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1. Motivations

SO(32) heterotic -type I duality (Polchinski,Witten) was

explored extensively over the last ten years.

S-duality allows exact computation of E1 instanton ef-

fects in type I

• heterotic α′ corrections → E1 instanton corrections

• NS5 effects → E5 instanton corrections

There are simple examples of dual pairs using Vafa-

Witten adiabatic argument : freely-acting orbifolds (see

Blumenhagen talk).



Ex. heterotic-type I duality: higher-derivative in N =

4 SUSY case (Bachas, Kiritsis and coll., Lerche and

Stieberger, etc)

N = 2 case discussed in (Antoniadis,Bachas,Fabre,Partouche

and Taylor; Bianchi, Morales).

N = 1 models : CDMP, Blumenhagen, Schmidt-Sommerfeld

We will mostly focus today on a standard Z2 orbifold

- type I side constructed by Bianchi-Sagnotti and Gimon-

Polchinski

- heterotic dual pair identified by Berkooz,Leigh,Polchinski,Schwarz,

Seiberg,Witten



Our goal : computation of the full one-loop + E1 in-

stanton corrections to the type I effective action .

An important consistency check : comparison of the

effective theory Kaplunovsky-Louis formula
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with the one-loop string computation
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2. The S-dual orbifold pairs

Simplest orbifold T4/Z2 × T2, sixteen fixed points.

Type I side

- One twisted hypermultiplet per fixed point

- Maximal gauge group U(16)9 × U(16)5.

Hypers in (120 + 120,1) + (1,120 + 120) + (16,16)

In order to have a perturbative heterotic dual, distribute

1/2 D5 brane per fixed point.

D5 gauge group broken to U(1)16. Each U(1) gets

mixed with twisted four forms and become massive.

D9 spectrum : hypers in 120 + 120 + 16 × 16.



Heterotic dual

SO(32) compactified to 4d on T4/Z2×T2. Shift vector

on the gauge lattice

V =
1

4
(1, · · ·1,−3)

The gauge group is U(16). Charged matter is in rep-

resentations :

untwisted : 120 + 120

twisted : 16 × 16.



3. Effective action and quantum corrections : type

I side

Threshold corrections to gauge couplings depend on

moduli of T2 :

T =

√
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λ
+ ib , U =

√
G + iG12

G22

One finds (Bachas-Fabre, Antoniadis,Bachas,E.D.)
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The effective action is then
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Last term in K needs a separate one-loop computation

(ABFPT ; Berg,Haack,Kors). We expect E1 instan-

tonic contributions
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4. Effective action and quantum corrections : het-

erotic side

Threshold corrections to gauge couplings are given by

(Kaplunovsky)
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Qa is the charge operator of the gauge group; C
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the internal six-dimensional partition function.

For the S-dual of the BSGP model we find
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with

Âf = − 1
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with ni and `i integers. We used methods of Dixon,Kaplunovsky,

Louis and Bachas,Kiritsis et al. to evaluate Λ.



We find

Λ =
π
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ÂK is the almost-holomorphic modular form,
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We have expressed the result in terms of the induced

worldvolume complex structure in the E1 multi-instantons

wrapping the first 2-torus
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k



Split between analytic and non-analytic terms ; the cor-

rected Kähler potential and gauge kinetic function are
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where the holomorphic modular forms Af and AK, are

defined as before, replacing Ê2 by E2.



5. E1 instantons

The instantonic corrections depend on the moduli of

T2 → come from E1 instantons wrapping T 2.

They are of two different types:

E1 instantons at orbifold fixed points

They have unitary Chan-Paton factors, U(r), with neu-

tral sector :

- bosonic zero modes xµ, y1,2 and fermionic zero modes

Θα,a, Θα̇,a, with a = 1,2 in the adjoint representation

rr̄.

- bosonic zero modes y3,4,5,6 and fermionic ones λα,a in



the symmetric representation r(r+1)
2 + r̄(r̄+1)

2 .

- fermionic zero modes λ̃α̇,a in the antisymmetric rep-

resentation r(r−1)
2 + r̄(r̄−1)

2 .

• Charged zero modes between the instanton and the

1/2 D5-brane stuck at the singularity:

-bosonic zero modes µ1,2 from the R sector and fermionic

zero modes ωα from the NS sector, in the representa-

tion r−1 + r̄1.

-bosonic zero modes µ′
1,2 in the representation r+1 +

r̄−1.

• E1-D9 strings : bosonic zero mode ν in the represen-

tation rn̄ + r̄n.



E1 instantons off the orbifold fixed points

It can be argued that these instantons do not contribute

to threshold corrections.

In order the instantons to contribute to the gauge ki-

netic function, only four fermionic neutral zero modes

should be massless (the “goldstinos” ; Akerblom,Blumenhagen,

Lust and Schmidt-Sommerfeld) → most of the above

zero modes should be lifted by interactions.

Possible qualitative picture :

•a U(1) instanton on top of a singularity correspond is

a “gauge” instanton for the U(1) gauge theory inside

the corresponding half D5-brane. These instantons are



analogous to the ones discussed by Petersson, with the

extra fermionic zero modes being lifted by couplings in-

volving the D5-branes. They should be responsible for

the 1-instanton (N = 1) contribution.

• For the N-instanton contribution, when all the instan-

tons are on top of the same singularity, the instanton

CP is enhanced to U(N) and only four zero modes sur-

vive, with the extra zero modes presumably lifted by

interactions with the D5-branes.

(Dedicated works on lifting of zero modes ; Blumen-

hagen,Cvetic,Richter,Weigand; Garcia-Etxebarria and Uranga)



5. Universality of N = 2 instantonic corrections

• We shall try to generalize the instantonic corrections

to the effective action in case where the heterotic S-

dual description is unknown.

Framework: orbifold compactifications, with orbifold

action G containing subgroups Gi leaving unrotated a

given complex plane.

The contribution of these sectors to threshold correc-

tions :

Λa = −1
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• Ti, Ui are moduli of the corresponding unrotated plane

• Âa
f,i ∼ Ma

i /η24, with Ma
i an almost holomorphic mod-

ular form of degree 24.

By imposing the absence of tachyons in the spectrum,

we obtain
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,

where ba
i is the β-function coefficient of the N = 2

gauge theory associated to a would-be T 6/Gi orbifold

and γi is a model dependent (but gauge group indepen-

dent) coefficient.
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The Kähler potential and gauge kinetic functs are
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1

2

V i
1−loop + V i

E1

S + S̄

}

,

V i
1−loop =

4πγi

3

E(iUi,2)

Ti + T̄i
,

V i
E1 =

γi

π

∑

k>j≥0, p>0

e−2πkpTi

(kp)2

[
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γi are model-dependent.



Conclusions

• We computed E1 instanton corrections in the T 4/Z2×
T2 type I orbifold model :

holomorphic corrections → f .

non-holomorphic corrections → K.

We expect similar results for the superpotential. Sup-

pose S, U moduli are stabilized and there are field-theory

(E5) nonperturbative effects on D9 branes (gaugino

condensation, racetrack). Then

Wnp = Ae−B(f+fnp) = A′
∞
∑

n=1

dne−2πnT



• When combined with suitable fluxes and/or E5 ef-

fects, they generate moduli stabilization and SUSY break-

ing, changes in the soft spectra.

• Similar to the perturbative threshold corrections , the

E1 instantonic corrections to the gauge kinetic func-

tions from N = 2 sectors have some universal proper-

ties. Similar results therefore for N = 1 models with

N = 2 sectors : Z6, Z ′
6, etc.

• S-dual of stringy instantonic effects in type I could

teach us more about the heterotic string dynamics.

• The instantonic corrections to f and K deserve more

phenomenological studies.


