$$
\begin{aligned}
W_{\mathrm{np}}= & \mathcal{A} e^{-a\left(T_{1}+\mathcal{C}_{1} e^{-2 \pi T_{2}}\right)}-\mathcal{B} e^{-b\left(T_{1}+\mathcal{C}_{2} e^{-2 \pi T_{2}}\right)} \\
= & {\left[\mathcal{A} e^{-a T_{1}}-\mathcal{B} e^{-b T_{1}}\right]-} \\
& {\left[\mathcal{A} \mathcal{C}_{1} a e^{-a T_{1}}-\mathcal{B} \mathcal{C}_{2} b e^{-b T_{1}}\right] e^{-2 \pi T_{2}}+\ldots }
\end{aligned}
$$

Moduli Stabilization

Consider the racetrack- multi-instanton superpotential:

$$
\begin{aligned}
W_{\mathrm{np}}= & \mathcal{A} e^{-a\left(T_{1}+\mathcal{C}_{1} e^{-2 \pi T_{2}}\right)}-\mathcal{B} e^{-b\left(T_{1}+\mathcal{C}_{2} e^{-2 \pi T_{2}}\right)} \\
= & {\left[\mathcal{A} e^{-a T_{1}}-\mathcal{B} e^{-b T_{1}}\right]-} \\
& {\left[\mathcal{A} \mathcal{C}_{1} a e^{-a T_{1}}-\mathcal{B} \mathcal{C}_{2} b e^{-b T_{1}}\right] e^{-2 \pi T_{2}}+\ldots }
\end{aligned}
$$

Minimum at large $\mathcal{V} \rightarrow$ controlled $1 / \mathcal{V}$ expansion. Sitting in the race track minimum for T_{1}, we get an effective KKLT like W :

$$
W^{\mathrm{eff}}=W_{0}^{\mathrm{eff}}-A^{\mathrm{eff}} e^{-2 \pi T_{2}}+\ldots
$$

Moduli Stabilization

Consider the racetrack- multi-instanton superpotential:

$$
\begin{aligned}
W_{\mathrm{np}}= & \mathcal{A} e^{-a\left(T_{1}+\mathcal{C}_{1} e^{-2 \pi T_{2}}\right)}-\mathcal{B} e^{-b\left(T_{1}+\mathcal{C}_{2} e^{-2 \pi T_{2}}\right)} \\
= & {\left[\mathcal{A} e^{-a T_{1}}-\mathcal{B} e^{-b T_{1}}\right]-} \\
& {\left[\mathcal{A} \mathcal{C}_{1} a e^{-a T_{1}}-\mathcal{B} \mathcal{C}_{2} b e^{-b T_{1}}\right] e^{-2 \pi T_{2}}+\ldots }
\end{aligned}
$$

Minimum at large $\mathcal{V} \rightarrow$ controlled $1 / \mathcal{V}$ expansion. Sitting in the race track minimum for T_{1}, we get an effective KKLT like W :

$$
W^{\mathrm{eff}}=W_{0}^{\mathrm{eff}}-A^{\mathrm{eff}} e^{-2 \pi T_{2}}+\ldots
$$

Since both $W_{0}^{\text {eff }}$ and $A^{\text {eff }}$ scale as $\exp \left(-a \tau_{1}^{*}\right)$, it is possible to obtain exponential small values for them without excessive fine tuning \rightarrow realize LVS with $M_{s}=M_{G U T}$.

Moduli Stabilization

Consider the racetrack- multi-instanton superpotential:

$$
\begin{aligned}
W_{\mathrm{np}}= & \mathcal{A} e^{-a\left(T_{1}+\mathcal{C}_{1} e^{-2 \pi T_{2}}\right)}-\mathcal{B} e^{-b\left(T_{1}+\mathcal{C}_{2} e^{-2 \pi T_{2}}\right)} \\
= & {\left[\mathcal{A} e^{-a T_{1}}-\mathcal{B} e^{-b T_{1}}\right]-} \\
& {\left[\mathcal{A} \mathcal{C}_{1} a e^{-a T_{1}}-\mathcal{B} \mathcal{C}_{2} b e^{-b T_{1}}\right] e^{-2 \pi T_{2}}+\ldots }
\end{aligned}
$$

Minimum at large $\mathcal{V} \rightarrow$ controlled $1 / \mathcal{V}$ expansion. Sitting in the race track minimum for T_{1}, we get an effective KKLT like W :

$$
W^{\mathrm{eff}}=W_{0}^{\mathrm{eff}}-A^{\mathrm{eff}} e^{-2 \pi T_{2}}+\ldots
$$

Since both $W_{0}^{\text {eff }}$ and $A^{\text {eff }}$ scale as $\exp \left(-a \tau_{1}^{*}\right)$, it is possible to obtain exponential small values for them without excessive fine tuning \rightarrow realize LVS with $M_{s}=M_{G U T}$.

